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Atomic context-conditioned protein 
sequence design using LigandMPNN
 

Justas Dauparas    1,2, Gyu Rie Lee    1,2,3, Robert Pecoraro1,2,4, Linna An1,2, 
Ivan Anishchenko1,2, Cameron Glasscock1,2 & David Baker    1,2,3 

Protein sequence design in the context of small molecules, nucleotides and 
metals is critical to enzyme and small-molecule binder and sensor design, 
but current state-of-the-art deep-learning-based sequence design methods 
are unable to model nonprotein atoms and molecules. Here we describe a 
deep-learning-based protein sequence design method called LigandMPNN 
that explicitly models all nonprotein components of biomolecular systems. 
LigandMPNN significantly outperforms Rosetta and ProteinMPNN on 
native backbone sequence recovery for residues interacting with small 
molecules (63.3% versus 50.4% and 50.5%), nucleotides (50.5% versus 
35.2% and 34.0%) and metals (77.5% versus 36.0% and 40.6%). LigandMPNN 
generates not only sequences but also sidechain conformations to allow 
detailed evaluation of binding interactions. LigandMPNN has been used to 
design over 100 experimentally validated small-molecule and DNA-binding 
proteins with high affinity and high structural accuracy (as indicated by four 
X-ray crystal structures), and redesign of Rosetta small-molecule binder 
designs has increased binding affinity by as much as 100-fold. We anticipate 
that LigandMPNN will be widely useful for designing new binding proteins, 
sensors and enzymes.

De novo protein design enables the creation of novel proteins with new 
functions, such as catalysis1, DNA, small-molecule and metal binding, 
and protein-protein interactions2–10. De novo design is often carried 
out in three steps11–14: first, the generation of protein backbones pre-
dicted to be near optimal for carrying out the new desired function15–19; 
second, design of amino-acid sequences for each backbone to drive 
folding to the target structure and to make the specific interactions 
required for function (for example, an enzyme active site)20–30; and 
third, sequence–structure compatibility filtering using structure 
prediction methods31–36. In this Article, we focus on the second step, 
protein sequence design. Both physically based methods such as 
Rosetta37–39 and deep-learning-based models such as ProteinMPNN28, 
IF-ESM29 and others31–36 have been developed to solve this problem. The 
deep-learning-based methods outperform physically based methods 
in designing sequences for protein backbones, but currently available 

models cannot incorporate nonprotein atoms and molecules. For 
example, ProteinMPNN explicitly considers only protein backbone 
coordinates while ignoring any other atomic context, which is critical 
for designing enzymes, nucleic-acid-binding proteins, sensors and all 
other protein functions involving interactions with nonprotein atoms.

Results
To enable the design of this wide range of protein functions, we set out 
to develop a deep-learning method for protein sequence design that 
explicitly models the full nonprotein atomic context. We sought to 
do this by generalizing the ProteinMPNN architecture to incorporate 
nonprotein atoms. As with ProteinMPNN, we treat protein residues as 
nodes and introduce nearest-neighbor edges based on Cα–Cα distances 
to define a sparse protein graph (Fig. 1); protein backbone geometry is 
encoded into graph edges through pairwise distances between N, Cα, 

Received: 2 December 2023

Accepted: 10 February 2025

Published online: 28 March 2025

 Check for updates

1Department of Biochemistry, University of Washington, Seattle, WA, USA. 2Institute for Protein Design, University of Washington, Seattle, WA, USA. 
3Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA. 4Department of Physics, University of Washington, Seattle, WA, USA. 

 e-mail: dabaker@uw.edu

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-025-02626-1
http://orcid.org/0000-0002-0030-144X
http://orcid.org/0000-0002-9119-5303
http://orcid.org/0000-0001-7896-6217
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-025-02626-1&domain=pdf
mailto:dabaker@uw.edu


Nature Methods | Volume 22 | April 2025 | 717–723 718

Article https://doi.org/10.1038/s41592-025-02626-1

by randomly selecting a small fraction of protein residues (2–4%) 
and using their sidechain atoms as context ligand atoms in addition 
to any small-molecule, nucleotide and metal context. Although this 
augmentation did not significantly increase sequence recoveries (Sup-
plementary Fig. 1b), training in this way also enables the direct input 
of sidechain atom coordinates to LigandMPNN to stabilize functional 
sites of interest.

We also trained a sidechain packing neural network using the basic 
LigandMPNN architecture to predict the four sidechain torsion angles 
for each residue following the sequence design step. The sidechain 
packing model takes as input the coordinates of the protein backbone 
and any ligand atoms, and the amino-acid sequence, and outputs the 
coordinates of the protein sidechains with log-probability scores. 
The model predicts a mixture (three components) of circular normal 
distributions for the torsion angles (chi1, chi2, chi3 and chi4). For each 
residue, we predict three mixing coefficients, three means and three 
variances per chi angle. We autoregressively decompose the joint chi 
angle distribution by decoding all chi1 angles first, then all chi2 angles, 
chi3 angles and finally all chi4 angles (after the model decodes one of 
the chi angles, its angular value and the associated three-dimensional 
atom coordinates are used for further decoding).

LigandMPNN was trained on protein assemblies in the Protein Data 
Bank (PDB; as of 16 December 2022) determined by X-ray crystallog-
raphy or cryo-electron microscopy to better than 3.5 Å resolution and 
with a total length of less than 6,000 residues. The train–test split was 
based on protein sequences clustered at a 30% sequence identity cutoff. 
We evaluated LigandMPNN sequence design performance on a test set 
of 317 protein structures containing small molecules, 74 with nucleic 
acids and 83 with a transition metal (Fig. 2a). For fair comparison, we 
retrained ProteinMPNN on the same training dataset of PDB biounits 
as LigandMPNN (the retrained model is referred to as ProteinMPNN 
in this Article), except none of the context atoms was provided dur-
ing training. Protein and context atoms were noised by adding 0.1 Å 
standard deviation Gaussian noise to avoid protein backbone memo-
rization28. We determined the native amino-acid residue sequence 
recovery for positions close to the ligand (with sidechain atoms within 
5.0 Å of any nonprotein atoms). The median sequence recoveries (ten 
designed sequences per protein) near small molecules were 50.4% for 
Rosetta using the genpot energy function18, 50.4% for ProteinMPNN 

C, O and Cβ atoms. These input features are then processed using three 
encoder layers with 128 hidden dimensions to obtain intermediate node 
and edge representations. We experimented with introducing two addi-
tional protein–ligand encoder layers to encode protein–ligand inter-
actions. We reasoned that, with the backbone and ligand atoms fixed 
in space, only ligand atoms in the immediate neighborhood (within 
~10 Å) would affect amino-acid sidechain identities and conformations 
because the interactions (van der Waals, electrostatic, repulsive and 
solvation) between ligands and sidechains are relatively short range40.

To transfer information from ligand atoms to protein residues, 
we construct a protein–ligand graph with protein residues and ligand 
atoms as nodes and edges between each protein residue and the closest 
ligand atoms. We also build a fully connected ligand graph for each pro-
tein residue with its nearest-neighbor ligand atoms as nodes; message 
passing between ligand atoms increases the richness of the informa-
tion transferred to the protein through the ligand–protein edges. We 
obtained the best performance by selecting for the protein–ligand 
and individual residue intraligand graphs the 25 closest ligand atoms 
based on protein virtual Cβ and ligand atom distances (Supplementary 
Fig. 1a). The ligand graph nodes are initialized to one-hot-encoded 
chemical element types, and the ligand graph edges to the distances 
between the atoms (Fig. 1). The protein–ligand graph edges encode 
distances between N, Cα, C, O and virtual Cβ atoms and ligand atoms 
(Fig. 1). The protein–ligand encoder consists of two message-passing 
blocks that update the ligand graph representation and then the pro-
tein–ligand graph representation. The output of the protein–ligand 
encoder is combined with the protein encoder node representations 
and passed into the decoder layers. We call this combined protein–
ligand sequence design model LigandMPNN.

To facilitate the design of symmetric9,16 and multistate proteins10, 
we use a random autoregressive decoding scheme to decode 
the amino-acid sequence as in the case of ProteinMPNN. With the 
addition of the ligand atom geometry encoding and the extra two  
protein–ligand encoder layers, the LigandMPNN neural network  
has 2.62 million parameters compared with 1.66 million Pro-
teinMPNN parameters. Both networks are high-speed and light-
weight (ProteinMPNN 0.6 s and LigandMPNN 0.9 s on a single  
central processing unit for 100 residues), scaling linearly with 
respect to the protein length. We augmented the training dataset 
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Fig. 1 | The LigandMPNN model. LigandMPNN operates on three different 
graphs. First, a protein-only graph with residues as nodes and 25 distances 
between N, Cα, C, O and virtual (inferred location based on backbone coordinates 
to handle the glycine case) Cβ atoms for residues i and j. Second, an intraligand 
graph with atoms as nodes that encodes chemical element types and distances 
between atoms as edges. Third, a protein–ligand graph with residues and ligand 
atoms as nodes and edges encoding residue j and ligand atom geometry.  

The LigandMPNN model has three neural network blocks: a protein backbone 
encoder, a protein–ligand encoder and a decoder. Protein sequences and 
sidechain torsion angles are autoregressively decoded to obtain sequence 
and full protein structure samples. The dotted lines show atom interactions. 
Metaparameter variation and ablation experiments are described in 
Supplementary Fig. 1a–e.
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and 63.3% for LigandMPNN. For residues near nucleotides, median 
sequence recoveries were 35.2% for Rosetta2 (using an energy func-
tion optimized for protein–DNA interfaces), 34.0% for ProteinMPNN 
and 50.5% for LigandMPNN, and for residues near metals, 36.0% for 
Rosetta41, 40.6% for ProteinMPNN and 77.5% for LigandMPNN (Fig. 2a). 
Sequence recoveries were consistently higher for LigandMPNN over 
most proteins in the validation dataset (Fig. 2b; performance was cor-
related, probably reflecting variation in the crystal structure and the 
amino-acid composition of the site). LigandMPNN predicts amino-acid 
probability distributions and uncertainties for each residue position; 
the expected confidence correlates with the actual sequence recovery 
accuracy (Fig. 3c).

To assess the contributions to this high sustained performance, 
we evaluated versions in which metaparameters and features were 
varied or ablated (Supplementary Fig. 1a–e). Decreasing the number 
of context atoms per residue primarily diminished sequence recovery 
around nucleic acids, probably because these are larger and contain 
more atoms on average than small molecules and metals (Supplemen-
tary Fig. 1a). Providing sidechain atoms as additional context did not 
significantly affect LigandMPNN performance (Supplementary Fig. 1b). 
As observed for ProteinMPNN, sequence recovery is inversely propor-
tional to the amount of Gaussian noise added to input coordinates. 
The baseline model was trained with 0.1 Å standard deviation noise to 
reduce the extent to which the native amino acid can be read out simply 
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Fig. 2 | In silico evaluation of LigandMPNN sequence design. a, LigandMPNN 
has a higher recovery of native protein amino-acid identities than Rosetta and 
ProteinMPNN around small molecules, nucleic acids and metals. Sequence 
recoveries (sec. rec.) are averaged over the residues within 5.0 Å from the  
context atoms. b, LigandMPNN has higher sequence recovery around  
nonprotein molecules than Rosetta for most proteins. The color indicates the 

LigandMPNN-predicted confidence (between 0 and 100) for a given protein.  
The dashed lines show the mean values. c, Native sequence recovery correlates 
with LigandMPNN predicted confidence for designed sequences. One dot 
represents an average sequence recovery over 10 sequences for one protein for 
317 small-molecule-, 74 nucleotide- and 83 metal-containing test proteins.
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on the basis of the local geometry of the residue; crystal structure 
refinement programs introduce some memory of the native sequence 
into the local backbone. Training with 0.05 Å and 0.2 Å noise instead 
increased and decreased sequence recovery by about 2%, respectively 
(Supplementary Fig. 1c; when comparing performance across methods, 
similar levels of noising must be used). Ablating the protein–ligand 
and ligand graphs led to a 3% decrease in sequence recovery (Supple-
mentary Fig. 1d). Training on sidechain context atoms only (no small 
molecules, nucleotides or metals) reduced sequence recovery around 
small molecules by 3.3% (Supplementary Fig. 1e). Finally, a model 
trained without chemical element types as input features had much 
lower sequence recovery near metals (8% difference; Supplementary 
Fig. 1d) but almost the same sequence recovery near small molecules 
and nucleic acids, suggesting that the model can to some extent infer 
chemical element identity from bonded geometry.

We evaluated LigandMPNN sidechain packing performance on 
the same dataset for residues within 5.0 Å from the context atoms. We 
generated ten sidechain packing examples with the fixed backbone 
and fixed ligand context using Rosetta, LigandMPNN and LigandMPNN 
without ligand context (LigandMPNN-wo in Fig. 3). The median chi1 
fraction (within 10° from crystal packing) near small molecules was 

76.0% for Rosetta, 83.3% for LigandMPNN-wo and 86.1% for Ligan-
dMPNN, near nucleotides 66.2%, 65.6% and 71.4% and near metals 
68.6%, 76.7% and 79.3% for the three models, respectively (Fig. 3a). 
LigandMPNN has a higher chi1 fraction recovery compared with Rosetta 
on most of the test proteins (Fig. 3b), but only marginally better than 
LigandMPNN-wo (Supplementary Fig. 3c), suggesting that most of 
the information about sidechain packing is coming from the protein 
context rather than from the ligand context, consistent with binding 
site preorganization. All the models struggle to predict chi3 and chi4 
angles correctly. For LigandMPNN, weighted average fractions of cor-
rectly predicted chi1, chi2, chi3 and chi4 angles for the small-molecule 
dataset were 84.0%, 64.0%, 28.3% and 18.7%, for Rosetta 74.5%, 50.5%, 
24.1% and 8.1% and for LigandMPNN-wo 81.6%, 60.4%, 26.7% and 17.4% 
(Supplementary Fig. 3b). The sidechain root-mean-square deviations 
are similar between the different methods as shown in Supplementary 
Figs. 4 and 5. Comparing LigandMPNN-wo versus LigandMPNN, the 
biggest improvements in terms of root-mean-square deviation are 
obtained for glutamine (Q) in the small-molecule dataset, for arginine 
(R) in the nucleotide dataset and for histidine (H) in the metal context 
dataset (Supplementary Fig. 5), consistent with the important roles of 
interactions of these residues with the corresponding ligands.
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Fig. 3 | Evaluation of LigandMPNN sidechain packing accuracy. a, Comparison 
of crystal sidechain packing (gray) with LigandMPNN sidechain packing  
(colored sidechains by model confidence: teal is high and purple is low 
confidence per chi angle) for 2P7G, 1BC8 and 1E4M proteins. The context atoms 
are shown in orange (small molecule, DNA and zinc). LigandMPNN has higher 
chi1 and chi2 torsion angle recovery (fraction of residues within 10° from native) 

than Rosetta and LigandMPNN-wo. b, Per-protein comparison of chi1 fraction 
recovery for LigandMPNN versus Rosetta. One dot represents an average chi1 
recovery over 10 sidechain packing samples for one protein for 317 small-
molecule-, 67 nucleotide- and 76 metal-containing test proteins. The dashed lines 
show the mean values.
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We tested the capability of LigandMPNN to design binding sites 
for small molecules starting from previously characterized designs 
generated using Rosetta that either bound weakly or not at all to their 
intended targets: the muscle relaxant rocuronium, for which no bind-
ing was previously observed (Fig. 4a) and the primary bile acid cholic 
acid (Fig. 4b) for which binding was very weak3,4. LigandMPNN was 
used to generate sequences around the ligands using the backbone 
and ligand coordinates as input; these retain and/or introduce new 
sidechain–ligand hydrogen bonding interactions. LigandMPNN rede-
signs either rescued binding (Fig. 4a and Supplementary Fig. 6) or 
improved the binding affinity (Fig. 4b). A further example with cholic 
acid is described in ref. 4, where, starting from the crystal structure of a 
previously designed complex, LigandMPNN increased binding affinity 
100-fold. As with the many other design successes with LigandMPNN 
(see below), these results indicate significant generalization beyond the 
PDB training set: there were no rocuronium-binding protein complex 
structures in the PDB training set, and the cholic-acid-binding protein 
in the PDB that is closest to our cholic-acid-binding design (PDB: 6JY3) 
has a quite different structure (template modeling score 0.59) with a 
totally different ligand-binding location (Supplementary Fig. 7).

Discussion
The deep-learning-based LigandMPNN is superior to the physically 
based Rosetta for designing amino acids to interact with nonprotein 
molecules. It is about 250 times faster (because the expensive Monte 
Carlo optimization over sidechain identities and compositions is com-
pletely bypassed), and the recoveries of native amino-acid identities 
and conformations around ligands are consistently higher. The method 
is also easier to use because no expert customizations are required 
for new ligands (unlike Rosetta and other physically based methods 
that can require new energy function or force field parameters for  

new compounds). At the outset, we were unsure whether the accuracy 
of ProteinMPNN could extend to protein–ligand systems given the small 
amount of available training data, but our results suggest that, for the 
vast majority of ligands, there are sufficient data. Nevertheless, we 
suggest some care in using LigandMPNN for designing binders to com-
pounds containing elements occurring rarely or not at all in the PDB (in 
the latter case it is necessary to map to the most closely occurring ele-
ment). Hybridization of the physically based and deep-learning-based 
approaches may provide a better solution to the amino-acid and side-
chain optimization problems in the low-data regime.

LigandMPNN has already been extensively used for designing 
interactions of proteins with nucleic acids and small molecules, and 
these studies provide considerable additional experimental valida-
tion of the method. In these studies, LigandMPNN was either used 
as a drop-in replacement for Rosetta sequence design retaining the 
backbone relaxation of RosettaFastDesign38,42, or used independently 
without backbone relaxation. Glasscock et al.2 developed a computa-
tional method for designing small sequence-specific DNA-binding 
proteins that recognize specific target sequences through interac-
tions with bases in the major groove that uses LigandMPNN to design 
the protein–DNA interface. The crystal structure of a DNA-binding 
protein designed with LigandMPNN recapitulated the design model 
closely (deposited to the Research Collaboratory for Structural Bioin-
formatics Protein Data Bank as PDB ID 8TAC). Lee et al.3, An et al.4 and 
Krishna et al.5 used LigandMPNN to design small-molecule-binding 
proteins with scaffolds generated by deep-learning- and Rosetta-based 
methods. Iterative sequence design with LigandMPNN resulted in 
nanomolar-to-micromolar binders for the 17α-hydroxyprogesterone, 
apixaban and SN-38 with NTF2-family scaffolds3, nanomolar bind-
ers for cholic acid, methotrexate and thyroxine4 in pseudocy-
clic scaffolds, and binders for digoxigenin, heme and bilin in 
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RFdiffusion_allatom-generated scaffolds5. In total, more than 100 
protein–DNA binding interfaces and protein–small-molecule binding 
interfaces designed using LigandMPNN have been experimentally 
demonstrated to bind to their targets, and 5 co-crystal structures 
have been solved that in each case are very close to the computational 
design models3–5. This extensive biochemical and structural validation 
provides strong support for the power of the approach.

As with ProteinMPNN, we anticipate that LigandMPNN will be 
widely useful in protein design, enabling the creation of a new genera-
tion of small-molecule-binding proteins, sensors and enzymes. To this 
end, we have made the code available via GitHub at https://github.com/
dauparas/LigandMPNN.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Methods for training LigandMPNN for sequence design
Training data. LigandMPNN was trained on a dataset similar to Pro-
teinMPNN28. We used protein assemblies in the PDB (as of 16 December 
2022) determined by X-ray crystallography or cryo-electron micros-
copy to better than 3.5 Å resolution and with fewer than 6,000 residues. 
We parsed all residues present in the PDBs except [‘HOH’, ‘NA’, ‘CL’, ‘K’, 
‘BR’]. Protein sequences were clustered at 30% sequence identity cut-
off using mmseqs2 (ref. 43). We held out a nonoverlapping subset of 
proteins that have small-molecule contexts (a total of 317), nucleotide 
contexts (a total of 74) and metal contexts (a total of 83).

Optimizer and loss function. For optimization, we used Adam with 
beta1 of 0.9, beta2 of 0.98 and epsilon of 1e-9, the same as for Pro-
teinMPNN. Models were trained with a batch size of 6,000 tokens, 
automatic mixed precision and gradient checkpointing on a single 
NVIDIA A100 graphics processing unit for 300,000 optimizer steps. 
We used categorical cross entropy for the loss function following the 
ProteinMPNN paper28.

Input featurization and model architecture. We used the same input 
features as in the ProteinMPNN paper for the protein part. For the 
atomic context input features, we used one-hot-encoded chemical 
element types as node features for the ligand graph and the radial basis 
function-encoded distances between the context atoms as edges for 
the ligand graph. To encode the interaction between protein-context 
atoms, we used distances between N, Cα, C, O and virtual Cβ atoms 
and context atoms. In addition, we added angle-based sin/cos features 
describing context atoms in the frame of N–Cα–C atoms.

We used the same MPNN architecture as used in ProteinMPNN for 
the encoder, decoder and protein–ligand encoder blocks. Encoder 
and decoder blocks work on protein nodes and edges, that is, map-
ping vertices [N] and edges [N, K] to updated vertices [N] and edges 
[N, K] where N is the number of residues and K is the number of direct 
neighbors per residue. We choose M context atoms per residue result-
ing in [N, M] protein–atom interactions. The ligand graph blocks map 
vertices of size [N, M] and edges of size [N, M, M] (fully connected 
context atoms) to updated vertices [N, M]. The updated [N, M] rep-
resentation is used in the protein–ligand graph to map vertices [N] 
and edges [N, M] into updated vertices [N]. For more details, refer to 
the LigandMPNN code.

Model algorithms. We provide a list of algorithms and model layers 
used by the LigandMPNN model. The model is based on the autoregres-
sive encoder-decoder architecture. Algorithm 10 describes how the 
input features such as protein atom coordinates (X), ligand coordinates 
(Y), ligand mask (Y_m), and ligand atom types (Y_t) are converted into 
the input features. Protein and ligand geometric features are encoded 
using the algorithm 11, and it returns final protein node and edge fea-
tures. Finally, algorithm 12 decodes protein sequence by predicting 
log probabilities for all amino acids. During the inference, we sample 
from these probabilities with some temperate (T) (algorithm 13) and 
iteratively run algorithm 12 to populate the designed sequence (S).

Notation:
X ∈ ℝL×4×3- protein backbone coordinates for N, Cα, C and O atoms 

with L residues
Y ∈ ℝL×M×3- coordinates of the closest M ligand atoms from the 

virtual Cβ atom in the protein
Y_m ∈ ℝL×M- ligand atom mask
Y_t ∈ ℝL×M- ligand atom type

Algorithm 1. Linear layer
def Linear(x ∈ ℝn; W ∈ ℝm×n, b ∈ ℝm):
1:  x ← Wx+b, x ∈ ℝm

2:  return x

Algorithm 2. Non-linear layer44

def GELU(x ∈ ℝn):
1:  x ← 0.5⋅x⋅(1+tanh(2/π⋅(x + 0.044715⋅x3))), x ∈ ℝn

2:  return x

Algorithm 3. Normalization layer
def LayerNorm(x ∈ ℝn; γ ∈ ℝn, β ∈ ℝn):
1:  μ = E[x]=(x1 + x2 + …+xn)/n, μ ∈ ℝn

2:  σ2 = E[(x-μ)2], σ2 ∈ ℝn

3:  x ← γ⋅(x-μ)/σ + β, x ∈ ℝn

4:  return x

Algorithm 4. Dropout layer
def Dropout(x ∈ ℝn; p ∈ ℝ, training: bool):
1:  if training:
2:    mask = Binomial[1-p](x.shape), mask ∈ ℝn

3:    x ← mask⋅x/(1-p), x ∈ ℝn

4:    return x
5:  else:
6:    return x

Algorithm 5. Position wise feed-forward
def PositionWiseFeedForward (vi ∈ ℝn; n = 128, m = 512):
1:  vi ← Linear[n,m](vi), vi ∈ ℝm

2:  vi ← GELU(vi), vi ∈ ℝm

3:  vi ← Linear[m,n](vi), vi ∈ ℝn

4:  return vi

Algorithm 6. Positional encoding layer
def PositionalEncodings(offset ∈ ℝL×K, mask ∈ ℝL×K; n = 16, 
max_offset = 32):
    #offset - protein residue to residue distances for all chains
    #mask - mask if two residues are from the same chain
    #n - number of dimensions to embed the offset to
    #max_offset - maximum distance between two residues
1:  d = mask⋅clip[0, 2⋅max_offset](offset + max_offset), d ∈ ℝL×L

2:  f = (1-mask)⋅(2⋅max_offset + 1), f ∈ ℝL×L

3:  g = d + f, g ∈ ℝL×L

4: � g_one_hot = one_hot[2⋅max_offset + 2](g), g_one_hot  
∈ ℝL×L×2⋅max_offset+2

5:  e ← Linear[2⋅max_offset + 2,n](g_one_hot), e ∈ ℝL×L×n

6:  return e

Algorithm 7. Encoder Layer
def EncLayer(v ∈ ℝL×n, e ∈ ℝL×K×n, e_idx ∈ ℝL×K; n = 128, m = 128,  
p = 0.1, s = 30.0):
    #v - vertex embedding for L residues
    #e - edge embedding for L residues with K neighbors per residue
    #e_idx - integers specifying protein residue neighbor positions
    #n - input dimension
    #m - hidden dimension
    #p - dropout probability
    #s - scaling factor
1:  qij = concatenate[e_idxij](vi, vj, eij), q ∈ ℝL×K×3⋅n, qij ∈ ℝ3⋅n,
2:  qij ← GELU{Linear[3n,m](qij)}, qij ∈ ℝm,
3:  qij ← GELU{Linear[m,m](qij)}, qij ∈ ℝm,
4:  qij ← Linear[m,m](qij), qij ∈ ℝm,
5:  dhi ← Σj qij/s, dhi ∈ ℝm,
6:  vi ← LayerNorm{vi+Dropout[p](dhi)}, vi ∈ ℝm,
7:  qij = concatenate[e_idxij](vi, vj, eij), q ∈ ℝL×K×3⋅n, qij ∈ ℝ3⋅n,
8:  qij ← GELU{Linear[3n,m](qij)}, qij ∈ ℝm,
9:  qij ← GELU{Linear[m,m](qij)}, qij ∈ ℝm,
10:  qij ← Linear[m,m](qij), qij ∈ ℝm,
11:  eij ← LayerNorm{eij+Dropout[p](qij)}, vi ∈ ℝm,
12:  return v, e
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Algorithm 8. Decoder Layer
def DecLayer(v ∈ ℝL×n, e ∈ ℝL×K×2n; n = 128, m = 128, p = 0.1, s = 30.0):
    #v - vertex embedding for L residues
    #e - edge embedding for L residues with K neighbors
    #n - input dimension
    #m - hidden dimension
    #p - dropout probability
    #s - scaling factor
1:  qij = concatenate(vi, eij), q ∈ ℝL×K×3⋅n, qij ∈ ℝ3⋅n

2:  qij ← GELU{Linear[3n,m](qij)}, qij ∈ ℝm,
3:  qij ← GELU{Linear[m,m](qij)}, qij ∈ ℝm,
4:  qij ← Linear[m,m](qij), qij ∈ ℝm,
5:  dhi ← Σj qij/s, dhi ∈ ℝm,
6:  vi ← LayerNorm{vi+Dropout[p](dhi)}, vi ∈ ℝm,
7:  return v

Algorithm 9. Context Decoder Layer
def DecLayerJ(v ∈ ℝL×M×n, e ∈ ℝL×M×M×2n; n = 128, m = 128, p = 0.1, s = 30.0):
    #v - vertex embedding for L residues with M atoms per residue
    #e - edge for L residues with M atoms and M neighbors per atom
    #n - input dimension
    #m - hidden dimension
    #p - dropout probability
    #s - scaling factor
1:  qijk = concatenate(vij, eijk), q ∈ ℝL×M×M×3⋅n, qijk ∈ ℝ3⋅n,
2:  qijk ← GELU{Linear[3n,m](qijk)}, qijk ∈ ℝm,
3:  qijk ← GELU{Linear[m,m](qijk)}, qijk ∈ ℝm,
4:  qijk ← Linear[m,m](qijk), qijk ∈ ℝm,
5:  dhij ← Σk qijk/s, dhij ∈ ℝm,
6:  vij ← LayerNorm{vij+Dropout[p](dhij)}, vi ∈ ℝm,
7:  return v

Algorithm 10. Protein and ligand featurization
def ProteinFeaturesLigand(Y ∈ ℝL×M×3, Y_m ∈ ℝL×M, Y_t ∈ ℝL×M, X ∈ ℝL×4×3, 
R_idx ∈ ℝL, chain_labels ∈ ℝL; noise_level = 0.1, K = 32, m = 128, r = 16):
  �  #Y, Y_m, Y_t - ligand atom coordinates, mask, and chemical  

atom type
    #X - protein coordinates for N, Cα, C, O atoms in this order
    #R_idx - protein residue indices
    #chain labels - integer labels for protein chains
    #noise_level - standard deviation of Gaussian noise
    #K - number of nearest Cα neighbors for protein
    #m - hidden dimension size
    #r - radial basis function number
1:  X ← X + noise_level⋅GaussianNoise(X.shape), X ∈ ℝL×4×3,
2:  Y ← Y + noise_level⋅GaussianNoise(Y.shape), X ∈ ℝL×M×3,
3: � Cβ = = -0.5827⋅[(Cα-N)^(C-Cα)] + 0.5680⋅(Cα-N) - 

0.5407⋅(C-Cα) + Cα, N, Cα, C, Cβ ∈ ℝL×3,
4:  e_idx = top_k[K](||Cαi-Cαj||2), e_idx ∈ ℝL×K,
5:  rbf = []
6:  for a in [N, Cα, C, O Cβ]:
7:    for b in [N, Cα, C, O Cβ]:
8:      rbf_tmp = rbf_f{get_edges[e_idx](||ai-bj||2)}, rbf_tmp ∈ ℝL×K×r,
9:      rbf.append(rbf_tmp)
10:  rbf ← concatenate(rbf), rbf ∈ ℝL×K×25⋅r,
11:  offset = get_edges[e_idx](R_idxi-R_idxj), offset ∈ ℝL×K,
12: � offset_m = get_edges[e_idx](chain_labelsi-chain_labelsj = =0), 

offset_m ∈ ℝL×K,
13:  pos_enc = PositionalEncodings(offset, offset_m), pos_enc ∈ ℝL×K×r

14:  e ← LayerNorm{Linear[r + 25⋅r,m](concat[pos_enc, rbf])}, e∈ ℝL×K×m

15:  Y_t_g = chemical_group(Y_t), Y_t_g∈ ℝL×M

16:  Y_t_p = chemical_period(Y_t), Y_t_p∈ ℝL×M

17: � Y_t_1hot = Linear[64,147](onehot[concat(Y_t, Y_t_g, Y_t_p)]), 
Y_t_1hot∈ ℝL×M×64

18:  rbf_N_Y = rbf_f{||N-Y||2}, rbf_N_Y∈ ℝL×M×r

19:  rbf_Cα_Y = rbf_f{||Cα-Y||2}, rbf_Cα_Y ∈ ℝL×M×r

20:  rbf_C_Y = rbf_f{||C-Y||2}, rbf_C_Y ∈ ℝL×M×r

21:  rbf_O_Y = rbf_f{||O-Y||2}, rbf_O_Y∈ ℝL×M×r

22:  rbf_Cβ_Y = rbf_f{||Cβ-Y||2}, rbf_Cβ_Y∈ ℝL×M×r

23: � rbf_Y = concat(rbf_N_Y, rbf_Cα_Y, rbf_C_Y, rbf_O_Y,rbf_Cβ_Y), 
rbf_Y∈ ℝL×M×5⋅r

24:  angles_Y = make_angle_features(N, Cα, C, Y), angles_Y∈ ℝL×M×4

25:  v = concat(rbf_Y, Y_t_1hot, angles_Y), v∈ ℝL×M×4

26:  v ← LayerNorm{Linear[5⋅r + 64 + 4,m](v)}, v∈ ℝL×M×m

27:  Y_edges = rbf_f{||Yi-Yj||2}, Y_edges∈ ℝL×M×M×r

28: � Y_edges ← LayerNorm{Linear[r,m](Y_edges)},  
Y_edges∈ ℝL×M×M×m

29: � Y_nodes = LayerNorm{Linear[147,m](onehot[concat 
(Y_t, Y_t_g, Y_t_p)])}, Y_nodes∈ ℝL×M×m

30:  return v, e, e_idx, Y_nodes, Y_edges

Algorithm 11. LigandMPNN encode function
def LigandMPNN_encode(Y ∈ ℝL×M×3, Y_m ∈ ℝL×M, Y_t ∈ ℝL×M,  
X ∈ ℝL×4×3, R_idx ∈ ℝL, chain_labels ∈ ℝL; num_layers=3, c_num_ 
layers=2, m = 128):
1: � v_y, e, e_idx, Y_nodes, Y_edges = ProteinFeaturesLigand 

(Y, Y_m, Y_t, X, R_idx, chain_labels)
2:  v_y = Linear[m,m](v_y), v_y ∈ ℝL×m,
3:  v = zeros(L, m), v ∈ ℝL×m,
4:  for i in range(num_layers):
5:      v, e ← EncLayer(v, e, e_idx), v ∈ ℝL×m, e ∈ ℝL×K×m

6:  v_c = Linear[m,m](v), v_c ∈ ℝL×m,
7:  Y_m_edges = Y_mi⋅Y_mj, Y_edges ∈ ℝL×M×M,
8:  Y_nodes = Linear[m,m](Y_nodes), Y_nodes ∈ ℝL×M×m,
9:  Y_edges = Linear[m,m](Y_edges), Y_edges ∈ ℝL×M×M×m,
10:  for i in range(c_num_layers):
11:   �   Y_nodes ← DecLayerJ(Y_nodes, Y_edges, Y_m, Y_m_edges)  

#atom graph
12:      Y_nodes_c = concat(v_y, Y_nodes)
13:      v_c ← DecLayer(v_c, Y_nodes_c, mask, Y_m) #protein graph
14:  v_c ← Linear[m,m](v_c)
14:  v ← v + LayerNorm[Dropout[p]](v_c)
15:  return v, e, e_idx

Algorithm 12. LigandMPNN decode function
def LigandMPNN_decode(S ∈ ℝL, Y_m ∈ ℝL×M, Y_t ∈ ℝL×M, X ∈ ℝL×4×3, R_idx 
∈ ℝL, chain_labels ∈ ℝL, decoding_order ∈ ℝL; num_layers=3, m = 128):
1: � h_V, e, e_idx = LigandMPNN_encode(Y, Y_m, Y_t, X, R_idx, 

chain_labels)
2:  causal_mask = upper_triangular[decoding_order](L,L)
3:  h_S = Linear[21,m](onehot(S)), h_S ∈ ℝL×m,
4:  h_ES = concat(h_S, e, e_idx), h_ES ∈ ℝL×K×2m,
5: � h_EX_encoder = concat(zeros(h_S), e, e_idx), h_EX_encoder  

∈ ℝL×K×2m,
6: � h_EXV_encoder = concat(h_V, h_EX_encoder, e_idx), h_EXV_encoder 

∈ ℝL×K×3m,
7:  h_EXV_encoder_fw =(1-causal_mask)⋅h_EXV_encoder
8:    for i in range(num_layers):
9:    h_ESV = conat(h_V, h_ES, e_idx)
10:    h_ESV ← causal_mask⋅h_ESV + h_EXV_encoder_fw
11:    h_V ← DecLayer(h_V, h_ESV)
12:  logits = Linear[m,21](h_V), logits ∈ ℝL×21,
13:  log_probs = log_softmax(logits)
14:  return logits, log_probs

Algorithm 13. Amino-acid sampling with temperature
def sampling(logits∈ ℝ21, T∈ ℝ, bias∈ ℝ21):
1:  p = softmax((logits+bias)/T)
2:  S = categorical_sample(p)
3:  return S
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Algorithm 14. Outline of LigandMPNN sidechain decode function
def LigandMPNN_sc_decode(Y_m ∈ ℝL×M, Y_t ∈ ℝL×M, X ∈ ℝL×14×3,  
R_idx ∈ ℝL, chain_labels ∈ ℝL, decoding_order ∈ ℝL; num_layers=3, 
m = 128):
1: � h_V_enc, h_E_enc, e_idx = LigandMPNN_encode(Y, Y_m, Y_t, X, 

R_idx, chain_labels)
2: � h_V_dec, h_E_dec = LigandMPNN_encode(Y, Y_m, Y_t, X, R_idx, 

chain_labels)
3:  causal_mask = upper_triangular[decoding_order](L,L)
4:  h_EV_encoder = concat(h_V_enc, h_E_enc, e_idx)
5:  h_E_encoder_fw =(1-causal_mask)⋅h_EV_encoder
6:  h_EV_decoder = concat(h_V_dec, h_E_dec, e_idx)
7:  h_V = h_V_enc
8:  for i in range(num_layers):
9:    ▓h_EV = conat(h_V, h_E_decoder, e_idx)
10:    ▓h_ECV ← causal_mask⋅h_EV + h_E_encoder_fw
11:    ▓h_V ← DecLayer(h_V, h_ECV)
12: � torsions = Linear[m,4⋅3⋅3](h_V).reshape(L,4,3,3), torsions  

∈ ℝL×4×3×3,
13:  mean = torsions[…,0], mean ∈ ℝL×4×3,
14: � concentration = 0.1 + softplus(torsions[…,1]), concentration  

∈ ℝL×4×3

15:  mix_logits =torsions[…,2], mix_logits ∈ ℝL×4×3

16:  p�redicted_distribution = VonMisesMixture(mean, concentra-
tion, mix_logits)

17:  return predicted_distribution

ProteinMPNN and LigandMPNN share the idea of using autore-
gressive sequence decoding with a sparse residue graph with  
ref. 21. However, there are many differences between the models. 
First, ProteinMPNN is trained on biological protein assemblies, 
and LigandMPNN on the biological protein assemblies with small 
molecules, nucleotides, metals and other atoms in the PDB, whereas 
ref. 21 was trained on single chains only. Second, we wanted our 
models to work well with novel protein backbones as opposed to 
crystal backbones, and for this reason, we added Gaussian noise 
to all the protein and other atom coordinates to blur out fine-scale 
details that would not be available during the design. Further-
more, we innovated by using a random autoregressive decoding 
scheme that fits more naturally protein sequences as opposed to 
left-to-right decoding used in language models and ref. 21. Also, 
we simplified input geometric features by keeping only distances 
between N, Cα, C, O and inferred Cβ atoms and added positional 
encodings that allowed us to design multiple protein chains at 
the same time, as opposed to using backbone local angles as in 
ref. 21. Both ProteinMPNN and LigandMPNN can design symmet-
ric and multistate proteins by choosing an appropriate decoding 
order and averaging out predicted probabilities. Also, we added 
expressivity to our MPNN encoder layers, allowing both graph 
nodes and edges to be updated. LigandMPNN further builds on 
top of ProteinMPNN by incorporating local atomic context into 
the protein residue local environment using invariant features. 
We pass messages between protein residues and context atoms to 
encode possible sequence combinations. Finally, LigandMPNN can 
also predict with uncertainty multiple sidechain packing combina-
tions of a newly designed sequence near nucleotides, metals and 
small molecules, which can help designers to choose sequences 
that make desired interactions with the ligand of interest. Ligan-
dMPNN can also take sidechain conformations as an input, which 
allows the design sequence to stabilize given ligand and selected  
protein sidechains.

Algorithms 1, 2, 3, 4 and 5 are commonly used in many machine 
learning models. Algorithms 6, 7, 8 and 13 were used in the Pro-
teinMPNN model. Algorithms 9, 10, 11, 12 and 14 are novel and specific 
to LigandMPNN.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data are available in the Article or its Supplementary Informa-
tion. PDB structures used for training were obtained from RCSB. The 
following PDB IDs were used in the Article: 8VEI, 8BEJ, 8VEZ, 8VFQ, 
8TAC, 6JY3, 2P7G, 1BC8 and 1E4M. (https://www.rcsb.org/docs/
programmatic-access/file-download-services). Source data are pro-
vided with this paper.

Code availability
The LigandMPNN code is available via GitHub at https://github.com/
dauparas/LigandMPNN. The neural network was developed with 
PyTorch 1.11.0, cuda 11.1, NumPy v1.21.5, Matplotlib v3.5.1 and Python 
v3.9.12. MMseqs2 version 13-45111+ds-2 was used to cluster PDB chains, 
and mmcif vesion 0.84 (https://pypi.org/project/mmcif/) and rdkit 
version 2022.03.2 were used to parse PDB files. The flow cytometry 
data were analyzed using the software FlowJo v10.9.0.
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