
Nature Methods | Volume 22 | April 2025 | 717–723 717

nature methods

https://doi.org/10.1038/s41592-025-02626-1Article

Atomic context-conditioned protein
sequence design using LigandMPNN

Justas Dauparas    1,2, Gyu Rie Lee    1,2,3, Robert Pecoraro1,2,4, Linna An1,2,
Ivan Anishchenko1,2, Cameron Glasscock1,2 & David Baker    1,2,3 

Protein sequence design in the context of small molecules, nucleotides and
metals is critical to enzyme and small-molecule binder and sensor design,
but current state-of-the-art deep-learning-based sequence design methods
are unable to model nonprotein atoms and molecules. Here we describe a
deep-learning-based protein sequence design method called LigandMPNN
that explicitly models all nonprotein components of biomolecular systems.
LigandMPNN significantly outperforms Rosetta and ProteinMPNN on
native backbone sequence recovery for residues interacting with small
molecules (63.3% versus 50.4% and 50.5%), nucleotides (50.5% versus
35.2% and 34.0%) and metals (77.5% versus 36.0% and 40.6%). LigandMPNN
generates not only sequences but also sidechain conformations to allow
detailed evaluation of binding interactions. LigandMPNN has been used to
design over 100 experimentally validated small-molecule and DNA-binding
proteins with high affinity and high structural accuracy (as indicated by four
X-ray crystal structures), and redesign of Rosetta small-molecule binder
designs has increased binding affinity by as much as 100-fold. We anticipate
that LigandMPNN will be widely useful for designing new binding proteins,
sensors and enzymes.

De novo protein design enables the creation of novel proteins with new
functions, such as catalysis1, DNA, small-molecule and metal binding,
and protein-protein interactions2–10. De novo design is often carried
out in three steps11–14: first, the generation of protein backbones pre-
dicted to be near optimal for carrying out the new desired function15–19;
second, design of amino-acid sequences for each backbone to drive
folding to the target structure and to make the specific interactions
required for function (for example, an enzyme active site)20–30; and
third, sequence–structure compatibility filtering using structure
prediction methods31–36. In this Article, we focus on the second step,
protein sequence design. Both physically based methods such as
Rosetta37–39 and deep-learning-based models such as ProteinMPNN28,
IF-ESM29 and others31–36 have been developed to solve this problem. The
deep-learning-based methods outperform physically based methods
in designing sequences for protein backbones, but currently available

models cannot incorporate nonprotein atoms and molecules. For
example, ProteinMPNN explicitly considers only protein backbone
coordinates while ignoring any other atomic context, which is critical
for designing enzymes, nucleic-acid-binding proteins, sensors and all
other protein functions involving interactions with nonprotein atoms.

Results
To enable the design of this wide range of protein functions, we set out
to develop a deep-learning method for protein sequence design that
explicitly models the full nonprotein atomic context. We sought to
do this by generalizing the ProteinMPNN architecture to incorporate
nonprotein atoms. As with ProteinMPNN, we treat protein residues as
nodes and introduce nearest-neighbor edges based on Cα–Cα distances
to define a sparse protein graph (Fig. 1); protein backbone geometry is
encoded into graph edges through pairwise distances between N, Cα,

Received: 2 December 2023

Accepted: 10 February 2025

Published online: 28 March 2025

 Check for updates

1Department of Biochemistry, University of Washington, Seattle, WA, USA. 2Institute for Protein Design, University of Washington, Seattle, WA, USA.
3Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA. 4Department of Physics, University of Washington, Seattle, WA, USA.

 e-mail: dabaker@uw.edu

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-025-02626-1
http://orcid.org/0000-0002-0030-144X
http://orcid.org/0000-0002-9119-5303
http://orcid.org/0000-0001-7896-6217
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-025-02626-1&domain=pdf
mailto:dabaker@uw.edu

Nature Methods | Volume 22 | April 2025 | 717–723 718

Article https://doi.org/10.1038/s41592-025-02626-1

by randomly selecting a small fraction of protein residues (2–4%)
and using their sidechain atoms as context ligand atoms in addition
to any small-molecule, nucleotide and metal context. Although this
augmentation did not significantly increase sequence recoveries (Sup-
plementary Fig. 1b), training in this way also enables the direct input
of sidechain atom coordinates to LigandMPNN to stabilize functional
sites of interest.

We also trained a sidechain packing neural network using the basic
LigandMPNN architecture to predict the four sidechain torsion angles
for each residue following the sequence design step. The sidechain
packing model takes as input the coordinates of the protein backbone
and any ligand atoms, and the amino-acid sequence, and outputs the
coordinates of the protein sidechains with log-probability scores.
The model predicts a mixture (three components) of circular normal
distributions for the torsion angles (chi1, chi2, chi3 and chi4). For each
residue, we predict three mixing coefficients, three means and three
variances per chi angle. We autoregressively decompose the joint chi
angle distribution by decoding all chi1 angles first, then all chi2 angles,
chi3 angles and finally all chi4 angles (after the model decodes one of
the chi angles, its angular value and the associated three-dimensional
atom coordinates are used for further decoding).

LigandMPNN was trained on protein assemblies in the Protein Data
Bank (PDB; as of 16 December 2022) determined by X-ray crystallog-
raphy or cryo-electron microscopy to better than 3.5 Å resolution and
with a total length of less than 6,000 residues. The train–test split was
based on protein sequences clustered at a 30% sequence identity cutoff.
We evaluated LigandMPNN sequence design performance on a test set
of 317 protein structures containing small molecules, 74 with nucleic
acids and 83 with a transition metal (Fig. 2a). For fair comparison, we
retrained ProteinMPNN on the same training dataset of PDB biounits
as LigandMPNN (the retrained model is referred to as ProteinMPNN
in this Article), except none of the context atoms was provided dur-
ing training. Protein and context atoms were noised by adding 0.1 Å
standard deviation Gaussian noise to avoid protein backbone memo-
rization28. We determined the native amino-acid residue sequence
recovery for positions close to the ligand (with sidechain atoms within
5.0 Å of any nonprotein atoms). The median sequence recoveries (ten
designed sequences per protein) near small molecules were 50.4% for
Rosetta using the genpot energy function18, 50.4% for ProteinMPNN

C, O and Cβ atoms. These input features are then processed using three
encoder layers with 128 hidden dimensions to obtain intermediate node
and edge representations. We experimented with introducing two addi-
tional protein–ligand encoder layers to encode protein–ligand inter-
actions. We reasoned that, with the backbone and ligand atoms fixed
in space, only ligand atoms in the immediate neighborhood (within
~10 Å) would affect amino-acid sidechain identities and conformations
because the interactions (van der Waals, electrostatic, repulsive and
solvation) between ligands and sidechains are relatively short range40.

To transfer information from ligand atoms to protein residues,
we construct a protein–ligand graph with protein residues and ligand
atoms as nodes and edges between each protein residue and the closest
ligand atoms. We also build a fully connected ligand graph for each pro-
tein residue with its nearest-neighbor ligand atoms as nodes; message
passing between ligand atoms increases the richness of the informa-
tion transferred to the protein through the ligand–protein edges. We
obtained the best performance by selecting for the protein–ligand
and individual residue intraligand graphs the 25 closest ligand atoms
based on protein virtual Cβ and ligand atom distances (Supplementary
Fig. 1a). The ligand graph nodes are initialized to one-hot-encoded
chemical element types, and the ligand graph edges to the distances
between the atoms (Fig. 1). The protein–ligand graph edges encode
distances between N, Cα, C, O and virtual Cβ atoms and ligand atoms
(Fig. 1). The protein–ligand encoder consists of two message-passing
blocks that update the ligand graph representation and then the pro-
tein–ligand graph representation. The output of the protein–ligand
encoder is combined with the protein encoder node representations
and passed into the decoder layers. We call this combined protein–
ligand sequence design model LigandMPNN.

To facilitate the design of symmetric9,16 and multistate proteins10,
we use a random autoregressive decoding scheme to decode
the amino-acid sequence as in the case of ProteinMPNN. With the
addition of the ligand atom geometry encoding and the extra two
protein–ligand encoder layers, the LigandMPNN neural network
has 2.62 million parameters compared with 1.66 million Pro-
teinMPNN parameters. Both networks are high-speed and light-
weight (ProteinMPNN 0.6 s and LigandMPNN 0.9 s on a single
central processing unit for 100 residues), scaling linearly with
respect to the protein length. We augmented the training dataset

Protein
backbone
encoder

Decoder
Protein–
ligand

encoder

LigandMPNN

Protein graph Protein–ligand
graph

Ligand
graphN

Cα

C

O 32 closest
protein residues

25 closest ligand
atoms per residue

N Cα

C

O

Residue i

Residue j

Ligand atoms
xyz Element

[3.2, 8.5, 9.4] O

N

Protein backbone
atom coordinates

Cα C O

[9.2, 1.5, 4.4] C

Protein sequences
NGREEVVEYVKEIQ
ALEKGDPELMRVISxyz xyz xyz xyz

O

C C

CC

C

Side chains
Chi1 Chi2 Chi3 Chi4
Chi1 Chi2 Chi3 Chi4

Fig. 1 | The LigandMPNN model. LigandMPNN operates on three different
graphs. First, a protein-only graph with residues as nodes and 25 distances
between N, Cα, C, O and virtual (inferred location based on backbone coordinates
to handle the glycine case) Cβ atoms for residues i and j. Second, an intraligand
graph with atoms as nodes that encodes chemical element types and distances
between atoms as edges. Third, a protein–ligand graph with residues and ligand
atoms as nodes and edges encoding residue j and ligand atom geometry.

The LigandMPNN model has three neural network blocks: a protein backbone
encoder, a protein–ligand encoder and a decoder. Protein sequences and
sidechain torsion angles are autoregressively decoded to obtain sequence
and full protein structure samples. The dotted lines show atom interactions.
Metaparameter variation and ablation experiments are described in
Supplementary Fig. 1a–e.

http://www.nature.com/naturemethods

Nature Methods | Volume 22 | April 2025 | 717–723 719

Article https://doi.org/10.1038/s41592-025-02626-1

and 63.3% for LigandMPNN. For residues near nucleotides, median
sequence recoveries were 35.2% for Rosetta2 (using an energy func-
tion optimized for protein–DNA interfaces), 34.0% for ProteinMPNN
and 50.5% for LigandMPNN, and for residues near metals, 36.0% for
Rosetta41, 40.6% for ProteinMPNN and 77.5% for LigandMPNN (Fig. 2a).
Sequence recoveries were consistently higher for LigandMPNN over
most proteins in the validation dataset (Fig. 2b; performance was cor-
related, probably reflecting variation in the crystal structure and the
amino-acid composition of the site). LigandMPNN predicts amino-acid
probability distributions and uncertainties for each residue position;
the expected confidence correlates with the actual sequence recovery
accuracy (Fig. 3c).

To assess the contributions to this high sustained performance,
we evaluated versions in which metaparameters and features were
varied or ablated (Supplementary Fig. 1a–e). Decreasing the number
of context atoms per residue primarily diminished sequence recovery
around nucleic acids, probably because these are larger and contain
more atoms on average than small molecules and metals (Supplemen-
tary Fig. 1a). Providing sidechain atoms as additional context did not
significantly affect LigandMPNN performance (Supplementary Fig. 1b).
As observed for ProteinMPNN, sequence recovery is inversely propor-
tional to the amount of Gaussian noise added to input coordinates.
The baseline model was trained with 0.1 Å standard deviation noise to
reduce the extent to which the native amino acid can be read out simply

Li
ga

nd
M

PN
N

 s
eq

. r
ec

.

Rosetta seq. rec.

LigandM
PN

N
 confidence

Li
ga

nd
M

PN
N

 s
eq

. r
ec

.

LigandMPNN confidence

Nucleotide context Metal context

Protein
MPNN

Ligand
MPNN

Rosetta

N
at

iv
e

se
q.

 re
c.

50

Small-molecule context

Protein
MPNN

Ligand
MPNN

Rosetta
N

at
iv

e
se

q.
 re

c.
Protein
MPNN

Ligand
MPNN

Rosetta

N
at

iv
e

se
q.

 re
c.

4136

78
63

Li
ga

nd
M

PN
N

 s
eq

. r
ec

.

Rosetta seq. rec.

LigandM
PN

N
 confidence Li

ga
nd

M
PN

N
 s

eq
. r

ec
.

Rosetta seq. rec.

LigandM
PN

N
 confidence

Li
ga

nd
M

PN
N

 s
eq

. r
ec

.

LigandMPNN confidence

Li
ga

nd
M

PN
N

 s
eq

. r
ec

.

LigandMPNN confidence

a

b

C

100
90
80
70
60
50
40
30
20
10
0

100

90

90

80

80

70

70

60

60

50

50

40

40

30

30

20

20

10

10
0

90 90

9090

80

80

70

70

60

60

50

50

40

40

30

30

20

20
10

80

70

60

50

40

30

20

10

80

70

60

50

40

30

20

10
10 8070605040302010 8070605040302010

0 9080706050403020100 9080706050403020100

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

100
90
80
70
60
50
40
30
20
10
0

100
90
80
70
60
50
40
30
20
10
0

70

65

60

55

50

45

40

35

60

55

50

45

40

35

30

25

90

80

70

60

50

40

35
50

34

51

Fig. 2 | In silico evaluation of LigandMPNN sequence design. a, LigandMPNN
has a higher recovery of native protein amino-acid identities than Rosetta and
ProteinMPNN around small molecules, nucleic acids and metals. Sequence
recoveries (sec. rec.) are averaged over the residues within 5.0 Å from the
context atoms. b, LigandMPNN has higher sequence recovery around
nonprotein molecules than Rosetta for most proteins. The color indicates the

LigandMPNN-predicted confidence (between 0 and 100) for a given protein.
The dashed lines show the mean values. c, Native sequence recovery correlates
with LigandMPNN predicted confidence for designed sequences. One dot
represents an average sequence recovery over 10 sequences for one protein for
317 small-molecule-, 74 nucleotide- and 83 metal-containing test proteins.

http://www.nature.com/naturemethods

Nature Methods | Volume 22 | April 2025 | 717–723 720

Article https://doi.org/10.1038/s41592-025-02626-1

on the basis of the local geometry of the residue; crystal structure
refinement programs introduce some memory of the native sequence
into the local backbone. Training with 0.05 Å and 0.2 Å noise instead
increased and decreased sequence recovery by about 2%, respectively
(Supplementary Fig. 1c; when comparing performance across methods,
similar levels of noising must be used). Ablating the protein–ligand
and ligand graphs led to a 3% decrease in sequence recovery (Supple-
mentary Fig. 1d). Training on sidechain context atoms only (no small
molecules, nucleotides or metals) reduced sequence recovery around
small molecules by 3.3% (Supplementary Fig. 1e). Finally, a model
trained without chemical element types as input features had much
lower sequence recovery near metals (8% difference; Supplementary
Fig. 1d) but almost the same sequence recovery near small molecules
and nucleic acids, suggesting that the model can to some extent infer
chemical element identity from bonded geometry.

We evaluated LigandMPNN sidechain packing performance on
the same dataset for residues within 5.0 Å from the context atoms. We
generated ten sidechain packing examples with the fixed backbone
and fixed ligand context using Rosetta, LigandMPNN and LigandMPNN
without ligand context (LigandMPNN-wo in Fig. 3). The median chi1
fraction (within 10° from crystal packing) near small molecules was

76.0% for Rosetta, 83.3% for LigandMPNN-wo and 86.1% for Ligan-
dMPNN, near nucleotides 66.2%, 65.6% and 71.4% and near metals
68.6%, 76.7% and 79.3% for the three models, respectively (Fig. 3a).
LigandMPNN has a higher chi1 fraction recovery compared with Rosetta
on most of the test proteins (Fig. 3b), but only marginally better than
LigandMPNN-wo (Supplementary Fig. 3c), suggesting that most of
the information about sidechain packing is coming from the protein
context rather than from the ligand context, consistent with binding
site preorganization. All the models struggle to predict chi3 and chi4
angles correctly. For LigandMPNN, weighted average fractions of cor-
rectly predicted chi1, chi2, chi3 and chi4 angles for the small-molecule
dataset were 84.0%, 64.0%, 28.3% and 18.7%, for Rosetta 74.5%, 50.5%,
24.1% and 8.1% and for LigandMPNN-wo 81.6%, 60.4%, 26.7% and 17.4%
(Supplementary Fig. 3b). The sidechain root-mean-square deviations
are similar between the different methods as shown in Supplementary
Figs. 4 and 5. Comparing LigandMPNN-wo versus LigandMPNN, the
biggest improvements in terms of root-mean-square deviation are
obtained for glutamine (Q) in the small-molecule dataset, for arginine
(R) in the nucleotide dataset and for histidine (H) in the metal context
dataset (Supplementary Fig. 5), consistent with the important roles of
interactions of these residues with the corresponding ligands.

Ligand
MPNN-wo

Ligand
MPNN

Rosetta

Fr
ac

tio
n

w
ith

in
 10

°

Ligand
MPNN-wo

Ligand
MPNN

Rosetta

Fr
ac

tio
n

w
ith

in
 10

°

Ligand
MPNN-wo

Ligand
MPNN

Rosetta

Fr
ac

tio
n

w
ith

in
 10

°

69

35

77

50

7976

52

83

62

86

65 66
46

66

40
44

71

Metal contextNucleotide contextSmall-molecule context

54

Li
ga

nd
M

PN
N

 c
hi

1 <
10

°
fr

ac
tio

n

b

Li
ga

nd
M

PN
N

 c
hi

1 <
10

°
fr

ac
tio

n

Li
ga

nd
M

PN
N

 c
hi

1 <
10

°
fr

ac
tio

n

Rosetta chi1 <10° fraction Rosetta chi1 <10° fraction Rosetta chi1 <10° fraction

a

100

60

80

40

20 20

0

100

60

80

40

0

20

100

60

80

40

0

chi1

chi1 chi1

chi2

chi2 chi2

100

90

90

80

80

70

70

60

60

50

50

40

40
30

100

90

80

70

60

50

40

30

100

90

80

70

60

50

40

30
30 90807060504030 90807060504030

Fig. 3 | Evaluation of LigandMPNN sidechain packing accuracy. a, Comparison
of crystal sidechain packing (gray) with LigandMPNN sidechain packing
(colored sidechains by model confidence: teal is high and purple is low
confidence per chi angle) for 2P7G, 1BC8 and 1E4M proteins. The context atoms
are shown in orange (small molecule, DNA and zinc). LigandMPNN has higher
chi1 and chi2 torsion angle recovery (fraction of residues within 10° from native)

than Rosetta and LigandMPNN-wo. b, Per-protein comparison of chi1 fraction
recovery for LigandMPNN versus Rosetta. One dot represents an average chi1
recovery over 10 sidechain packing samples for one protein for 317 small-
molecule-, 67 nucleotide- and 76 metal-containing test proteins. The dashed lines
show the mean values.

http://www.nature.com/naturemethods

Nature Methods | Volume 22 | April 2025 | 717–723 721

Article https://doi.org/10.1038/s41592-025-02626-1

We tested the capability of LigandMPNN to design binding sites
for small molecules starting from previously characterized designs
generated using Rosetta that either bound weakly or not at all to their
intended targets: the muscle relaxant rocuronium, for which no bind-
ing was previously observed (Fig. 4a) and the primary bile acid cholic
acid (Fig. 4b) for which binding was very weak3,4. LigandMPNN was
used to generate sequences around the ligands using the backbone
and ligand coordinates as input; these retain and/or introduce new
sidechain–ligand hydrogen bonding interactions. LigandMPNN rede-
signs either rescued binding (Fig. 4a and Supplementary Fig. 6) or
improved the binding affinity (Fig. 4b). A further example with cholic
acid is described in ref. 4, where, starting from the crystal structure of a
previously designed complex, LigandMPNN increased binding affinity
100-fold. As with the many other design successes with LigandMPNN
(see below), these results indicate significant generalization beyond the
PDB training set: there were no rocuronium-binding protein complex
structures in the PDB training set, and the cholic-acid-binding protein
in the PDB that is closest to our cholic-acid-binding design (PDB: 6JY3)
has a quite different structure (template modeling score 0.59) with a
totally different ligand-binding location (Supplementary Fig. 7).

Discussion
The deep-learning-based LigandMPNN is superior to the physically
based Rosetta for designing amino acids to interact with nonprotein
molecules. It is about 250 times faster (because the expensive Monte
Carlo optimization over sidechain identities and compositions is com-
pletely bypassed), and the recoveries of native amino-acid identities
and conformations around ligands are consistently higher. The method
is also easier to use because no expert customizations are required
for new ligands (unlike Rosetta and other physically based methods
that can require new energy function or force field parameters for

new compounds). At the outset, we were unsure whether the accuracy
of ProteinMPNN could extend to protein–ligand systems given the small
amount of available training data, but our results suggest that, for the
vast majority of ligands, there are sufficient data. Nevertheless, we
suggest some care in using LigandMPNN for designing binders to com-
pounds containing elements occurring rarely or not at all in the PDB (in
the latter case it is necessary to map to the most closely occurring ele-
ment). Hybridization of the physically based and deep-learning-based
approaches may provide a better solution to the amino-acid and side-
chain optimization problems in the low-data regime.

LigandMPNN has already been extensively used for designing
interactions of proteins with nucleic acids and small molecules, and
these studies provide considerable additional experimental valida-
tion of the method. In these studies, LigandMPNN was either used
as a drop-in replacement for Rosetta sequence design retaining the
backbone relaxation of RosettaFastDesign38,42, or used independently
without backbone relaxation. Glasscock et al.2 developed a computa-
tional method for designing small sequence-specific DNA-binding
proteins that recognize specific target sequences through interac-
tions with bases in the major groove that uses LigandMPNN to design
the protein–DNA interface. The crystal structure of a DNA-binding
protein designed with LigandMPNN recapitulated the design model
closely (deposited to the Research Collaboratory for Structural Bioin-
formatics Protein Data Bank as PDB ID 8TAC). Lee et al.3, An et al.4 and
Krishna et al.5 used LigandMPNN to design small-molecule-binding
proteins with scaffolds generated by deep-learning- and Rosetta-based
methods. Iterative sequence design with LigandMPNN resulted in
nanomolar-to-micromolar binders for the 17α-hydroxyprogesterone,
apixaban and SN-38 with NTF2-family scaffolds3, nanomolar bind-
ers for cholic acid, methotrexate and thyroxine4 in pseudocy-
clic scaffolds, and binders for digoxigenin, heme and bilin in

Rocuronium binder
a

Rosetta nonbinder LigandMPNN redesign

Cholic acid binder

F8 Y8

H106 Y106

b

Rosetta
LigandMPNN

Kd = 331.3 nM

Rosetta
LigandMPNN

Compensated PE (binding) signal

Fl
uo

re
sc

en
ce

 p
ol

ar
iz

at
io

n

log[binder (nM)]

C
ou

nt

Li
ga

nd
M

PN
N

 c
on

fid
en

ce
Li

ga
nd

M
PN

N
 c

on
fid

en
ce

High

Low

High

Low

150

100

50

0

0.25

0.20

0.15

0.10

0.05

0

–1 0 1 2 3 4 5

100 101 102 103 104 105

1.0

0.5

0

1.0

0.5

0

LigandMPNN redesignRosetta redesign

Fig. 4 | Rescue of Rosetta small-molecule binder designs using LigandMPNN.
a,b, Weak or nonbinding designs made using Rosetta for rocuronium (a) and
cholic acid (b) were redesigned using LigandMPNN. Left: sidechain–ligand
interactions before and after redesign. The sidechains are predicted to be
considerably more preorganized following redesign as indicated by the
LigandMPNN amino-acid probabilities, which are colored from red (0) to blue (1).
Sidechain atoms except for carbon are color-coded (O, red; N, blue; S, yellow).

Right: experimental measurement of binding. In a, flow cytometry of yeast is
shown, with the designs following incubation with 1 μM biotinylated rocuronium
and streptavidin phycoerythrin. In b, fluorescence polarization measurements
of binding to cholic acid–fluorescein isothiocyanate are shown. The error bars
show the mean and standard deviations for three LigandMPNN and two Rosetta
measurements.

http://www.nature.com/naturemethods
https://doi.org/10.2210/pdb6JY3/pdb
https://doi.org/10.2210/pdb8TAC/pdb

Nature Methods | Volume 22 | April 2025 | 717–723 722

Article https://doi.org/10.1038/s41592-025-02626-1

RFdiffusion_allatom-generated scaffolds5. In total, more than 100
protein–DNA binding interfaces and protein–small-molecule binding
interfaces designed using LigandMPNN have been experimentally
demonstrated to bind to their targets, and 5 co-crystal structures
have been solved that in each case are very close to the computational
design models3–5. This extensive biochemical and structural validation
provides strong support for the power of the approach.

As with ProteinMPNN, we anticipate that LigandMPNN will be
widely useful in protein design, enabling the creation of a new genera-
tion of small-molecule-binding proteins, sensors and enzymes. To this
end, we have made the code available via GitHub at https://github.com/
dauparas/LigandMPNN.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-025-02626-1.

References
1.	 Yeh, A. H. W. et al. De novo design of luciferases using deep

learning. Nature 614, 774–780 (2023).
2.	 Glasscock, C. J. et al. Computational design of sequence-specific

DNA-binding proteins. Preprint at bioRxiv https://doi.org/10.1101/
2023.09.20.558720 (2023).

3.	 Lee, G. R. et al. Small-molecule binding and sensing with a
designed protein family. Preprint at bioRxiv https://doi.org/
10.1101/2023.11.01.565201 (2023).

4.	 An, L. et al. Binding and sensing diverse small molecules using
shape-complementary pseudocycles. Science 385, 276–282
(2024).

5.	 Krishna, R. et al. Generalized biomolecular modeling and design
with RoseTTAFold All-Atom. Science 384, eadl2528 (2024).

6.	 Silva, D. A. et al. De novo design of potent and selective mimics of
IL-2 and IL-15. Nature 565, 186–191 (2019).

7.	 Cao, L. et al. Design of protein-binding proteins from the target
structure alone. Nature 605, 551–560 (2022).

8.	 Wang, J. et al. Scaffolding protein functional sites using deep
learning. Science 377, 387–394 (2022).

9.	 Wicky, B. I. M. et al. Hallucinating symmetric protein assemblies.
Science 378, 56–61 (2022).

10.	 Praetorius, F. et al. Design of stimulus-responsive two-state hinge
proteins. Science 381, 754–760 (2023).

11.	 Marcos, E. & Silva, D. A. Essentials of de novo protein design:
methods and applications. Wiley Interdisc. Rev. Comput. Mol. Sci.
8, e1374 (2018).

12.	 Ovchinnikov, S. & Huang, P. S. Structure-based protein design
with deep learning. Curr. Opin. Chem. Biol. 65, 136–144 (2021).

13.	 Ferruz, N. et al. From sequence to function through structure:
deep learning for protein design. Comput. Struct. Biotechnol. J.
21, 238–250 (2023).

14.	 Kortemme, T. De novo protein design—from new structures to
programmable functions. Cell 187, 526–544 (2024).

15.	 Anand, N. & Achim, T. Protein structure and sequence generation
with equivariant denoising diffusion probabilistic models. Preprint
at https://arxiv.org/abs/2205.15019 (2022).

16.	 Watson, J. L. et al. De novo design of protein structure and
function with RFdiffusion. Nature https://doi.org/10.1038/s41586-
023-06415-8 (2023).

17.	 Yim, J. et al. SE(3) diffusion model with application to
protein backbone generation. Preprint at https://arxiv.org/
abs/2302.02277 (2023).

18.	 Ingraham, J. B. et al. Illuminating protein space with a
programmable generative model. Nature 623, 1070–1078 (2023).

19.	 Wang, C. et al. Proteus: exploring protein structure generation
for enhanced designability and efficiency. Preprint at bioRxiv
https://doi.org/10.1101/2024.02.10.579791 (2024).

20.	 Leaver-Fay, A. et al. Scientific benchmarks for guiding
macromolecular energy function improvement. Methods
Enzymol. 523, 109–143 (2013).

21.	 Ingraham, J., Garg, V., Barzilay, R. & Jaakkola, T. Generative models
for graph-based protein design. Adv. Neural Inf. Process. Syst 32,
(2019).

22.	 Zhang, Y. et al. ProDCoNN: protein design using a convolutional
neural network. Proteins Struct. Funct. Bioinf. 88, 819–829 (2020).

23.	 Leman, J. K. et al. Macromolecular modeling and design in
Rosetta: recent methods and frameworks. Nat. Methods 17,
665–680 (2020).

24.	 Qi, Y. & Zhang, J. Z. DenseCPD: improving the accuracy of
neural-network-based computational protein sequence design
with DenseNet. J. Chem. Inf. Model. 60, 1245–1252 (2020).

25.	 Jing, B., Eismann, S., Suriana, P., Townshend, R. J. L. & Dror, R.
Learning from protein structure with geometric vector perceptrons.
In International Conference on Learning Representations (2020).

26.	 Strokach, A., Becerra, D., Corbi-Verge, C., Perez-Riba, A. &
Kim, P. M. Fast and flexible protein design using deep graph
neural networks. Cell Syst. 11, 402–411 (2020).

27.	 Anand, N. et al. Protein sequence design with a learned potential.
Nat. Commun. 13, 746 (2022).

28.	 Dauparas, J. et al. Robust deep learning–based protein sequence
design using ProteinMPNN. Science 378, 49–56 (2022).

29.	 Hsu, C. et al. Learning inverse folding from millions of predicted
structures. In Proc. 39th International Conference on Machine
Learning Vol. 162 (eds Chaudhuri, K. et al.) 8946–8970. (PMLR, 2022).

30.	 Li, A. J. et al. Neural network‐derived Potts models for structure‐
based protein design using backbone atomic coordinates and
tertiary motifs. Protein Sci. 32, e4554 (2023).

31.	 Senior, A. W. et al. Improved protein structure prediction using
potentials from deep learning. Nature 577, 706–710 (2020).

32.	 Yang, J. et al. Improved protein structure prediction using
predicted interresidue orientations. Proc. Natl Acad. Sci. USA 117,
1496–1503 (2020).

33.	 Jumper, J. et al. Highly accurate protein structure prediction with
AlphaFold. Nature 596, 583–589 (2021).

34.	 Baek, M. et al. Accurate prediction of protein structures and
interactions using a three-track neural network. Science 373,
871–876 (2021).

35.	 Evans, R. et al. Protein complex prediction with AlphaFold-
Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.
04.463034 (2021).

36.	 Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein
structure with a language model. Science 379, 1123–1130 (2023).

37.	 Kuhlman, B. Designing protein structures and complexes with
the molecular modeling program Rosetta. J. Biol. Chem. 294,
19436–19443 (2019).

38.	 Maguire, J. B. et al. Perturbing the energy landscape for improved
packing during computational protein design. Proteins Struct.
Funct. Bioinf. 89, 436–449 (2021).

39.	 Dou, J. et al. De novo design of a fluorescence-activating β-barrel.
Nature 561, 485–491 (2018).

40.	 Alford, R. F. et al. The Rosetta all-atom energy function for
macromolecular modeling and design. J. Chem. Theory Comput.
13, 3031–3048 (2017).

41.	 Park, H., Zhou, G., Baek, M., Baker, D. & DiMaio, F. Force field
optimization guided by small molecule crystal lattice data
enables consistent sub-angstrom protein–ligand docking.
J. Chem. Theory Comput. 17, 2000–2010 (2021).

42.	 Tyka, M. D. et al. Alternate states of proteins revealed by detailed
energy landscape mapping. J. Mol. Biol. 405, 607–618 (2011).

http://www.nature.com/naturemethods
https://github.com/dauparas/LigandMPNN
https://github.com/dauparas/LigandMPNN
https://doi.org/10.1038/s41592-025-02626-1
https://doi.org/10.1101/2023.09.20.558720
https://doi.org/10.1101/2023.09.20.558720
https://doi.org/10.1101/2023.11.01.565201
https://doi.org/10.1101/2023.11.01.565201
https://arxiv.org/abs/2205.15019
https://doi.org/10.1038/s41586-023-06415-8
https://doi.org/10.1038/s41586-023-06415-8
https://arxiv.org/abs/2302.02277
https://arxiv.org/abs/2302.02277
https://doi.org/10.1101/2024.02.10.579791
https://doi.org/10.1101/2021.10.04.463034
https://doi.org/10.1101/2021.10.04.463034

Nature Methods | Volume 22 | April 2025 | 717–723 723

Article https://doi.org/10.1038/s41592-025-02626-1

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. You do not have permission under this licence to share

adapted material derived from this article or parts of it. The images
or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative
Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

http://www.nature.com/naturemethods
http://creativecommons.org/licenses/by-nc-nd/4.0/

Nature Methods

Article https://doi.org/10.1038/s41592-025-02626-1

Methods
Methods for training LigandMPNN for sequence design
Training data. LigandMPNN was trained on a dataset similar to Pro-
teinMPNN28. We used protein assemblies in the PDB (as of 16 December
2022) determined by X-ray crystallography or cryo-electron micros-
copy to better than 3.5 Å resolution and with fewer than 6,000 residues.
We parsed all residues present in the PDBs except [‘HOH’, ‘NA’, ‘CL’, ‘K’,
‘BR’]. Protein sequences were clustered at 30% sequence identity cut-
off using mmseqs2 (ref. 43). We held out a nonoverlapping subset of
proteins that have small-molecule contexts (a total of 317), nucleotide
contexts (a total of 74) and metal contexts (a total of 83).

Optimizer and loss function. For optimization, we used Adam with
beta1 of 0.9, beta2 of 0.98 and epsilon of 1e-9, the same as for Pro-
teinMPNN. Models were trained with a batch size of 6,000 tokens,
automatic mixed precision and gradient checkpointing on a single
NVIDIA A100 graphics processing unit for 300,000 optimizer steps.
We used categorical cross entropy for the loss function following the
ProteinMPNN paper28.

Input featurization and model architecture. We used the same input
features as in the ProteinMPNN paper for the protein part. For the
atomic context input features, we used one-hot-encoded chemical
element types as node features for the ligand graph and the radial basis
function-encoded distances between the context atoms as edges for
the ligand graph. To encode the interaction between protein-context
atoms, we used distances between N, Cα, C, O and virtual Cβ atoms
and context atoms. In addition, we added angle-based sin/cos features
describing context atoms in the frame of N–Cα–C atoms.

We used the same MPNN architecture as used in ProteinMPNN for
the encoder, decoder and protein–ligand encoder blocks. Encoder
and decoder blocks work on protein nodes and edges, that is, map-
ping vertices [N] and edges [N, K] to updated vertices [N] and edges
[N, K] where N is the number of residues and K is the number of direct
neighbors per residue. We choose M context atoms per residue result-
ing in [N, M] protein–atom interactions. The ligand graph blocks map
vertices of size [N, M] and edges of size [N, M, M] (fully connected
context atoms) to updated vertices [N, M]. The updated [N, M] rep-
resentation is used in the protein–ligand graph to map vertices [N]
and edges [N, M] into updated vertices [N]. For more details, refer to
the LigandMPNN code.

Model algorithms. We provide a list of algorithms and model layers
used by the LigandMPNN model. The model is based on the autoregres-
sive encoder-decoder architecture. Algorithm 10 describes how the
input features such as protein atom coordinates (X), ligand coordinates
(Y), ligand mask (Y_m), and ligand atom types (Y_t) are converted into
the input features. Protein and ligand geometric features are encoded
using the algorithm 11, and it returns final protein node and edge fea-
tures. Finally, algorithm 12 decodes protein sequence by predicting
log probabilities for all amino acids. During the inference, we sample
from these probabilities with some temperate (T) (algorithm 13) and
iteratively run algorithm 12 to populate the designed sequence (S).

Notation:
X ∈ ℝL×4×3- protein backbone coordinates for N, Cα, C and O atoms

with L residues
Y ∈ ℝL×M×3- coordinates of the closest M ligand atoms from the

virtual Cβ atom in the protein
Y_m ∈ ℝL×M- ligand atom mask
Y_t ∈ ℝL×M- ligand atom type

Algorithm 1. Linear layer
def Linear(x ∈ ℝn; W ∈ ℝm×n, b ∈ ℝm):
1:  x ← Wx+b, x ∈ ℝm

2:  return x

Algorithm 2. Non-linear layer44

def GELU(x ∈ ℝn):
1:  x ← 0.5⋅x⋅(1+tanh(2/π⋅(x + 0.044715⋅x3))), x ∈ ℝn

2:  return x

Algorithm 3. Normalization layer
def LayerNorm(x ∈ ℝn; γ ∈ ℝn, β ∈ ℝn):
1:  μ = E[x]=(x1 + x2 + …+xn)/n, μ ∈ ℝn

2:  σ2 = E[(x-μ)2], σ2 ∈ ℝn

3:  x ← γ⋅(x-μ)/σ + β, x ∈ ℝn

4:  return x

Algorithm 4. Dropout layer
def Dropout(x ∈ ℝn; p ∈ ℝ, training: bool):
1:  if training:
2:   mask = Binomial[1-p](x.shape), mask ∈ ℝn

3:   x ← mask⋅x/(1-p), x ∈ ℝn

4:   return x
5:  else:
6:   return x

Algorithm 5. Position wise feed-forward
def PositionWiseFeedForward (vi ∈ ℝn; n = 128, m = 512):
1:  vi ← Linear[n,m](vi), vi ∈ ℝm

2:  vi ← GELU(vi), vi ∈ ℝm

3:  vi ← Linear[m,n](vi), vi ∈ ℝn

4:  return vi

Algorithm 6. Positional encoding layer
def PositionalEncodings(offset ∈ ℝL×K, mask ∈ ℝL×K; n = 16,
max_offset = 32):
   #offset - protein residue to residue distances for all chains
   #mask - mask if two residues are from the same chain
   #n - number of dimensions to embed the offset to
   #max_offset - maximum distance between two residues
1:  d = mask⋅clip[0, 2⋅max_offset](offset + max_offset), d ∈ ℝL×L

2:  f = (1-mask)⋅(2⋅max_offset + 1), f ∈ ℝL×L

3:  g = d + f, g ∈ ℝL×L

4: � g_one_hot = one_hot[2⋅max_offset + 2](g), g_one_hot
∈ ℝL×L×2⋅max_offset+2

5:  e ← Linear[2⋅max_offset + 2,n](g_one_hot), e ∈ ℝL×L×n

6:  return e

Algorithm 7. Encoder Layer
def EncLayer(v ∈ ℝL×n, e ∈ ℝL×K×n, e_idx ∈ ℝL×K; n = 128, m = 128,
p = 0.1, s = 30.0):
   #v - vertex embedding for L residues
   #e - edge embedding for L residues with K neighbors per residue
   #e_idx - integers specifying protein residue neighbor positions
   #n - input dimension
   #m - hidden dimension
   #p - dropout probability
   #s - scaling factor
1:  qij = concatenate[e_idxij](vi, vj, eij), q ∈ ℝL×K×3⋅n, qij ∈ ℝ3⋅n,
2:  qij ← GELU{Linear[3n,m](qij)}, qij ∈ ℝm,
3:  qij ← GELU{Linear[m,m](qij)}, qij ∈ ℝm,
4:  qij ← Linear[m,m](qij), qij ∈ ℝm,
5:  dhi ← Σj qij/s, dhi ∈ ℝm,
6:  vi ← LayerNorm{vi+Dropout[p](dhi)}, vi ∈ ℝm,
7:  qij = concatenate[e_idxij](vi, vj, eij), q ∈ ℝL×K×3⋅n, qij ∈ ℝ3⋅n,
8:  qij ← GELU{Linear[3n,m](qij)}, qij ∈ ℝm,
9:  qij ← GELU{Linear[m,m](qij)}, qij ∈ ℝm,
10:  qij ← Linear[m,m](qij), qij ∈ ℝm,
11:  eij ← LayerNorm{eij+Dropout[p](qij)}, vi ∈ ℝm,
12:  return v, e

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-025-02626-1

Algorithm 8. Decoder Layer
def DecLayer(v ∈ ℝL×n, e ∈ ℝL×K×2n; n = 128, m = 128, p = 0.1, s = 30.0):
   #v - vertex embedding for L residues
   #e - edge embedding for L residues with K neighbors
   #n - input dimension
   #m - hidden dimension
   #p - dropout probability
   #s - scaling factor
1:  qij = concatenate(vi, eij), q ∈ ℝL×K×3⋅n, qij ∈ ℝ3⋅n

2:  qij ← GELU{Linear[3n,m](qij)}, qij ∈ ℝm,
3:  qij ← GELU{Linear[m,m](qij)}, qij ∈ ℝm,
4:  qij ← Linear[m,m](qij), qij ∈ ℝm,
5:  dhi ← Σj qij/s, dhi ∈ ℝm,
6:  vi ← LayerNorm{vi+Dropout[p](dhi)}, vi ∈ ℝm,
7:  return v

Algorithm 9. Context Decoder Layer
def DecLayerJ(v ∈ ℝL×M×n, e ∈ ℝL×M×M×2n; n = 128, m = 128, p = 0.1, s = 30.0):
   #v - vertex embedding for L residues with M atoms per residue
   #e - edge for L residues with M atoms and M neighbors per atom
   #n - input dimension
   #m - hidden dimension
   #p - dropout probability
   #s - scaling factor
1:  qijk = concatenate(vij, eijk), q ∈ ℝL×M×M×3⋅n, qijk ∈ ℝ3⋅n,
2:  qijk ← GELU{Linear[3n,m](qijk)}, qijk ∈ ℝm,
3:  qijk ← GELU{Linear[m,m](qijk)}, qijk ∈ ℝm,
4:  qijk ← Linear[m,m](qijk), qijk ∈ ℝm,
5:  dhij ← Σk qijk/s, dhij ∈ ℝm,
6:  vij ← LayerNorm{vij+Dropout[p](dhij)}, vi ∈ ℝm,
7:  return v

Algorithm 10. Protein and ligand featurization
def ProteinFeaturesLigand(Y ∈ ℝL×M×3, Y_m ∈ ℝL×M, Y_t ∈ ℝL×M, X ∈ ℝL×4×3,
R_idx ∈ ℝL, chain_labels ∈ ℝL; noise_level = 0.1, K = 32, m = 128, r = 16):
  � #Y, Y_m, Y_t - ligand atom coordinates, mask, and chemical

atom type
   #X - protein coordinates for N, Cα, C, O atoms in this order
   #R_idx - protein residue indices
   #chain labels - integer labels for protein chains
   #noise_level - standard deviation of Gaussian noise
   #K - number of nearest Cα neighbors for protein
   #m - hidden dimension size
   #r - radial basis function number
1:  X ← X + noise_level⋅GaussianNoise(X.shape), X ∈ ℝL×4×3,
2:  Y ← Y + noise_level⋅GaussianNoise(Y.shape), X ∈ ℝL×M×3,
3: � Cβ = = -0.5827⋅[(Cα-N)^(C-Cα)] + 0.5680⋅(Cα-N) -

0.5407⋅(C-Cα) + Cα, N, Cα, C, Cβ ∈ ℝL×3,
4:  e_idx = top_k[K](||Cαi-Cαj||2), e_idx ∈ ℝL×K,
5:  rbf = []
6:  for a in [N, Cα, C, O Cβ]:
7:   for b in [N, Cα, C, O Cβ]:
8:    rbf_tmp = rbf_f{get_edges[e_idx](||ai-bj||2)}, rbf_tmp ∈ ℝL×K×r,
9:    rbf.append(rbf_tmp)
10:  rbf ← concatenate(rbf), rbf ∈ ℝL×K×25⋅r,
11:  offset = get_edges[e_idx](R_idxi-R_idxj), offset ∈ ℝL×K,
12: � offset_m = get_edges[e_idx](chain_labelsi-chain_labelsj = =0),

offset_m ∈ ℝL×K,
13:  pos_enc = PositionalEncodings(offset, offset_m), pos_enc ∈ ℝL×K×r

14:  e ← LayerNorm{Linear[r + 25⋅r,m](concat[pos_enc, rbf])}, e∈ ℝL×K×m

15:  Y_t_g = chemical_group(Y_t), Y_t_g∈ ℝL×M

16:  Y_t_p = chemical_period(Y_t), Y_t_p∈ ℝL×M

17: � Y_t_1hot = Linear[64,147](onehot[concat(Y_t, Y_t_g, Y_t_p)]),
Y_t_1hot∈ ℝL×M×64

18:  rbf_N_Y = rbf_f{||N-Y||2}, rbf_N_Y∈ ℝL×M×r

19:  rbf_Cα_Y = rbf_f{||Cα-Y||2}, rbf_Cα_Y ∈ ℝL×M×r

20:  rbf_C_Y = rbf_f{||C-Y||2}, rbf_C_Y ∈ ℝL×M×r

21:  rbf_O_Y = rbf_f{||O-Y||2}, rbf_O_Y∈ ℝL×M×r

22:  rbf_Cβ_Y = rbf_f{||Cβ-Y||2}, rbf_Cβ_Y∈ ℝL×M×r

23: � rbf_Y = concat(rbf_N_Y, rbf_Cα_Y, rbf_C_Y, rbf_O_Y,rbf_Cβ_Y),
rbf_Y∈ ℝL×M×5⋅r

24:  angles_Y = make_angle_features(N, Cα, C, Y), angles_Y∈ ℝL×M×4

25:  v = concat(rbf_Y, Y_t_1hot, angles_Y), v∈ ℝL×M×4

26:  v ← LayerNorm{Linear[5⋅r + 64 + 4,m](v)}, v∈ ℝL×M×m

27:  Y_edges = rbf_f{||Yi-Yj||2}, Y_edges∈ ℝL×M×M×r

28: � Y_edges ← LayerNorm{Linear[r,m](Y_edges)},
Y_edges∈ ℝL×M×M×m

29: � Y_nodes = LayerNorm{Linear[147,m](onehot[concat
(Y_t, Y_t_g, Y_t_p)])}, Y_nodes∈ ℝL×M×m

30:  return v, e, e_idx, Y_nodes, Y_edges

Algorithm 11. LigandMPNN encode function
def LigandMPNN_encode(Y ∈ ℝL×M×3, Y_m ∈ ℝL×M, Y_t ∈ ℝL×M,
X ∈ ℝL×4×3, R_idx ∈ ℝL, chain_labels ∈ ℝL; num_layers=3, c_num_
layers=2, m = 128):
1: � v_y, e, e_idx, Y_nodes, Y_edges = ProteinFeaturesLigand

(Y, Y_m, Y_t, X, R_idx, chain_labels)
2:  v_y = Linear[m,m](v_y), v_y ∈ ℝL×m,
3:  v = zeros(L, m), v ∈ ℝL×m,
4:  for i in range(num_layers):
5:    v, e ← EncLayer(v, e, e_idx), v ∈ ℝL×m, e ∈ ℝL×K×m

6:  v_c = Linear[m,m](v), v_c ∈ ℝL×m,
7:  Y_m_edges = Y_mi⋅Y_mj, Y_edges ∈ ℝL×M×M,
8:  Y_nodes = Linear[m,m](Y_nodes), Y_nodes ∈ ℝL×M×m,
9:  Y_edges = Linear[m,m](Y_edges), Y_edges ∈ ℝL×M×M×m,
10:  for i in range(c_num_layers):
11:   � Y_nodes ← DecLayerJ(Y_nodes, Y_edges, Y_m, Y_m_edges)

#atom graph
12:    Y_nodes_c = concat(v_y, Y_nodes)
13:    v_c ← DecLayer(v_c, Y_nodes_c, mask, Y_m) #protein graph
14:  v_c ← Linear[m,m](v_c)
14:  v ← v + LayerNorm[Dropout[p]](v_c)
15:  return v, e, e_idx

Algorithm 12. LigandMPNN decode function
def LigandMPNN_decode(S ∈ ℝL, Y_m ∈ ℝL×M, Y_t ∈ ℝL×M, X ∈ ℝL×4×3, R_idx
∈ ℝL, chain_labels ∈ ℝL, decoding_order ∈ ℝL; num_layers=3, m = 128):
1: � h_V, e, e_idx = LigandMPNN_encode(Y, Y_m, Y_t, X, R_idx,

chain_labels)
2:  causal_mask = upper_triangular[decoding_order](L,L)
3:  h_S = Linear[21,m](onehot(S)), h_S ∈ ℝL×m,
4:  h_ES = concat(h_S, e, e_idx), h_ES ∈ ℝL×K×2m,
5: � h_EX_encoder = concat(zeros(h_S), e, e_idx), h_EX_encoder

∈ ℝL×K×2m,
6: � h_EXV_encoder = concat(h_V, h_EX_encoder, e_idx), h_EXV_encoder

∈ ℝL×K×3m,
7:  h_EXV_encoder_fw =(1-causal_mask)⋅h_EXV_encoder
8:   for i in range(num_layers):
9:   h_ESV = conat(h_V, h_ES, e_idx)
10:   h_ESV ← causal_mask⋅h_ESV + h_EXV_encoder_fw
11:   h_V ← DecLayer(h_V, h_ESV)
12:  logits = Linear[m,21](h_V), logits ∈ ℝL×21,
13:  log_probs = log_softmax(logits)
14:  return logits, log_probs

Algorithm 13. Amino-acid sampling with temperature
def sampling(logits∈ ℝ21, T∈ ℝ, bias∈ ℝ21):
1:  p = softmax((logits+bias)/T)
2:  S = categorical_sample(p)
3:  return S

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-025-02626-1

Algorithm 14. Outline of LigandMPNN sidechain decode function
def LigandMPNN_sc_decode(Y_m ∈ ℝL×M, Y_t ∈ ℝL×M, X ∈ ℝL×14×3,
R_idx ∈ ℝL, chain_labels ∈ ℝL, decoding_order ∈ ℝL; num_layers=3,
m = 128):
1: � h_V_enc, h_E_enc, e_idx = LigandMPNN_encode(Y, Y_m, Y_t, X,

R_idx, chain_labels)
2: � h_V_dec, h_E_dec = LigandMPNN_encode(Y, Y_m, Y_t, X, R_idx,

chain_labels)
3:  causal_mask = upper_triangular[decoding_order](L,L)
4:  h_EV_encoder = concat(h_V_enc, h_E_enc, e_idx)
5:  h_E_encoder_fw =(1-causal_mask)⋅h_EV_encoder
6:  h_EV_decoder = concat(h_V_dec, h_E_dec, e_idx)
7:  h_V = h_V_enc
8:  for i in range(num_layers):
9:   ▓h_EV = conat(h_V, h_E_decoder, e_idx)
10:   ▓h_ECV ← causal_mask⋅h_EV + h_E_encoder_fw
11:   ▓h_V ← DecLayer(h_V, h_ECV)
12: � torsions = Linear[m,4⋅3⋅3](h_V).reshape(L,4,3,3), torsions

∈ ℝL×4×3×3,
13:  mean = torsions[…,0], mean ∈ ℝL×4×3,
14: � concentration = 0.1 + softplus(torsions[…,1]), concentration

∈ ℝL×4×3

15:  mix_logits =torsions[…,2], mix_logits ∈ ℝL×4×3

16:  p�redicted_distribution = VonMisesMixture(mean, concentra-
tion, mix_logits)

17:  return predicted_distribution

ProteinMPNN and LigandMPNN share the idea of using autore-
gressive sequence decoding with a sparse residue graph with
ref. 21. However, there are many differences between the models.
First, ProteinMPNN is trained on biological protein assemblies,
and LigandMPNN on the biological protein assemblies with small
molecules, nucleotides, metals and other atoms in the PDB, whereas
ref. 21 was trained on single chains only. Second, we wanted our
models to work well with novel protein backbones as opposed to
crystal backbones, and for this reason, we added Gaussian noise
to all the protein and other atom coordinates to blur out fine-scale
details that would not be available during the design. Further-
more, we innovated by using a random autoregressive decoding
scheme that fits more naturally protein sequences as opposed to
left-to-right decoding used in language models and ref. 21. Also,
we simplified input geometric features by keeping only distances
between N, Cα, C, O and inferred Cβ atoms and added positional
encodings that allowed us to design multiple protein chains at
the same time, as opposed to using backbone local angles as in
ref. 21. Both ProteinMPNN and LigandMPNN can design symmet-
ric and multistate proteins by choosing an appropriate decoding
order and averaging out predicted probabilities. Also, we added
expressivity to our MPNN encoder layers, allowing both graph
nodes and edges to be updated. LigandMPNN further builds on
top of ProteinMPNN by incorporating local atomic context into
the protein residue local environment using invariant features.
We pass messages between protein residues and context atoms to
encode possible sequence combinations. Finally, LigandMPNN can
also predict with uncertainty multiple sidechain packing combina-
tions of a newly designed sequence near nucleotides, metals and
small molecules, which can help designers to choose sequences
that make desired interactions with the ligand of interest. Ligan-
dMPNN can also take sidechain conformations as an input, which
allows the design sequence to stabilize given ligand and selected
protein sidechains.

Algorithms 1, 2, 3, 4 and 5 are commonly used in many machine
learning models. Algorithms 6, 7, 8 and 13 were used in the Pro-
teinMPNN model. Algorithms 9, 10, 11, 12 and 14 are novel and specific
to LigandMPNN.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data are available in the Article or its Supplementary Informa-
tion. PDB structures used for training were obtained from RCSB. The
following PDB IDs were used in the Article: 8VEI, 8BEJ, 8VEZ, 8VFQ,
8TAC, 6JY3, 2P7G, 1BC8 and 1E4M. (https://www.rcsb.org/docs/
programmatic-access/file-download-services). Source data are pro-
vided with this paper.

Code availability
The LigandMPNN code is available via GitHub at https://github.com/
dauparas/LigandMPNN. The neural network was developed with
PyTorch 1.11.0, cuda 11.1, NumPy v1.21.5, Matplotlib v3.5.1 and Python
v3.9.12. MMseqs2 version 13-45111+ds-2 was used to cluster PDB chains,
and mmcif vesion 0.84 (https://pypi.org/project/mmcif/) and rdkit
version 2022.03.2 were used to parse PDB files. The flow cytometry
data were analyzed using the software FlowJo v10.9.0.

References
43.	 Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein

sequence searching for the analysis of massive data sets.
Nat. Biotechnol. 35, 1026–1028 (2017).

44.	 Hendrycks, D. & Gimpel, K. Gaussian error linear
units (GELUs). Preprint at https://arxiv.org/abs/1606.08415
(2016).

Acknowledgements
We thank S. Pellock, Y. Kipnis, J. Wenckstern, A. Goncharenko,
N. Hanikel, W. Ahern, P. Sturmfels, R. Krishna, D. Juergens,
R. McHugh, P. Kim and I. Kalvet for helpful discussions. This research
was supported by the Department of the Defense, Defense Threat
Reduction Agency grant (grant no. HDTRA1-21-1-0007 to I.A.);
National Science Foundation (grant no. CHE-2226466 for R.P.);
Spark Therapeutics (Computational Design of a Half Size Functional
ABCA4 to I.A.); The Audacious Project at the Institute for Protein
Design (to L.A. and C.G.); Microsoft (to J.D. and I.A.); the Washington
Research Foundation, Innovation Fellows Program (to G.R.L.); the
Washington Research Foundation and Translational Research Fund
(to L.A.); a Washington Research Foundation Fellowship (to C.G.);
Howard Hughes Medical Institute (G.R.L., I.A. and D.B.); National
Institute of Allergy and Infectious Diseases (NIAID) (contract nos.
HHSN272201700059C and 75N93022C00036 to I.A.); the Open
Philanthropy Project Improving Protein Design Fund (to J.D. and
G.R.L.); and the Bill & Melinda Gates Foundation Grant INV-037981
(to G.R.L.).

Author contributions
Conceptualization: J.D., G.R.L., L.A. and I.A.; methodology:
J.D., G.R.L., L.A., I.A, R.P. and C.G.; software: J.D. and I.A.; validation:
G.R.L., L.A., R.P. and C.G.; formal analysis: J.D. and G.R.L.; resources:
J.D. and D.B.; data curation: I.A., J.D., G.R.L., L.A. and R.P.; writing—
original draft: J.D. and D.B.; writing—review and editing: J.D. and
D.B.; visualization: J.D., G.R.L. and L.A; supervision: D.B.; funding
acquisition: J.D. and D.B.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41592-025-02626-1.

http://www.nature.com/naturemethods
https://www.rcsb.org/docs/programmatic-access/file-download-services
https://www.rcsb.org/docs/programmatic-access/file-download-services
https://github.com/dauparas/LigandMPNN
https://github.com/dauparas/LigandMPNN
https://pypi.org/project/mmcif/
https://arxiv.org/abs/1606.08415
https://doi.org/10.1038/s41592-025-02626-1
https://doi.org/10.1038/s41592-025-02626-1

Nature Methods

Article https://doi.org/10.1038/s41592-025-02626-1

Correspondence and requests for materials should be addressed to
David Baker.

Peer review information Nature Methods thanks Claus Wilke and the
other, anonymous, reviewer(s) for their contribution to the peer review

of this work. Primary Handling Editor: Arunima Singh, in collaboration
with the Nature Methods team.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/naturemethods
http://www.nature.com/reprints

	Atomic context-conditioned protein sequence design using LigandMPNN

	Results

	Discussion

	Online content

	Fig. 1 The LigandMPNN model.
	Fig. 2 In silico evaluation of LigandMPNN sequence design.
	Fig. 3 Evaluation of LigandMPNN sidechain packing accuracy.
	Fig. 4 Rescue of Rosetta small-molecule binder designs using LigandMPNN.

