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Abstract 19 
Enzymes that proceed through multistep reaction mechanisms often utilize complex, polar 20 
active sites positioned with sub-angstrom precision to mediate distinct chemical steps, which 21 
makes their de novo construction extremely challenging. We sought to overcome this challenge 22 
using the classic catalytic triad and oxyanion hole of serine hydrolases as a model system. We 23 
used RFdiffusion1 to generate proteins housing catalytic sites of increasing complexity and 24 
varying geometry, and a newly developed ensemble generation method called ChemNet to 25 
assess active site geometry and preorganization at each step of the reaction. Experimental 26 
characterization revealed novel serine hydrolases that catalyze ester hydrolysis with catalytic 27 
efficiencies (kcat/Km) up to 3.8 x 103 M-1 s-1, closely match the design models (Cα RMSDs < 1 Å), 28 
and have folds distinct from natural serine hydrolases. In silico selection of designs based on 29 
active site preorganization across the reaction coordinate considerably increased success rates, 30 
enabling identification of new catalysts in screens of as few as 20 designs. Our de novo buildup 31 
approach provides insight into the geometric determinants of catalysis that complements what 32 
can be obtained from structural and mutational studies of native enzymes (in which catalytic 33 
group geometry and active site makeup cannot be so systematically varied), and provides a 34 
roadmap for the design of industrially relevant serine hydrolases and, more generally, for 35 
designing complex enzymes that catalyze multi-step transformations. 36 
 37 
Main Text 38 
Enzymes are exquisite catalysts that dramatically accelerate reaction rates in mild aqueous 39 
conditions. The ability to construct enzymes catalyzing arbitrary chemical reactions would have 40 
enormous utility across a wide range of applications, and hence, enzyme design has been a 41 
long-standing goal of computational protein design2. De novo enzyme design has generally 42 
started from a specification of arrangements of catalytic residues around the reaction transition 43 
state (a theozyme), and sought to identify placements of this active site in pre-existing 44 
scaffolds3–8. Fixed backbone scaffolds restrict how accurately the catalytic geometry can be 45 
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realized, and this has likely limited the activities of many designed enzymes to date prior to 46 
optimization by laboratory evolution. A further challenge of enzyme design is the 47 
preorganization of the active site with atomic accuracy. Achieving preorganization is especially 48 
difficult for multistep reaction mechanisms, because the enzyme must preferentially stabilize 49 
multiple transition states and intermediates. Existing methods to evaluate design 50 
preorganization in silico8–12 are limited by low accuracy or computational cost and are typically 51 
only applied to one reaction state. To enable the accurate design of multistep enzymes, new 52 
methods are needed for both the generation of protein backbones tailored specifically to a given 53 
active site and assessment of their structural compatibility throughout the catalytic cycle. 54 
 55 
We reasoned that advances in deep learning for protein design and structure prediction could 56 
be used to design proteins from scratch to scaffold a given active site and assess compatibility 57 
across a proposed reaction coordinate. Recent advances in scaffolding functional sites with 58 
RFdiffusion have yielded improved in silico and experimental success rates across a range of 59 
design tasks1,13; we aimed to use the same approach to generate enzymes starting from 60 
geometric descriptions of an active site (Fig. 1A). To assess preorganization and functional 61 
interactions in each step of the catalytic cycle, we sought to leverage advances in deep 62 
learning-based prediction of protein-small molecule complexes by modeling structural 63 
ensembles of catalytic intermediates (Fig. 1B). 64 
 65 
Ester hydrolysis has served as a model reaction for computational enzyme design for 66 
decades14–19, and the catalytic triad and oxyanion hole of natural serine hydrolases utilize one of 67 
the most extensively studied enzymatic mechanisms to catalyze this reaction20–27. The catalytic 68 
cycle can be divided into four steps (Fig. 1C). First, the substrate binds to the apoenzyme (apo) 69 
and the catalytic serine, deprotonated by the catalytic histidine, attacks the carbonyl carbon of 70 
the ester to form the first tetrahedral intermediate (TI1). Second, the catalytic histidine 71 
protonates the leaving group oxygen promoting its departure, leaving the active site serine 72 
covalently linked to the acyl group of the substrate (acyl-enzyme intermediate, AEI). Third, the 73 
histidine deprotonates a water molecule, which attacks the AEI to generate a second tetrahedral 74 
intermediate (TI2). Finally, this intermediate is resolved by histidine-mediated protonation of 75 
serine and release of the acyl group, reconstituting the free enzyme and completing the catalytic 76 
cycle. Throughout, negatively charged transition states and intermediates are stabilized by a 77 
pair of hydrogen bond donors that constitute the oxyanion hole. Perturbation of the histidine 78 
pKa, which tunes its acid/base function, is mediated by interaction with aspartate or glutamate, 79 
the final residue in the triad28–30. 80 
 81 
Despite extensive structural, mutational, and computational characterization of native serine 82 
hydrolases31–34, de novo design efforts that have attempted to employ this mechanism have 83 
been largely unsuccessful, yielding proteins that harbor activated serines and cysteines but fail 84 
to catalyze turnover7,8. We initially speculated that increasing scaffold diversity would help 85 
identify backbones that more accurately reconstruct the desired active site; and we carried out a 86 
preliminary design campaign searching for placements of a serine hydrolase active site in a 87 
library of deep-learning generated hallucinated NTF2 scaffolds that previously yielded catalysts 88 
for a luciferase reaction35. As in previous studies, experimental characterization of the resulting 89 
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designs revealed activated serines but no catalytic turnover on activated ester substrates, 90 
despite a close match between the experimental and designed structures (Fig. S1), suggesting 91 
that key features important for catalysis were missing. 92 
 93 
Assessing reaction path compatibility with ChemNet 94 
We set out to understand why these and earlier computational designs failed to catalyze ester 95 
hydrolysis and hypothesized that modeling states across the complete reaction coordinate could 96 
be critical for assessing the ability of a design to achieve catalytic turnover. To model the extent 97 
to which a designed enzyme can form each of the key states along the reaction cycle and to 98 
assess the preorganization of the active site residues in the desired catalytic geometries, we 99 
developed a deep neural network that, given (1) the backbone coordinates of a small molecule 100 
binding pocket or active site, (2) the identities of the amino acid residues at each position, and 101 
(3) the chemical structures of bound small molecules (but not their positions), generates the full 102 
atomic coordinates of the binding site, comprising both protein sidechains and small molecules. 103 
We trained this network, called ChemNet, on protein-small molecule complexes in the PDB by 104 
randomizing the atomic coordinates of sidechains and small molecules within spherical regions 105 
with up to 600 heavy atoms, and seeking to minimize a loss function assessing the 106 
recapitulation of the atomic coordinates within the region. ChemNet rebuilds regions within 107 
native structures with an average RMSD of 1.1 �. ChemNet is stochastic, and repeated runs 108 
from different random seeds yield an ensemble of models for the rebuilt region. 109 
 110 
We used ChemNet to generate structural ensembles for each of the four reaction steps for a set 111 
of native and previously designed serine hydrolases. These calculations showed that native 112 
hydrolases are considerably more preorganized than previous designed systems (Fig. 1D, Fig. 113 
S2). In native systems, the catalytic residues at each step sample a very limited number of 114 
conformations in which all key hydrogen bonding interactions are maintained, but in designed 115 
systems there can often be wide variations in the ensembles at multiple steps. Since the 116 
reaction rate should be proportional to the fraction of the enzyme in the active state, the lack of 117 
preorganization of the designed active sites is expected to compromise catalysis. To quantify 118 
the extent of active site formation in the ChemNet ensembles, we compute the frequency of 119 
formation of key interactions between the catalytic functional groups and reaction intermediates 120 
over each step of the reaction (see Methods). 121 
 122 
Design and characterization of serine hydrolases 123 
We next set out to design proteins with active sites of increasing complexity, using RFdiffusion 124 
to scaffold serine hydrolase active site motifs and ChemNet to assess their preorganization in 125 
each step of the reaction (Fig. 2A,B). We designed catalysts for the hydrolysis of 4-126 
methylumbelliferone (4MU) esters (Fig. 2C) that fluoresce upon hydrolysis. To generate 127 
backbones to scaffold the catalytic machinery, we placed the catalytic sidechains around the 128 
substrate and starting from the backbone N, Cα, and C atoms of these key residues and their 129 
adjacent neighbors (i.e. a contiguous three-residue segment), used RFdiffusion to build up 130 
backbones, starting from random noise, which have coordinates that exactly match the input 131 
motif and also form a binding pocket for the substrate (see Methods). To drive folding to the 132 
designed state, and to make favorable interactions with the substrate and active site residues, 133 
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LigandMPNN36 was used to design the sequence. Rosetta FastRelax37 was used to refine the 134 
protein backbone and ligand pose, and the sequence was again designed with LigandMPNN 135 
with the new backbone as input38. Following several iterations between LigandMPNN and 136 
FastRelax, the structures of the designs were predicted with AlphaFold2 (AF2)39, and designs 137 
for which all catalytic residue Cα’s were positioned within 1.0 Å of the design models were 138 
selected for experimental characterization39 (see Methods for additional details of computational 139 
design). 140 
 141 
In the first two rounds of design, we built relatively simple active sites consisting of Ser-His 142 
dyads with a single oxyanion hole contact from the backbone amide of the serine (Fig. 2A,B), 143 
and explicitly evaluated the utility of ChemNet to select designs for experimental 144 
characterization; round 1 designs were filtered with AF2 alone, while round 2 designs that 145 
passed the AF2 filter were selected for experimental screening if ChemNet ensembles of the 146 
apo state indicated the key Ser-His hydrogen bond was formed (see Methods). Only 1.6% of 147 
round 2 designs passing AF2 filtering were predicted to be preorganized by ChemNet. For 148 
experimental testing, we obtained synthetic genes encoding 129 and 192 designs for rounds 1 149 
and 2, respectively, for E. coli overexpression and screening. 150 
 151 
We used a fluorophosphonate (FP) activity-based probe and fluorescent 4MU-acetate (4MU-Ac) 152 
and 4MU-butyrate (4MU-Bu) ester substrates to identify designs with activated serines and 153 
esterase activity, respectively (Fig. 2C). The fraction of designs labeling with the FP probe in E. 154 
coli lysate increased nearly 5-fold from 3% to 17% from round 1 to round 2 (Fig. 2B, Fig. S3). 155 
Designs that reacted with the FP probe were purified and incubated with 4MU esters, and two 156 
round 1 designs (1.6%) and 10 round 2 designs (5.2%) showed catalytic activity. Retrospective 157 
ChemNet analysis of the round 1 designs revealed that the Ser-His H-bonds in the two 158 
catalytically active designs were predicted to be among the most preorganized (Fig. S4). 159 
ChemNet filtering of round 2 designs on the extent of formation of the key Ser-His H-bond not 160 
only increased the fraction of designs exhibiting FP probe labeling and enzymatic activity, but 161 
also resulted in higher activities (Fig. 1E,F). The progress curves for these round 1 and 2 162 
designs plateau after approximately one enzyme equivalent of fluorescent product is formed 163 
(Fig. 2E), suggesting they catalyze initial nucleophilic attack but fail to hydrolyze the AEI, the 164 
rate-limiting step in the cleavage of activated esters31. When incubated with substrate, mass 165 
spectra of these designs revealed a mass shift corresponding to acylation, further supporting 166 
protein inactivation following formation of the acylated intermediate (Fig. S5).  167 
 168 
We hypothesized that incorporating a histidine-stabilizing catalytic acid and a second oxyanion 169 
hole H-bond donor in a third round of designs (round 3) and filtering for ChemNet 170 
preorganization in both the apo and AEI states could generate designs capable of catalytic 171 
turnover via hydrolysis of the AEI. For round 3 designs, we required all catalytic triad and 172 
oxyanion hole H-bonds to be highly preorganized in ChemNet ensembles of both the apo and 173 
AEI states. Of 132 round 3 designs, 111 (84%) displayed FP probe labeling, 20 hydrolyzed 4MU 174 
substrates (18%), and two designs (1.5%) displayed multiple turnover activity (Fig. 2B,E). Active 175 
designs from all three rounds showed significantly reduced activity upon mutation of any one of 176 
the catalytic residues (Ser, His, Asp/Glu, and oxyanion sidechain contact) (Fig. 2E), suggesting 177 
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that the observed activities are dependent on the designed active site. To determine the kinetic 178 
parameters of the active designs, initial or steady-state rates were measured to determine k2/Km 179 
or kcat/Km for single-turnover and multiple-turnover designs, respectively (Fig. 2E, Fig. S6). For 180 
the two designs that displayed catalytic turnover, called ‘super’ and ‘win,’ kcat/Km values were 22 181 
M-1 s-1 (kcat = 0.00137 ± 0.00005 s-1, Km = 64 ± 6 μM) and 410 M-1 s-1 (kcat = 0.00117 ± 0.00003 s-182 
1, Km = 2.8 ± 0.3 μM), respectively for the more preferred of the two 4MU substrates (win and 183 
super preferentially hydrolyzed 4MU-Ac and 4MU-Bu, respectively (Fig. S7)). 184 
 185 
Structural characterization of designed serine hydrolases 186 
We pursued x-ray crystallography to determine the accuracy with which super and win were 187 
designed. We were able to solve crystal structures of both super and win, and found that they 188 
had very low Cα RMSDs of 0.8 Å οver 165 residues and 0.83 Å over 160 residues (Fig. 3A,D), 189 
respectively, to the design models. The very close agreement between experimental and 190 
designed structures extends to the geometry of the active site: the sidechain conformations of 191 
the catalytic residues are in atomic agreement for super (all-atom RMSD = 0.38 Å over 22 192 
atoms) and for win (all-atom RMSD = 0.86 Å over 20 atoms) except for a rotamer shift in the 193 
sidechain oxyanion contact, T99 (Fig. 3B,E). In the active site of super, a water molecule sits 194 
above the nucleophilic serine and forms hydrogen bonds with the oxyanion hole contacts, which 195 
likely mimics the positioning of the carbonyl oxygen of its ester substrate (Fig. 3B). Similarly, in 196 
win, an acetate molecule is positioned at the catalytic center and hydrogen bonds to the Oγ and 197 
backbone amide nitrogen of the catalytic serine S142, the oxygen of T99, and the histidine 198 
acid/base residue H17, key hydrogen bonds in the catalytic cycle (Fig. 3E).  199 
 200 
While the structures were solved in the absence of bound small molecule substrate or transition 201 
state analogue, overlay of the design model and crystal structure of super reveals high shape 202 
complementarity to the butyrate acyl group of its preferred substrate (Fig. 3C and S7). At the 203 
same time, the 4MU moiety is largely exposed, corroborating the selectivity of super for 4MU-Bu 204 
over 4MU-Ac and suggesting that substrate binding, in this case, is largely driven by binding to 205 
the acyl group. For win, a rotamer shift in F98 in the crystal structure would clash with the 206 
butyrate moiety, and indeed, win is selective for the smaller substrate 4MU-Ac that avoids this 207 
clash (Fig. 3F and S7).  208 
 209 
The structures of super and win are very different from known structures; the closest matches 210 
found with TM-align to the PDB and larger AlphaFold database have TM-scores of 0.41/0.46 211 
(PDB/AlphaFold database) and 0.46/0.51 (at or below the 0.5 cutoff below which structures are 212 
considered to have different topological folds), are proteins of unknown function, and have no 213 
similarity to known hydrolases at the fold or active site level (Fig. S8), demonstrating that the 214 
design method employed here can find protein structural solutions that extend well beyond 215 
those found in nature. 216 
 217 
Filtering for preorganization across the reaction coordinate improves catalysis 218 
We next sought to generate and compare designs filtered explicitly with ChemNet for 219 
preorganization over two states (apo and AEI) or over all four states of the reaction path by 220 
carrying out additional iterations of LigandMPNN and FastRelax of the active design win (fixing 221 
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only the identities of the four catalytic residues) (Fig. 4A). We obtained genes encoding 45 two-222 
state filtered designs for experimental characterization, all of which were diverse in sequence 223 
compared to the original designs (mean sequence identity to the parent design of 58% and 61% 224 
within the active site), and found 38 (84%) labeled with FP-probe. Three of these, win1, win11, 225 
and win31, displayed higher kcat values compared to the starting design: win has a kcat of 226 
0.00117 s-1, which increases 15-fold in win1 (0.018 s-1), 17-fold in win11 (0.0197 s-1), and 9-fold 227 
in win31 (0.0105 s-1) (Fig. 4B and Fig. S6). Of the 11 four-state filtered designs tested, 10 (91%) 228 
labeled with FP-probe (Fig. S9). Two of these, dad_t1 and win_t4, displayed higher catalytic 229 
efficiencies than the starting design, with kcat/Km values of 3800 M-1 s-1 and 640 M-1 s-1, largely 230 
driven by improvements to kcat (Fig. 4B and S6). Catalytic triad residue knockouts for all designs 231 
showed significant reductions in activity. In win11 and win31, mutation of preorganizing residues 232 
in the second shell of the active site that H-bond to the catalytic aspartate also significantly 233 
reduced activity (Fig. S10). 234 
 235 
We determined the crystal structures of win1 and win31 which revealed very close matches to 236 
the design models, with Cα RMSDs of 1.42 Å and 0.7 Å, respectively (Fig. 4E,F). For win1, the 237 
active site, including the oxyanion hole sidechain contact, more closely matches the designed 238 
conformation (mean all-atom RMSD = 0.54 Å) than the parent design win (Fig. 4E), which may 239 
be partly responsible for the 15-fold increase in kcat. For win31, five chains are present in the 240 
asymmetric unit, all of which closely match the design model (average Cα RMSD = 0.7 Å) at the 241 
backbone level (Fig. 4F and S11). Analysis of the active site across all chains in the asymmetric 242 
unit revealed mobility in the catalytic serine, sidechain oxyanion threonine, and a preorganizing 243 
tyrosine (Fig. S10), but still a very close match to the design model with a mean all-atom RMSD 244 
of 0.7 Å. Tartrate, derived from the crystallization solution, satisfied the electron density present 245 
in the active site of all five chains, and forms hydrogen bonds with the serine, histidine, and 246 
oxyanion hole contacts (Fig. 4F), likely mimicking key contacts employed throughout the 247 
catalytic cycle. 248 
 249 
We then explored whether stringent ChemNet filtering for optimal catalytic geometry and 250 
preorganization across the reaction coordinate could generate active esterases with novel 251 
backbone topologies, active sites, and substrates. We carried out extensive sequence redesign 252 
and filtering based on catalytic geometry in all four states starting from round 3 backbones that 253 
had not previously displayed esterase activity, and of 20 designs tested, two (charlie_t2 and 254 
ken_t1) displayed significant esterase activity, with catalytic efficiencies of 180 M-1 s-1 and 1400 255 
M-1 s-1 (Fig. 4G,H,I,J).  256 
 257 
To test the generality of this ChemNet filtering approach, we applied it to a different substrate, 258 
4MU-phenylacetate (4MU-PhAc, and a different active site configuration in which the oxyanion 259 
hole consists of two backbone amide hydrogen bond donors, rather than a backbone donor and 260 
a sidechain donor, and the first backbone donor was the residue following the catalytic serine 261 
rather than the catalytic serine itself (Fig. 4K). We used the design pipeline described above to 262 
generate 66 designs for this new substrate and catalytic site. The most active of these, momi, 263 
displayed a kcat/Km of 1240 M-1 s-1 and kcat of 0.1 s-1, a 5-fold faster rate than win11, the previous 264 
best design in terms of turnover number. The distribution of folds generated by RFdiffusion for 265 
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this active site geometry differed from that for the original geometry, with more α/β fold solutions 266 
(as in the case of momi), showing how the RFdiffusion buildup approach crafts overall protein 267 
structure topology to the specific active site of interest. The high activity achieved without any 268 
prior experimental characterization for this new substrate and catalytic site combination shows 269 
that filtering for preorganization throughout the reaction cycle can yield novel catalysts in one 270 
shot. 271 
 272 
While the catalytic efficiencies of our designed serine hydrolases are far higher than previously 273 
reported catalytic triad-based designs, they are still orders of magnitude slower than native 274 
hydrolases. Several experimental results identify clear areas for improvement. First, ken_t1 275 
inactivates after roughly 10 turnovers, and mass spectra of the catalyst and the serine knockout 276 
incubated with substrate reveal stable acylated species (Fig. S12), indicating that designs that 277 
hydrolyze the AEI are still susceptible to inactivation, potentially from off-mechanism acylation 278 
events in the active site, which will be important to avoid in future design efforts. Second, in 279 
three designs (dad_t1, charlie_t2, ken_t1) from later design rounds made with stringent 280 
Chemnet filtering, mutation of the second sidechain oxyanion hole residue has a smaller effect 281 
on activity than in the earlier design rounds and compared to analogous mutations in native 282 
enzymes (Fig. S10). To investigate the structural effect of the oxyanion hole, we made 283 
ChemNet predictions of wild-type and oxyanion hole alanine knockout mutants for all active 284 
designs. In the case of super, predictions of Q71A exhibit a clear conformational change of the 285 
acylated serine in the AEI which lengthens its distance from the histidine, providing a structural 286 
explanation for the loss in activity (Fig. S13). In contrast, wild-type and oxyanion hole knockout 287 
predictions were indistinguishable for other designs, including win and high-activity redesigns of 288 
win (Fig. S13). Our analysis suggests that the improvements in catalysis achieved throughout 289 
our design rounds may derive primarily from improvements in catalytic triad organization and 290 
intermediate positioning; future work will focus on optimally placing the oxyanion hole residues 291 
to more preferentially stabilize the transition state over the sp2 ground state. 292 
 293 
Acyltransferase activity of designed hydrolases 294 
Several native serine hydrolases exhibit promiscuous acyltransferase activity, reacting with 295 
small-molecule nucleophiles that compete with hydrolysis to break down the AEI40. Due to the 296 
long-lived nature of the AEI in these designed hydrolases and the hydrophobicity of their 297 
substrate binding pockets, we hypothesized they may also catalyze acyl transfer to aromatic 298 
alcohols (Fig. S14). To assess acyl transfer, we incubated designs with their cognate 4MU-ester 299 
substrates in the presence of an acyl acceptor, 2-phenylethanol (PEA). For several designs 300 
(win, win31, win_t4, and dad_t1), the addition of PEA significantly increased the rate of ester 301 
hydrolysis, suggesting these designs catalyzed acyl transfer (Fig. S14). Incubation with PEA 302 
and substrate alone or with catalytic serine to alanine knockout mutants of win_t4 and dad_t1 303 
did not exhibit increases in the rate, suggesting observed rate enhancements are enzyme 304 
dependent (Fig S14). Acyltransferase activity appears to be anti-correlated with Km: for 305 
example, win1 (4MU-Ac Km = 110 μM) was inhibited by PEA, and win (4MU-Ac Km = 2.8 μM) 306 
had a 3.6-fold maximal rate increase upon addition of PEA, suggesting that transesterification 307 
activity may be driven by tighter binding of the acyl acceptor. 308 
 309 
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Structural determinants of catalysis 310 
The high structural conservation of catalytic geometry in native serine hydrolases suggests that 311 
it is close to optimal for catalysis32,41, but it is difficult to assess how activity depends on the 312 
detailed geometry of the interactions of the transition states with the catalytic serine, histidine, 313 
and oxyanion hole functional groups since while the identities of the catalytic residues can be 314 
readily changed by mutation, it is not straightforward to systematically vary backbone geometry. 315 
In contrast, our de novo buildup approach samples a wide range of catalytic geometries. To 316 
investigate how active site geometry and preorganization influence catalytic activity, we 317 
generated ChemNet ensembles of all 812 experimentally characterized designs, categorized as 318 
inactive, FP probe labeling, acylation, and catalytic turnover, for each reaction step in the 319 
hydrolysis of 4MU-acetate (including design rounds 1-3 and previous NTF2-based designs). 320 
The following features were associated with activity. 321 
 322 
Increased preorganization and bending of the Ser-His H-bond were associated with higher rates 323 
of probe-labeling, acylation, and turnover. All designs capable of catalyzing turnover displayed 324 
highly preorganized Ser-His H-bonds across all four states, while inactive designs often 325 
displayed rotamer shifts causing loss of the interaction (Fig. 5A,B). Designs that catalyzed 326 
turnover had Ser(Oγ):His(Nε-Cε) bond angles that were more acute (median, all states = 94°) 327 
than inactive designs (median, all states = 108°), which were more similar to serine-histidine 328 
hydrogen bonds across the PDB (~125°)33 (Fig. 5C). This acute H-bond is chemically intuitive 329 
given the reaction mechanism, in which this geometry allows histidine to participate, without 330 
changing conformation, in all of the necessary proton transfers involving serine, the leaving 331 
group oxygen in TI1, and the hydrolytic water34,42. This compromise in positioning is observed 332 
not only in our active designs but also in many of those found in nature33,42,43. 333 
 334 
The geometry of the serine rotamer throughout the catalytic cycle was also strongly correlated 335 
with experimental outcome. For designs that display acylation or turnover, we found that serine 336 
largely occupies the active g- rotamer41 in the apo state. Designs that display turnover retain the 337 
g- serine conformer upon formation of the AEI, but designs that irreversibly acylate switch to the 338 
g+ rotamer in the AEI (Fig. 5H,I,J). The g+ serine rotamer is catalytically incompetent in these 339 
designs because it leads to an acyl group conformation that occludes interaction of the 340 
hydrolytic water with histidine (Fig. 5G), increases the median Ser-His H-bond distance (Fig. 341 
5G), and reduces the frequency that the Ser-His and oxyanion hole-acyl group H-bonds form 342 
(Fig. 5E). The same retention of the g- rotamer in the AEI is observed in native crystal 343 
structures34. ChemNet analysis also revealed that the presence of a second oxyanion hole 344 
residue favors the active g- serine rotamer: those designs with only one oxyanion hole H-bond 345 
(from the backbone amide of the serine nucleophile) shift from g- to g+ upon acylation, while 346 
designs with two oxyanion hole H-bonds predominantly occupy g- Ser rotamers (Fig. 5J, right). 347 
The second oxyanion hole contact in serine hydrolases thus not only stabilizes the transition 348 
state but likely helps orient intermediates in catalytically productive conformations. 349 
 350 
Differential preorganization may also explain activity trends in the win, win1, and win31 series. 351 
ChemNet analysis of the crystal structures of these designs revealed that in the AEI state, the 352 
more active win1 and win31 sample the designed T99 oxyanion hole rotamer in 56 and 60% of 353 
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predictions, respectively, while win never adopts this rotamer (Fig. 5K). Although both observed 354 
rotamers place T99 Oγ within hydrogen bonding distance of the oxyanion, the designed 355 
rotamer-oxyanion dihedral angle (91°) much more closely matches the angles observed in 356 
native serine hydrolases, suggesting it is likely more optimal for selective transition state 357 
stabilization33,44,45 (see Methods). We also observed differences in the serine rotameric state 358 
and the preorganization of the acyl group in the AEI state. Both win and win31 occupy the 359 
catalytically unfavorable g+ rotamer across the entire AEI ensemble, while win1 displays a less 360 
pronounced rotameric shift, which leads to shorter serine-histidine hydrogen bond distances 361 
(2.8 Å in win1 compared to 3.1 Å in win and win31). Overall, the acyl groups of win1 and 362 
especially win31 display significantly less conformational heterogeneity than that of win, which 363 
presumably increases the likelihood of histidine-mediated water attack (Fig. 5K).  364 
 365 
Conclusions 366 
The substantial catalytic efficiencies of 103 M-1 s-1, the complexity of the active site geometry, 367 
and the accuracy of sidechain placement considerably surpass previous serine hydrolase 368 
computational design efforts despite the testing of a relatively small number of designs and 369 
complete omission of laboratory optimization. The folds of the designed catalysts are very 370 
different from those of natural serine hydrolases, demonstrating the ability of generative deep 371 
learning design methods to find completely new solutions to design challenges that differ from 372 
those found by natural evolution. Previous efforts to design catalytic triad-based designs have 373 
failed to achieve multiple turnover; in some cases, such as our preliminary NTF2-based 374 
designs, a backbone amide oxyanion hole was impossible to achieve due to scaffold limitations, 375 
while in others based on native scaffolds, the histidine geometry was difficult to control which 376 
limited activation of the leaving groups and water (Fig. S15)8. De novo backbone generation 377 
building outward from a specified active site with RFdiffusion overcomes these limitations by 378 
enabling generation of almost any desired catalytic geometry.  379 
 380 
Assessing design compatibility over the entire catalytic cycle has been a longstanding challenge 381 
in enzyme design. We show that the deep neural network ChemNet can rapidly generate 382 
ensembles for a series of reaction intermediates which directly assess preorganization, and 383 
provide structural insights that would otherwise require labor-intensive structural studies. For 384 
example, ChemNet revealed pervasive off-target conformational changes in the acyl-enzyme, 385 
which could be responsible for the failure to catalyze turnover for many previously designed 386 
esterases. The stochastic nature of ChemNet provides ensemble views of the energy 387 
landscapes around key reaction intermediates; the agreement we observe between ChemNet 388 
preorganization and experimental success rates suggests that such ensemble generation will be 389 
broadly useful for enzyme design moving forward. 390 
 391 
While the designed catalysts described here are far more active than previous de novo 392 
designed serine hydrolases obtained by direct computation, they are still two to three orders of 393 
magnitude less efficient than native serine hydrolases, particularly in terms of turnover number. 394 
There are several possible explanations for the remaining activity gap: (1) the oxyanion hole 395 
identities and geometries differ slightly from those in native structures, which could reduce 396 
selective transition state stabilization,33,44,45 (2) the catalytic aspartate in the designs rarely 397 
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participates in 2-3 additional hydrogen bonds (like those found in nature) which may limit its 398 
modulation of the catalytic histidine’s pKa, and (3) the designed active sites are more buried 399 
than those of natural serine proteases, which could inhibit water entry into the active site for 400 
acylenzyme hydrolysis. Our de novo buildup approach using RFdiffusion coupled with ChemNet 401 
ensemble analysis to ensure design accuracy and preorganization should allow us to test all of 402 
these hypotheses by direct construction, which should further complement more traditional 403 
approaches based on structural examination and mutation of highly evolved native enzymes.  404 
 405 
More generally, we anticipate that the ability to precisely position multiple catalytic groups with 406 
sub-angstrom precision using RFdiffusion, and to assess active site organization throughout a 407 
complex reaction cycle using ChemNet should enable the design of a wide variety of new 408 
catalysts in the near future. 409 
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 442 
Methods 443 
 444 
Computational design of serine hydrolases 445 
 446 
Motif generation 447 
Motifs were built in an iterative process. First, a substrate rotamer in a transition state geometry 448 
(either 4MU-Bu or 4MU-Ac) was placed in accordance with geometries in ref 7 in relation to a 3-449 
residue stub of the serine and local oxyanion hole from one of two natural serine hydrolase 450 
crystal structures (1scn, residues 220-222, and 1lns, residues 347-349, in which all residues 451 
other than the serine were mutated to alanine). The transition state geometry of the substrate 452 
ester group was determined by DFT geometry optimization (B3LYP-D3(BJ)/6-31G(d)). Next, 453 
positions and rotamers of histidine on 3-residue helical or strand stubs flanked by alanine were 454 
sampled around the catalytic serine and filtered for those structures in which the histidine 455 
simultaneously formed hydrogen bonds with the catalytic serine and the substrate leaving group 456 
oxygen. This process resulted in 108 unique round 1 motifs. For the round 3 motifs, initially the 457 
aspartate or glutamate residue and second oxyanion hole hydrogen bond were added in a 458 
similar manner using geometric sampling of hydrogen-bonding conformations and rotamers. 459 
However, backbones produced from these motifs had exceedingly low AF2 success rates, 460 
presumably due to the generation of incompatible combinations of backbone conformations. To 461 
ensure that the remaining catalytic residue stubs were placed in realizable geometries, we 462 
generated 10,000 backbones with RFdiffusion using the simple substrate-Ser-His motifs as 463 
input, and then searched these backbones using Rosetta for positions on secondary structure 464 
that could accommodate the aspartate or glutamate triad residue to hydrogen bond to histidine. 465 
These stubs were then extracted, and in a final step, the same process was repeated to 466 
generate stubs for the second oxyanion hole, considering all hydrogen bond donating 467 
sidechains, ultimately producing 2238 unique round 3 motifs with Ser-His-Asp/Glu catalytic 468 
triads, and Ser/Thr/Tyr/His/Trp oxyanion holes. 469 
 470 
Backbone generation 471 
See supplemental methods for a detailed description of CA diffusion, which was employed to 472 
generate backbones to scaffold motifs. 473 
 474 
Sequence design 475 
We performed three cycles of LigandMPNN36 and Rosetta FastRelax46 to design sequences for 476 
backbones generated from RFdiffusion. To encourage formation of hydrogen bond contacts to 477 
the catalytic histidine (for round 1 motifs) and to the catalytic aspartate/glutamate (round 3 478 
motifs), the log probabilities used by LigandMPNN to select residues were biased toward polar 479 
amino acids for all residues with Cα within 8 Å of the active site. Catalytic residues were kept 480 
fixed and Rosetta enzyme constraints47,48 were applied during the relax steps to maintain the 481 
catalytic geometry during cycles of design. Constraints were defined for each hydrogen bonding 482 
interaction using the starting motif geometry with tolerances of 0.1 Å for distances and 5° for 483 
angles and dihedrals.  484 
 485 
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 486 
Filtering 487 
After sequence design, designs were filtered on the recapitulation of the motif catalytic geometry 488 
after FastRelax and the shape complementarity of the binding site to the substrate. Sequences 489 
of passing designs were used as input to AF239 for single sequence structure prediction. AF2 490 
was run using model 4 with three recycles. Designs were filtered for a global Cα RMSD < 1.5 Å, 491 
pLDDT > 75, and catalytic residue Cα RMSD < 1.0 Å. Designs that passed AF2 filters were 492 
subsequently analyzed using ChemNet. ChemNet is a denoising neural network which was 493 
trained on high- and medium- resolution X-ray and EM structures from the PDB to recapitulate 494 
the correct atom positions from partially corrupted input structures provided that all the chemical 495 
information about the system being modeled is known from the start. ChemNet predictions were 496 
done for a spatial crop of 600 atoms closest to the active site. The inputs to the network 497 
included the protein backbone coordinates within the crop and the amino acid sequence with 498 
side chain coordinates randomly initialized around the respective C-alpha atoms. For proteins 499 
without a crystal structure, the AF2 model was used. For every designed protein, we modeled 5 500 
reaction states differing in the chemical modifications the catalytic serine undergoes in the 501 
course of the reaction: (1) apo, (2) substrate bound, (3) tetrahedral intermediate 1, (4) 502 
acylenzyme intermediate, and (5) tetrahedral intermediate 2. We used 50 different seeds to 503 
generate an ensemble of 50 ChemNet models for each reaction state (apo, substrate bound, 504 
TI1, AEI, and TI2). These ensembles were then individually analyzed for the preservation of 505 
hydrogen bonding patterns in the active site. For each of the 50 predictions in each ensemble, 506 
geometries of each hydrogen bonding interaction in that step (see Supplemental Methods) were 507 
measured. To analyze native hydrolases with Chemnet, a set of native crystal structures was 508 
collected33 (PDB IDs: 1ACB_E, 1C5L_H, 1H2W_A, 1IC6_A, 1IVY_A, 1PFQ_A, 1QNJ_A, 509 
1QTR_A, 1ST2_A, 2H5C_A, 2QAA_A, 3MI4_A, 5JXG_A), the active site locations identified, 510 
and the above-described process was applied. 511 
 512 
In-gel fluorescence screening with activity-based probes 513 
DNA encoding the designed proteins was ordered from IDT as eblocks and cloned into vector 514 
LM627 (addgene), which contains a C-terminal SNAC and hexahistidine tag. Resulting plasmid 515 
was transformed into BL21(DE3) cells and grown overnight in 1 mL of LB supplemented with 50 516 
μg/ml kanamycin. For expression, 100 μL of overnight was used to inoculate 1 mL of LB media 517 
and grown for 1.5 hours at 37°C on a Heidolph shaker and then 10 μL of 100 mM IPTG was 518 
added and cultures were shaken at 37°C for an additional 3 hours. Cultures were centrifuged at 519 
4000g for 10 minutes and supernatant removed. Cell pellets were resuspended in 200 µL 20 520 
mM HEPES (pH 7.4), containing 50 mM NaCl, 0.1 mg/mL lysozyme, and 0.01 mg/mL DNaseI. 521 
After 15 minutes, lysates were frozen in liquid nitrogen and subsequently thawed. 10 µL of 522 
lysate was incubated with 1 µM FP-TAMRA probe (10 µL of 2 µM stock in lysis buffer) for 1 hour 523 
at room temperature before quenching using 2x Laemmli sample buffer. Labeled samples were 524 
heated at 95°C for 5 minutes and 10 µL of each sample was separated on a BioRad AnykD 525 
Criterion precast gel and in-gel fluorescence was visualized using a LI-COR Odyssey M imager. 526 
Gels were subsequently stained with coomassie blue to visualize the molecular weights and 527 
levels of expression of each design. 528 
 529 
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Lysate screening 530 
DNA encoding the designed proteins was ordered from IDT as eblocks and cloned into vector 531 
pCOOL1 which contains a C-terminal mScarlet-i3 fusion and His tag. Cultures were grown 532 
overnight at 1 mL scale in 96-well plates on a Heidolph shaker at 1300 rpm and 37 °C. For 533 
expression, 50 μL of the overnight cultures were used to inoculate 1 mL of autoinduction media 534 
in 96-well round bottom plates and incubated at 1300 rpm and 37 °C for approximately 24 535 
hours. Cultures were centrifuged at 4000g for 10 minutes and supernatant decanted, followed 536 
by a wash with buffer (20 mM HEPES, 50 mM NaCl, pH 7.4) and incubation on a Heidolph 537 
shaker at 1300 rpm at room temp for 5 minutes to resuspend. Plates were centrifuged again at 538 
4000g for 10 minutes and supernatant decanted. For lysis, cell pellets were resuspended with 539 
500 μL of lysis buffer (20 mM HEPES, 50 mM NaCl, 0.01 mg/mL DNAseI, 0.01 mg/mL 540 
lysozyme, 1 mM EDTA, 0.1% triton X-100) and incubated for 2 hours on a Heidolph shaker at 541 
1300 rpm and 37 °C. Plates were centrifuged at 4300g for 30 minutes and supernatant collected 542 
for screening. For activity screening, 4 or 6 μL of lysate was aliquoted into microtiter plates and 543 
reactions initiated by addition of 36 or 54 μL of buffer containing 111.1 μM 4MU-Ac or 4MU-Bu, 544 
20 mM HEPES, 50 mM NaCl, pH 7.4, 5% DMSO.  545 
 546 
Protein expression and purification 547 
Genes encoding the designed proteins were ordered from IDT as eblocks and cloned into vector 548 
LM627 (addgene) (ref). Resulting plasmid was transformed into BL21(DE3) cells and grown 549 
overnight in 1 mL of LB supplemented with 50 μg/ml kanamycin, after which 500 μL of overnight 550 
was used to inoculate 50 mL of autoinduction media, which was grown 4-6 hours at 37 °C and 551 
then overnight at 18 °C. Cultures were spun down at 4000g for 15 minutes, and supernatant 552 
decanted. Cell pellets were resuspended in 25 mL of cold wash buffer (40 mM imidazole, 500 553 
mM NaCl, 50 mM sodium phosphate, pH 7.4) with 1 mg/mL lysozyme and 0.1 mg/mL DNAse I. 554 
Cell slurries were sonicated on ice for 2.5 minutes at 80% amplitude, 10s on 10s off. The 555 
resulting lysate was centrifuged at 14000g for 30 minutes and the supernatant was applied to 1 556 
mL of Ni-NTA resin equilibrated with wash buffer. The resin was subsequently washed with 15 557 
mL of wash buffer 3 times and once with 400 μL of elution buffer (400 mM imidazole, 500 mM 558 
NaCl, 50 mM sodium phosphate, pH 7.4) followed by elution with 1.3 mL elution buffer. The 559 
eluate was purified by size-exclusion chromatography on a Superdex 75 Increase 10/300 GL 560 
with running buffer of 20 mM HEPES, 50 mM NaCl, pH 7.4. Samples were either used 561 
immediately in downstream experiments or snap frozen in liquid nitrogen and stored at -80 C. 562 
Protein molecular weight was confirmed by LC-MS. 563 
 564 
Kinetic analysis 565 
To characterize hits identified from in-gel fluorescence and lysate screens for catalytic turnover, 566 
we incubated purified protein samples with fluorogenic substrates 4MU-Ac, 4MU-Bu and 4MU-567 
PhAc. Kinetic screens were either performed in 40 μL reaction volumes in 96-well half area 568 
plates or 60 μL reaction volume in 96-well full-area plates. Protein and substrate were prepared 569 
in 20 mM HEPES, 50 mM NaCl, pH 7.4, 5% DMSO. Either 4 or 6 μL of enzyme was added to 570 
microtiter plates and the reactions were initiated by addition of substrate (36 or 54 μL). 571 
Generation of the fluorogenic product 4MU was monitored continuously (excitation 365 nm, 572 
emission 445 nm). Analysis of the resulting data were carried out using custom scripts (see 573 
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computational methods). In cases where single-turnover activity was observed, initial velocities 574 
were used to determine k2/Km. For those designs that displayed a clear burst phase followed by 575 
a slower steady-state rate, straight-line fits of the steady-state velocities were used to determine 576 
Michaelis-Menten catalytic parameters. 577 
 578 
To determine the uncatalyzed reaction rate in assay buffer (20 mM HEPES, 50 mM NaCl, pH 579 
7.4, 5% DMSO), substrate was diluted in buffer alone and rates determined at multiple substrate 580 
concentrations, after which the rate was determined from fitting [S] versus rate with an equation 581 
of the form rate = kbuffer[S]. 582 
 583 
Crystallography 584 
Proteins for crystallography were prepared as described above, but SEC was done with SNAC 585 
tag cleavage buffer49. After SEC, protein eluate was incubated with 500 mM guanidinium 586 
hydrochloride and 2 mM NiCl2 overnight at room temperature to remove the C-terminal His tag. 587 
The SNAC cleavage reaction was applied to a nickel column equilibrated with wash buffer to 588 
remove any uncleaved product and resulting eluate applied to a Superdex 75 Increase 10/300 589 
GL column with 20 mM HEPES, 50 mM NaCl, pH 7.4 as the running buffer. Samples were 590 
concentrated and stored at -80° C or immediately used for crystallization. Crystallization 591 
screening was performed using a Mosquito LCP by STP Labtech and resulting crystals were 592 
harvested directly from the screening plate. Crystallization conditions for each design were as 593 
follows: slap215.8 (15 mg/mL) in 0.1 M Bis-Tris pH 5.5, 25% (w/v) PEG 3350, super (50 mg/mL) 594 
in 0.2 M Potassium fluoride, 20% (w/v) PEG 3350, win (42 mg/mL) in 0.1 M Sodium acetate pH 595 
4.6, 8% (w/v) PEG 4000, win1 (54 mg/mL) in 60% v/v Tacsimate pH 7.0, and win31 (60 mg/mL) 596 
in 0.2 M di-Ammonium tartrate and 20% (w/v) PEG 3350. Data were processed with XDS50, 597 
phased and refined with Phenix51, and model building performed with COOT52. Coordinates are 598 
deposited in the PDB with PDB IDs of 9DED (slap215.8), 9DEE (super), 9DEF (win), 9DEG 599 
(win1), and 9DEH (win31).  600 
 601 
Mass spectrometry 602 
Intact mass spectra of protein samples were obtained by reverse-phase LC/MS on an Agilent 603 
G6230B TOF after desalting using an AdvanceBio RP-Desalting column. Deconvolution using a 604 
total entropy algorithm was performed using Bioconfirm. In some cases, protein samples (1 605 
mg/mL) were incubated overnight with substrate (300 μM) in SEC running buffer at room 606 
temperature prior to mass spectrometry analysis. 607 
 608 
Acyltransferase activity screening 609 
Enzymes (1 μM) were incubated with 100 μM cognate substrate in assay buffer in the presence 610 
of varying concentrations of acyl acceptor, PEA (50, 25, 12.5, 6.3, 3.1, 1.6, 0.8, 0 mM), and 611 
substrate hydrolysis were monitored for 1 hour as described above. Initial velocities were 612 
obtained by fitting the beginning of each progress curve and divided by the hydrolysis rate in the 613 
absence of PEA to obtain relative rates of hydrolysis. 614 
 615 
Structural similarity search of the PDB and AFDB 616 
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To assess the structural novelty of our designed enzymes, we used TMalign53 to compare our 617 
crystal structures against the Protein DataBank (PDB) and AlphaFold database54. We 618 
downloaded all protein polymers from the PDB solved by X-ray crystallography or Cryo-EM on 619 
April 4, 2024 and extracted all protein chains from each entry. Models of AFDB50 55 (version 4) 620 
proteins were fetched April, 2024. We report the average TM-score for the top hit.  621 
 622 
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