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Abstract 

The imperative use of pesticides for enhancing agricultural productivity has become inevitable. Unfortunately, 
the unregulated and indiscriminate application of these pesticides extends beyond the intended target areas, 
with residues persisting for months to even years. This lack of precision and information has triggered widespread 
pest outbreaks, posing significant health risks to both humans and other organisms due to pesticide residues 
in food. The presence of even trace amounts of these residues has emerged as a major impediment to international 
trade in food commodities. To address these challenges and align with sustainable practices, the article highlights 
the urgent need for controlled pesticide techniques, including organic farming, safe harvest indices, and bioreme‑
diation, which are crucial aspects of mitigating admixed micropollutants in the environment. The discussion covers 
the impact of pesticides on food quality, effective residue management, and the vital role of regulatory bodies. Draw‑
ing from diverse sources, the work seeks to provide a concise yet comprehensive overview and solutions to the chal‑
lenges of pesticide management.

Highlights 

•	 Highlights unintended consequences of unregulated pesticide use and health risks.
•	 Pesticide residues impede trade and compromise agricultural product safety.
•	 Persistent residues cause pest outbreaks, threatening human and environmental health.
•	 Advocates organic practices, safe harvest indices, and bioremediation for mitigation.
•	 Tackles pesticide challenges to safeguard food security and promote sustainability.

Keywords  Pesticide residues, Food, Determinants, Molecular targets, Bioremediation, Human health

Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

Chemical and Biological 
Technologies in Agriculture

†B. Kariyanna, N.H. Meenakshi and Prabhakaran Vasantha-Srinivasan Equal 
Contribution.

*Correspondence:
B. Kariyanna
kariyanna@iict.res.in
Sengottayan Senthil‑Nathan
senthil@msuniv.ac.in
Yeon Soo Han
hanys@chonnam.ac.kr
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40538-024-00708-4&domain=pdf


Page 2 of 18Kariyanna et al. Chem. Biol. Technol. Agric.          (2024) 11:182 

Introduction
Global estimates reveal that approximately 1.8 billion 
people are engaged in agriculture, with most relying 
on pesticides to protect food supplies and commercial 
crops. To meet the demands of a growing global popu-
lation and maintain a stable food supply, pesticide use 
remains essential [1, 2]. Additionally, pesticides are uti-
lized in non-agricultural sectors, including public health 
programs, sports grounds, and public gardens. However, 
excessive use of these chemicals can adversely affect both 
environmental and human health [3]. Accumulated pes-
ticide residues in agro-food sources are a primary cause 
of chronic or acute health risks [4]. While pesticides are 
widely regarded as essential for preventing crop loss and 
ensuring food security, ongoing discussions emphasize 
the need to evaluate not only their necessity but also 
the types of pesticides used, prioritizing options with 
lower environmental impact and toxicity. Recent stud-
ies highlight that alternative pesticides, including biope-
sticides and integrated pest management solutions, may 
reduce dependency on traditional synthetic chemicals 
while still achieving effective pest control [4]. Short-
term exposure to pesticides can lead to acute toxicity 
and skin irritation, whereas long-term exposure has been 

associated with allergies, liver dysfunction, immune sys-
tem disorders, reproductive complications, and periph-
eral neuropathy. Systemic toxicity has also been linked 
to carcinogenic and teratogenic effects, cardiovascular 
and endocrine disorders, and potentially fatal outcomes 
in animals [5–8]. Increasing incidences of pests, dis-
eases, and weeds have contributed to crop losses, mor-
tality, and labor-intensive pest control efforts. Therefore, 
a scientifically guided approach to pesticide application 
is critical for effectively managing these challenges [9, 
10]. Chemical pesticides, which have been instrumental 
in boosting crop production, remain integral to modern 
agriculture. When applied responsibly, these pesticides 
reduce stored grain losses, control pest infestations, and 
enhance overall human welfare [11, 12]. According to 
the United States Code of Federal Regulations, a pesti-
cide is defined as any compound or mixture intended 
for use as an insecticide, defoliant, plant growth regula-
tor, or desiccant [3]. Historically, various chemicals have 
been employed to control pests effectively [4]. India, for 
example, ranks among the top pesticide producers in 
Asia, with annual organochlorine pesticide production 
nearing 90,000 tons [5]. Currently, agriculture consumes 
about 2.16 million tons of mineral fertilizers and between 
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64,000 and 65,000 tons of plant protection chemicals 
annually, emphasizing the essential role of pesticides in 
food production and pest management [7, 8]. It should be 
noted that while ‘pesticide use’ and ‘pesticide consump-
tion’ are commonly referenced indicators, they do not 
fully account for the environmental impact or toxico-
logical properties of the pesticides applied. These indices 
can be misleading as they overlook variations in toxic-
ity levels, persistence, and bioaccumulation potential of 
different pesticide compounds. A more comprehensive 
approach would consider these factors alongside usage 
data to accurately reflect potential risks to human health 
and the environment.

Modern agriculture employs a wide range of pesticide 
products, including insecticides, fungicides, herbicides, 
miticides, nematicides, rodenticides, and mollusci-
cides [13]. Insecticides alone can be classified into four 
primary groups based on their chemical structure: 
neonicotinoids, carbamates, organochlorines, and organ-
ophosphates [14]. Additionally, a diverse array of other 
compounds, such as amides, benzimidazoles, copper 
and mercury-based agents, nitro compounds, triazine 
herbicides, uric acid, ethylene dibromide, phthalamides, 
hormones, bipyridyls, and sulfur compounds, are also 
used in pest control [15]. This diversity highlights the 
complexity of modern pest management strategies. In 
this context, the detection of pesticide residues and their 
metabolites in food commodities is crucial [16]. Regu-
latory frameworks governing pesticide usage have had 
notable negative implications for food security, creating 
setbacks in this critical area. In response, protocols have 
been established to ensure responsible pesticide use [17, 
18]. Despite the efforts of regulatory bodies to restrict 
pesticide markets, these compounds remain among the 
most pervasive environmental pollutants globally. The 
human health impacts of pesticide exposure are highly 
debated, with some studies linking chronic exposure to 
neurological disorders, endocrine disruption, and cancer. 
However, the European Food Safety Authority (EFSA) 
has conducted assessments, which argue that under cur-
rent regulations, pesticide residues in food are unlikely 
to pose significant health risks. This review examines 
the latest data and adds to the ongoing discussion by 
evaluating gaps in regulation and pesticide management 
practices.

This review addresses the critical need for enhanced 
pesticide management by analyzing the impact of pes-
ticide use on food quality, residue management, and 
regulatory frameworks. Although the topic of pesticide 
dynamics has been widely studied, our work uniquely 
highlights the gaps in existing regulatory practices, iden-
tifies the latest challenges posed by emerging pesticide 
compounds, and proposes practical solutions to support 

sustainable management practices. Drawing on recent 
methodologies and motivations in environmental and 
food safety research, this review provides an updated, 
comprehensive overview of current practices, chal-
lenges, and innovative strategies for effective pesticide 
management.

Review methodology
To identify and address research gaps in pesticide 
dynamics and management, a comprehensive meta-anal-
ysis of relevant literature was conducted. This review sys-
tematically examined previous studies spanning the last 
two decades, with a focus on pesticide toxicity, environ-
mental impact, residue persistence, and regulatory prac-
tices. Key databases, including Web of Science, PubMed, 
and Scopus, were searched using terms such as “pesticide 
residue management”, “pesticide toxicity dynamics”, and 
“environmental pesticide impact”, yielding a wide range of 
peer-reviewed articles. Inclusion criteria for this review 
were based on studies presenting empirical data, insights 
into regulatory approaches, or recent advancements in 
pesticide degradation and remediation. Each selected 
study was assessed for contributions to understanding 
pesticide persistence in environmental matrices, regula-
tory challenges, and management strategies. Through 
qualitative and quantitative synthesis, this meta-analy-
sis identifies critical research gaps, such as the need for 
advanced remediation techniques, limitations of current 
residue regulations, and underexplored pesticide impacts 
on non-target organisms and ecosystems. This approach 
allows for a structured assessment of existing knowledge 
while highlighting opportunities for future research and 
policy innovation.

Understanding pesticide fate in ecosystems: sources, 
stability, and environmental risks
The fate of pesticides in ecosystems is predominantly 
shaped by abiotic transformations linked to their physic-
ochemical properties [19, 20]. These inherent character-
istics enhance pesticide stability, minimizing losses, while 
their chemical structures play a significant role in deter-
mining their persistence in soil and the broader environ-
ment [21]. Pesticide residues in consumer goods arise 
from four primary sources: (i) agricultural applications, 
(ii) post-harvest treatments, (iii) residues in imported 
products, and (iv) the release of banned pesticides into 
the environment [22, 23]. Improper pesticide use can 
lead to environmental risks, despite their critical role in 
preventing groundwater contamination, safeguarding 
human and livestock health, and maintaining disease-free 
environments. However, challenges remain due to wide-
spread usage and inadequate waste management strate-
gies, necessitating urgent attention to pesticide-related 
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concerns [24–26]. Pesticides enter various environmental 
compartments depending on their chemical nature, soil 
composition, crops, and ecological conditions. Estimates 
suggest that up to 50% or more of applied pesticides may 
evaporate into the atmosphere [27, 28]. Understanding 
pesticide movement in the environment is vital for sus-
tainable agriculture and environmental conservation.

One major pathway is aerial drift, where wind trans-
ports pesticide sprays or dusts, potentially contaminating 
non-target areas and posing significant challenges [29]. 
Runoff, another critical pathway, occurs during rainfall 
or irrigation, where water carries pesticides from treated 
fields into nearby surface water bodies, threatening 
aquatic ecosystems and necessitating vigilant oversight 
[30]. Groundwater contamination, a serious concern, 
results from pesticides percolating through soil and 
reaching groundwater, potentially compromising drink-
ing water supplies and causing long-term environmental 
harm [31, 32].

Volatilization and atmospheric transport are also key 
factors in pesticide fate. After application, pesticides 
can volatilize, travel over long distances, and deposit 
in remote areas, increasing their presence in ecosys-
tems far from the source [33, 34]. Biological uptake fur-
ther complicates this dynamic, as plants can absorb 

pesticides, leading to translocation within plant tissues 
and impacting harvested crops, posing risks to consum-
ers [35]. Vapor drift, the transition of pesticides from 
liquid to vapor, allows for off-target deposition, empha-
sizing the need for effective mitigation strategies [36]. 
In some cases, pesticide efficacy on target organisms 
may diminish, inadvertently harming non-target species 
[24]. Additionally, insecticides can be transported within 
the environment, contributing to contamination [37], as 
shown in Table 1.

The complexity of pesticide fate in the environment 
arises from the interplay of various processes. It is clear 
that pesticides are transported and deposited across dif-
ferent environmental compartments [38]. However, sig-
nificant uncertainties persist. Atmospheric deposition 
involves both dry deposition (direct settling onto surfaces 
like water and soil) and wet deposition (precipitation of 
particles and interception of gases). Once deposited, 
these compounds migrate until they reach their perma-
nent sink [39].

Pesticide evolution within soil follows a multi-phase 
partitioning mechanism involving gaseous, solid, and liq-
uid states [40] (Fig. 1). Degradation within the soil influ-
ences vertical diffusion [41]. Pesticides, when present 
as gases or bound to particles, can transition into the 

Table 1  Pesticide travel distances and environmental impact as adapted from Boonupara et al. [37]

Pesticide type Travel distance Environmental impact Conditions influencing travel

Organophosphates Up to 10 km Contamination of nearby water bodies; impacts on aquatic life Wind speed, soil texture

Organochlorines 50–100 km Bioaccumulation in wildlife, affecting birds and fish populations Soil pH, temperature

Carbamates 5–20 km Groundwater contamination; impacts on drinking water quality Rainfall, irrigation practices

Neonicotinoids Up to 5 km Pollinator decline (bees, butterflies); impacts on plant reproduction Wind conditions, plant cover

Fig. 1  Transport of pesticide in the environment as adapted and improved from Gavrilescu [40]. Figures created using BioRender software
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aqueous phase through cloud scavenging [42, 43]. This 
process illustrates the potential for long-distance atmos-
pheric transport, facilitating continuous pesticide move-
ment across environmental systems.

Impact of pesticide residues on human health 
and ecosystem sustainability: sources, transport, 
and bioaccumulation
The widespread presence of pesticide residues in the 
environment, food products, and living organisms poses 
a significant threat to both human health and ecosys-
tem sustainability. These residues are frequently found in 
various agricultural products, such as fruits, vegetables, 
cereals, and animal products [44]. Beyond agriculture, 
pesticides often enter surface water bodies through run-
off and leaching, where they can harm aquatic ecosys-
tems and degrade water quality [45]. Bioaccumulation, 
where pesticide residues accumulate in organisms like 
plants, animals, and microorganisms further disrupts 
ecosystems, impacts food chains, and poses risks to 
human health [46]. Additionally, in urban and residen-
tial areas, pesticide residues from pest control measures 
can enter the environment through runoff, affecting non-
target species, including pets and humans [47]. Pesti-
cides have been detected in farming regions worldwide, 
in soil, air, water, and even precipitation [48], and are 
found in remote areas where pesticide use is nonexist-
ent [49]. Persistent organochlorine compounds such as 
DDT, aldrin, dieldrin, chlordane, toxaphene, and hexa-
chlorocyclohexanes (HCHs) have been discovered in 
rainwater year-round. Notably, these compounds are not 
only detected in heavily treated agricultural regions, but 
also in remote geographical locations, such as the polar 
Arctic. This highlights the global nature of pesticide resi-
due dispersion, with international trade contributing to 
their spread, necessitating strict adherence to interna-
tional standards and regulations [50]. The emergence of 
new pesticide compounds and their metabolites further 
complicates the monitoring and management of residues, 
emphasizing the need for ongoing research in this area 
[51]. Atmospheric movement and accumulation serve 
as key pathways for the long-distance transport of pesti-
cides, particularly insecticides, into remote regions [52, 
53]. Comprehensive documentation of pesticide residues 
is essential for evaluating their distribution, presence, and 
potential impacts on both the environment and human 
health, as well as on food safety. Since the 1970s, indus-
trialized nations have heavily relied on pesticides in both 
agriculture and vector control, making an understanding 
of their atmospheric movement crucial. Qualitative data 
on pesticide loads in the atmosphere are vital for devel-
oping mitigation strategies [54]. Reports indicate that 
certain organochlorine pesticides, including diazinon, 

chlorpyrifos, malathion, and parathion, are more preva-
lent in the air and rain than other pesticide groups [55, 
56]. Additionally, systemic herbicides like atrazine have 
shown higher concentrations in forest canopies com-
pared to agricultural lands, likely due to a filtering effect 
that allows for greater chemical adsorption during dry 
periods, followed by wash-off during precipitation [55]. 
Data also reveal that forests accumulate higher levels of 
pesticides than foliage, highlighting the deposition rates 
of these chemicals [57]. This growing body of evidence 
underscores the escalating use of pesticides and the sub-
stantial risks they pose to the environment and economy. 
It is clear that pesticides not only impact the areas where 
they are applied, but also extend their influence to non-
target regions and species, contributing to broader envi-
ronmental damage [58].

Pesticide residues as trade barriers: implications 
for agricultural exporters and international policy 
responses
Impact of pesticide residues on trade
International trade plays a crucial role in supporting the 
livelihoods of farmers and those involved in the food sup-
ply chain. It provides a global solution to food security, 
particularly in regions facing environmental challenges, 
while offering consumers diverse product choices. This, 
in turn, contributes to the economic well-being of con-
sumers, industries, and agricultural workers [59, 60]. 
However, the presence of pesticide residues in food 
commodities presents significant obstacles in interna-
tional trade, often leading to the rejection of products 
by importing countries [61]. To mitigate the impact of 
pesticide residues on exported goods, it is imperative 
for countries to adopt and enforce stringent regulatory 
measures. Promoting sustainable agricultural practices, 
alongside investments in research and education to 
develop safer pest control alternatives, are key strategies 
for addressing this issue [62, 63]. Furthermore, interna-
tional cooperation is essential in harmonizing pesticide 
standards and ensuring a unified commitment to global 
food safety. The repercussions of pesticide residues in 
traded commodities are substantial for both export-
ing and importing nations. In recent years, maximum 
residue levels (MRLs) have become increasingly criti-
cal in shaping agricultural trade policies, influencing 
food security, and regulating international commerce 
(Table  2). Consequently, the ability to engage in trade 
can be significantly affected by differing pesticide residue 
regulations across countries. The World Trade Organiza-
tion (WTO) acknowledges the right of each country to 
implement measures aimed at protecting human, ani-
mal, and plant health. Pesticide residue regulations are 
often encompassed within Sanitary and Phytosanitary 
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(SPS) measures, and compliance with these regulations 
is essential for maintaining uninterrupted trade [64]. 
For instance, many countries have established stringent 
regulations concerning pesticide residue levels in rice, 
and incidents of chemical contamination have resulted 
in rejected shipments (Table 3). A notable example is the 
rejection of basmati rice exported from the Indian states 
of Punjab and Haryana due to exceeding pesticide residue 
limits [65]. Similarly, the European Union (EU) has halted 
imports of aromatic basmati rice because tricyclazole 
residues surpassed the maximum allowable MRL [66]. It 
is important to note that regulatory frameworks and lists 
of banned pesticides vary significantly across countries. 
These differences can complicate trade, as exporters must 
ensure compliance with each importing country’s unique 
standards. This disparity can lead to trade barriers, par-
ticularly when pesticides allowed in one country are pro-
hibited in another, resulting in rejected shipments and 
economic losses.

Evaluating EU food safety standards and twenty‑first 
century trade barriers: implications for Indian exports 
and agricultural policies
Vineyard farmers in Maharashtra are facing significant 
challenges after the European Union (EU) rejected a 
shipment of table grapes due to trace amounts of chlo-
rmequat chloride, a plant growth regulator [67]. The 
EU has set a maximum residue limit (MRL) for food at 
1% (0.01 mg/kg). In 2019, the EU conducted a control 
program that analyzed 12,579 samples from 12 com-
monly consumed food products for the presence of 
182 pesticide residues. The results revealed that 53% 

of the samples had residues below the limit of quanti-
fication (LOQ), while 45% had residues above LOQ but 
within MRL limits (Table 2). However, 2% of the sam-
ples exceeded the MRL, and 1% were classified as non-
compliant [68]. Data from EUROPHYT, covering the 
period from 2005 to 2017, indicate that Indian export 
commodities faced more border rejections than those 
from Brazil. Although China received more notifica-
tions, India recorded a higher export volume (Table 3). 
During this period, 1324 Indian consignments were 
intercepted, compared to 922 from Vietnam, 602 from 
China, 452 from Brazil, and 114 from Turkey. Accord-
ing to the FAO report, the United States rejected 
1698 products from India. Other countries, including 
Vietnam, Saudi Arabia, Japan, and Bhutan, have also 
rejected Indian exports such as mangoes, okra, chilies, 
table grapes, tamarind, peanuts, curry leaves, prawns, 
and shrimps due to high levels of chemical residues. 
The highest number of interceptions occurred in 2012 
and 2013, particularly affecting exports of mangoes, 
bitter gourd, eggplant, snake gourd, and taro, resulting 
in bans on several Indian export products [69]. Agri-
cultural economists and policymakers recognize that 
in the twenty-first century, trade barriers, particularly 
those related to Sanitary and Phytosanitary (SPS) reg-
ulations, represent a critical component of Non-Tariff 
Measures (NTMs). These measures are less transparent 
but have a greater potential to disrupt trade than tra-
ditional tariff-based protections [70]. SPS regulations 
significantly affect the trade of agricultural and food 
commodities, influencing market access both positively 
and negatively [71].

Table 2  Maximum residue levels (MRLs) in food samples over time

Food type Pesticide MRL (2010) MRL (2020) Health implications

Wheat Glyphosate 0.3 ppm 0.5 ppm Chronic exposure linked to liver damage and potential carcinogenicity

Apples Chlorpyrifos 0.2 ppm Banned in 2020 Neurodevelopmental effects in children; acute toxicity at higher doses

Rice Atrazine 0.1 ppm 0.1 ppm Endocrine disruption, impact on reproductive health

Tomatoes Deltamethrin 0.05 ppm 0.1 ppm Acute toxicity with neurological effects, especially in young children

Table 3  Pesticide-related product interceptions by the EU and US

Country Number of interceptions 
(2019)

Common reason for interception Impact on trade relations

India 120 Exceeding MRLs for chlorpyrifos, DDT Temporary bans on mango and rice exports

Vietnam 85 Banned pesticides (e.g., carbendazim) Delayed shipments of agricultural products

Brazil 60 Use of unapproved pesticides on soybeans Increased scrutiny on agricultural imports

China 95 Mislabeling of pesticide content on tea leaves Reduced market share in the EU and US
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Assessing the factors affecting pesticide residue levels 
and their environmental consequences
Insecticides are frequently applied to cereal grains before 
storage to protect them from pests. However, residues 
of deltamethrin and cypermethrin in pulses persist even 
after processing methods such as cooking or washing, 
suggesting that these pesticides may have penetrated 
deep into the grains. This implies that the seed coats of 
pulses may contain the highest concentrations of cyper-
methrin [72]. As a result, removing these pesticides from 
grains is particularly challenging due to their potential 
infiltration into the seeds [73]. The environmental impact 
of pesticide use has become a growing concern within 
the scientific community. Pesticides are primarily used 
to control and reduce pest organisms that threaten agri-
cultural crops and livestock [74]. While they are critical 
tools in agriculture, significantly contributing to produc-
tivity and food security, the widespread and indiscrimi-
nate use of pesticides has led to numerous adverse effects 
on human health, microorganisms, wildlife, and ecosys-
tems [75]. The overreliance on pesticides has broad con-
sequences, impacting not only target pests but also other 
biological systems. Human health is compromised due to 
exposure to pesticide residues, and the delicate balance 
of microbial communities in soil and aquatic ecosystems 
is disrupted [76]. Both domesticated and wild animals 
experience indirect consequences, such as habitat and 
food chain disturbances. Furthermore, pesticide pollu-
tion degrades soil quality, contaminates water sources, 
and harms non-target species, significantly impacting the 
environment [77]. Thus, the indiscriminate and exces-
sive use of pesticides has resulted in numerous negative 
effects on human health, microorganisms, animals, and 
the environment, as outlined below.

Health risks of pesticide residues: bioaccumulation, food 
chain impacts, and global health consequences
Impact on human health
Pesticide residues enter the environment and bioaccu-
mulate in various sources, eventually moving through the 
food chain and posing significant health risks [18]. The 
indiscriminate use of pesticides has led to severe health 
issues, with children being particularly vulnerable [78, 

79]. Even low levels of pesticide residues found in food 
have become a global concern, as many persistent chemi-
cals, such as persistent organic pollutants (POPs), accu-
mulate throughout the food chain, negatively impacting 
human health and social welfare. One-third of the world’s 
pesticide poisoning cases are reported in India. Higher 
levels of pesticide residue consumption have been linked 
to diseases such as cancer, blindness, liver disorders, and 
neurological illnesses [75] (Table  4). Data following the 
Green Revolution revealed that nearly 800,000 people 
have died due to chemical pesticide contamination [80]. 
Additionally, approximately 20,000 people die annually 
from pesticide-contaminated food in several developing 
countries [81].

Currently, no genotoxic pesticides are approved for 
use in food products intended for international trade. 
However, organophosphates and carbamates, commonly 
used pesticides, can disrupt the nervous system by inter-
fering with nerve signal transmission. Prolonged expo-
sure to pyrethroids, including deltamethrin, resmethrin, 
cypermethrin, and fenvalerate, has been associated with 
genetic damage and reproductive issues [82]. Pesticide 
poisoning has become a significant global health con-
cern, primarily linked to agricultural practices and other 
chemical-intensive activities that put users at risk. The 
severity of pesticide-related health risks varies by region 
and the specific occupations of farmers, leading to both 
chronic and acute health disorders [83, 84] (Table  5). 
According to the World Health Organization [2], West 
African countries, particularly Nigeria, experience higher 
levels of occupational pesticide exposure compared to 
other regions. This elevated risk is largely due to insuf-
ficient protective measures, such as the use of faulty 
application tools, inadequate disposal facilities, limited 
practical training, and unsafe storage practices. Moreo-
ver, even individuals living in areas where pesticide use is 
uncommon may still be exposed to low levels of pesticide 
residues through contaminated water, air, and food [85].

Molecular mechanisms of pesticide‑induced cellular 
and subcellular disruption
The impact of pesticides on cellular and subcellular 
processes is complex and involves multiple molecular 

Table 4  Pesticides and their associated health hazards as adapted from the recent review by Tudi et al. [75]

Pesticide Health hazard Acute versus chronic exposure Documented incidents

Paraquat Severe lung damage, fatality Acute (inhalation/ingestion) High mortality in paraquat poisoning cases in Southeast Asia

DDT Endocrine disruption, cancer Chronic (long-term exposure) Bioaccumulation observed in Arctic wildlife populations

Glyphosate Potential carcinogen, liver damage Chronic (food exposure) Studies linking glyphosate to cancer in farmworkers in the US

Malathion Neurological effects, seizures Acute (high-level exposure) Reports of seizures in children after accidental exposure in Latin 
America
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mechanisms. Pesticides disrupt cellular homeostasis and 
function through various pathways, leading to a broad 
spectrum of adverse effects [86]. Understanding these 
mechanisms is essential for comprehending the health 
risks associated with pesticide exposure [87]. Pesticides 
have various molecular targets in humans, which may 
lead to potential health effects. However, studies exam-
ining these health implications often yield inconclusive 
results, with some research indicating significant risks, 
while others find minimal or no effects at typical expo-
sure levels. Many of the most detrimental health out-
comes, such as neurological and endocrine disruptions, 
are linked to direct pesticide exposure, particularly 
among agricultural workers and farmers who handle pes-
ticides regularly. Conversely, pesticide residues found in 
food are typically at much lower concentrations, regu-
lated by safety limits, and pose a substantially lower risk 
to the general population. A schematic representation of 
the mechanisms by which pesticides impact cellular and 

subcellular functions is provided in Fig. 2 [88]. One major 
effect of pesticides is the induction of oxidative stress 
within cells by generating reactive oxygen species (ROS), 
which disrupts the balance between pro-oxidants and 
antioxidants [88]. This imbalance can damage cellular 
components such as lipids, proteins, and DNA, ultimately 
affecting cell viability and function. Many pesticides are 
also recognized as endocrine disruptors, interfering with 
hormonal functions in the body. Such disruptions impair 
cellular signaling, alter gene expression, and impact over-
all cellular activity [89].

Pesticides are linked to epigenetic modifications, 
including DNA methylation changes, histone modifica-
tions, and shifts in non-coding RNA expression [88]. 
These alterations can lead to mutations, chromosomal 
abnormalities, and may contribute to cancer initiation 
and progression [90]. Additionally, pesticides inter-
fere with cellular signaling pathways that control cell 
growth, proliferation, and survival, with disruptions in 

Table 5  The residential and occupational exposure of the pesticides leads to various physiological and neurological disorder in 
human beings recorded across the countries

Data retrieved from Kori et al. [83] and Pathak et al. [84]

Sl. No. Country reported Major symptoms observed

Organophosphates (OPs)

 1. South Africa, USA Anxiety, headache and dizziness

 2. India Giddiness, headache, ocular symptoms and paraesthesia

 3. Iowa and North Carolina, USA Reduction of the motor speed and coordination along with verbal memory

 4. West Cape Province of SA Anxiety, attention deficit or hyperactivity disorder (ADHD) and depression

 5. Italy Distal numbness and lower limbs muscle pain, weakness and depression

 6. South-Eastern Spain; London Affected neuropsychological functions viz., attention, expressive language, 
memory, motor performance, perception, reasoning skills

 7. Southern Brazil Abdominal pain, anxiety and depression, headache, hypertension, dermati‑
tis, diarrhea and hypersalivation

 8. Asia, Africa, America Regular activity affective disorders

 9. Oregon, USA Affected attention, remembrance and reaction time

 10. North-Eastern Colorado, USA Dizziness, eye irritation, headache, nausea, skin irritation or vomiting

 12. Egypt Neurological abnormalities

 13. Oregon and Columbia, USA Poor learning and reaction

 14. North and South-West regions of England Anxiety and depression

Organochlorine (OCs)

 15. Finland Autism spectrum disorders (ASD) and neuro-developmental disorders

 16. North Indian, Texas, USA More risk of Alzheimer’s disease (AD)

 17. Mexico Community Impairment in circulatory, dermatological, digestive, renal, respiratory, repro‑
ductive and neurological, system

 18. USA Decrease in mental developmental of the teen

Mixture of insecticide groups

 19. Sri Lanka (OPs and carbamates) Activity of the cholinesterase inhibited

 20. Kenya, East African (OPs and carbamates) Eye and respiratory disorder, problem in central nervous system with inhib‑
ited cholinesterase

 21. N-E Colorado and Iowa and North Caro‑
lina, USA (OPs and others)

Depression because of poor health in long run due to financial crisis caused 
by pesticides exposure

 22. China (OPs and carbamates) Anxiety, depression, increased anger
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these pathways potentially leading to abnormal cellular 
responses and disease development, including cancer 
[91]. Certain pesticides also impair mitochondrial func-
tion, which can reduce energy production, increase ROS 
generation, and trigger apoptotic pathways [92]. Further-
more, pesticides can modulate immune cell function, 
making individuals more susceptible to infections and 
diseases [88]. At the metabolic level, pesticides interfere 
with essential biochemical processes, leading to cellular 
dysfunction and damage. The broad effects of pesticides 

on cellular and subcellular activity encompass numer-
ous mechanisms, including oxidative stress, endocrine 
disruption, epigenetic alterations, DNA damage, inter-
ference with cellular signaling pathways, mitochondrial 
dysfunction, immune modulation, and metabolic dis-
ruption [93]. Gaining a comprehensive understanding 
of these mechanisms is crucial for identifying the health 
risks associated with pesticide exposure and developing 
strategies to mitigate their impact on human health.

The impact of pesticide use on soil microflora and ecosystem
The frequent application of pesticides contributes sig-
nificantly to biosphere contamination, adversely affect-
ing non-target organisms, including beneficial microflora 
[94]. Rising levels of human-induced environmental pol-
lution impact a broad range of flora and fauna, with sub-
stantial negative consequences for human health [95]. 
Within this context, the systematic use of pesticides has 
led to a decline in the average soil microflora in rice–
wheat crop ecosystems [96, 97]. Notably, the application 
of oxytetracycline (a bactericide) and captan (a fungicide) 
has caused marked reductions in bacterial and fungal 
populations, respectively (Fig.  3). Additionally, herbi-
cides have been shown to inhibit methanogenic bacterial 
populations in crop fields, with significant implications 
for microbial processes like nitrogen mineralization 
via ammonification and nitrification [98]. Glomalean 
arbuscular mycorrhizal fungi, essential for plant nutri-
ent acquisition, are especially sensitive to fungicides [99]. 

Fig. 2  Molecular mechanisms associated with pesticides induced 
carcinogenesis adapted and modified from Sabarwal et al. [88]. 
Figures created using BioRender software

Fig. 3  Thematic diagram of the synthesis, production, uses, effects and eco-friendly management of pesticide adapted and modified from Pathak 
et al. [84]. Figures created using BioRender software
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Herbicide applications have also been shown to reduce 
arbuscular mycorrhizal fungi populations, which may 
contribute to an overall decline in soil health [100]. In 
soils contaminated with DDT, there has been a decrease 
in soil algae and cyanobacteria diversity, alongside the 
rise of resistant green algae, illustrating the detrimental 
effects of pesticide contamination on soil microbial com-
munities and ecosystem health. These microorganisms 
serve as bioindicators in the environment, reflecting the 
presence of xenobiotic or pesticide compounds in soils 
through reduced spore loads and population declines 
[101]. Elevated concentrations of herbicides have been 
observed to reduce total chlorophyll, total sugars, and 
dry biomass in plants [102]. Even at lower concentra-
tions, pesticides can disrupt the electron transport chain, 
affecting photosynthesis and altering plant morphology. 
Specific pesticides, including endosulfan, atrazine, and 
chlorothalonil, have been found to decrease the diversity 
of protist taxa [103], while chemicals such as dimethoate, 
fenpropimorph, and pirimicarb influence protozoa colo-
nization in soil ecosystems [104].

The long‑term impact of pesticide residues on non‑target 
organisms in the food chain
Chemical toxicity depending on a compound’s func-
tion and the extent of exposure, which can occur 
through ingestion, inhalation, or direct skin contact 
[105]. Numerous reports indicate that pesticide resi-
dues in animal products often go undetected; however, 
these residues can enter the human food chain through 
dietary pathways [106]. Studies have documented sig-
nificant population declines in various animals, including 
amphibians, bees, fish, birds, and small mammals, due to 
environmental dispersion of pesticide residues [47, 107]. 
Thus, improving quality control for animal products is 
essential, as contaminated feed and fodder consumed 
by animals can propagate pesticide residues through 
different levels of the food chain [47]. While herbicides 
are applied to control weeds, their residues may persist 
for weeks to months, impacting insect survival and egg-
laying by altering host plant availability [108]. Addition-
ally, herbicide application reduces natural flora and fauna 
by limiting the availability of host plants, which provide 
shelter, nesting sites, sources of nectar and pollen, and 
overwintering habitats for many non-target insects [109, 
110]. This decline in host plants correlates with a signifi-
cant reduction in the abundance of non-target organisms 
such as crickets, mites, ground beetles, and spiders in 
corn fields following the application of 2,4-D and glypho-
sate [111]. Furthermore, herbicides like DCBN (0.1%) 
have been shown to reduce the parasitization rate in 
Aphidius rhopalosiphi [112], and the population of the 
lacewing Mallada signatus has declined after feeding 

on Helicoverpa armigera exposed to insecticides [113]. 
While these pesticides effectively target specific pests, 
their residues can cause long-term harm to non-target 
species.

Navigating pesticide regulation and food safety, challenges 
and responsibilities in India and beyond
Pesticides have become essential in modern agriculture, 
boosting productivity and contributing to food security. 
However, their widespread use since the Green Revolu-
tion has raised concerns over pesticide residues in food 
[114]. Ensuring food safety is a shared responsibility 
involving all stakeholders along the food supply chain, 
from farmers to consumers [115]. Governments play a 
central role by setting standards and enforcing regula-
tions, while trade organizations, consumer groups, pro-
fessional bodies, and academic institutions contribute to 
policy development. Consumers, too, bear the respon-
sibility of understanding food safety standards and han-
dling food products appropriately [116]. India’s food 
safety system is complex and multi-layered, presenting 
challenges for government oversight. The Central Insec-
ticides Board and Registration Committee (CIBRC) and 
the Food Safety and Standards Authority of India (FSSAI) 
are the primary bodies regulating pesticide use in the 
country. The CIBRC provides guidance on pesticide 
manufacturing, usage, and safety, overseeing registra-
tion after evaluating efficacy and safety data submitted by 
manufacturers [117]. Meanwhile, FSSAI, operating under 
the Ministry of Health and established by the Food Safety 
and Standards Act of 2006, acts as the primary regulatory 
authority for food safety [118]. Additional organizations, 
such as State Agricultural Universities (SAUs) and State 
Departments of Agriculture (SDAs), provide guidelines 
on pesticide application in agriculture [119]. In 2003, the 
Joint Parliamentary Committee (JPC) highlighted pes-
ticide contamination in carbonated beverages, and the 
Center for Science and Environment subsequently advo-
cated for setting standards for water-based products, 
including fruit juices and soft drinks [120]. Key regu-
lations enacted by the Indian government include the 
Insecticides Act of 1968, the Food Safety and Standards 
Act of 2006, and the Pesticide Management Bill of 2020, 
aimed at overseeing pesticide use with regard to environ-
mental impact, food safety, and public health [121]. Glob-
ally, frameworks like those in the European Union (EU) 
prohibit the sale of food products with contaminants 
that exceed permissible levels. The EU has set maximum 
limits for various harmful substances, such as aflatoxins, 
heavy metals, dioxins, and nitrates, due to their toxicity 
risks in the food supply [122]. The EU enforces food and 
feed laws through rigorous inspections to ensure compli-
ance, while the European Food Safety Authority (EFSA) 
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plays a vital role in environmental risk assessment, set-
ting specific targets to minimize pesticide impacts on 
soil biodiversity, food production, and climate resilience 
[123, 124]. In the United States, four primary agencies 
regulate food safety: The Food and Drug Administration 
(FDA) under the Department of Health and Human Ser-
vices (DHHS), the Food Safety and Inspection Service 
(FSIS) of the USDA, the National Marine Fisheries Ser-
vice (NMFS) within the Department of Commerce, and 
the Environmental Protection Agency (EPA). These agen-
cies coordinate through over 50 interagency agreements 
to streamline regulatory efforts [125]. Together, these 
authorities are essential in managing pesticide impacts 
on the environment, safeguarding food safety, and pre-
venting contamination of food products that reach 
consumers.

Pesticide residues in food, detection, natural degradation, 
and remediation strategies
The role of chromatography and mass spectrometry
Human nutritional needs, particularly those derived 
from food, are fundamental and often prioritized above 
other necessities such as clothing and shelter. However, 
pesticide use in agriculture raises substantial concerns, as 
these chemicals frequently leave residues that pose risks 
to public health and the environment [126]. The assess-
ment of these risks has been significantly enhanced by 
the use of advanced analytical techniques, notably chro-
matography coupled with mass spectrometry [127]. In 
agricultural contexts, pesticide residues have become 
a pressing issue due to their potential harmful effects. 
Chromatography and mass spectrometry have thus 
emerged as crucial tools for evaluating and quantifying 
these residues [128]. This analytical approach enables 
the accurate identification and measurement of pesti-
cide residues in a wide range of samples, including agri-
cultural products and environmental matrices [23]. The 
significance of chromatography and mass spectrometry 
lies in their ability to provide precise and dependable 
data on the presence and levels of pesticide residues, 
which is essential for ensuring the safety of food intended 
for human consumption. These methods are extensively 
used within the scientific community to conduct compre-
hensive analyses, helping to ensure that the food supply 
meets stringent safety standards [129].

Mechanisms of biodegradation and remediation
Pesticides present in soil and the environment can 
undergo various transformations that result in the forma-
tion of non-toxic compounds through a process called 
biodegradation. This transformation is facilitated by 
microorganisms that partially or completely break down 
these compounds [130]. After harvest, cereal grains are 

often treated with pesticides to reduce losses during bulk 
storage. Residues tend to accumulate more in the bran 
than in other parts of the seed, as lipophilic pesticides 
concentrate in areas with higher triglyceride levels, such 
as the germ and bran [131, 132].

In fruit juice, pesticide residue concentrations 
depend on how the pesticide partitions between the 
juice and the fruit skins. Lipophilic residues generally 
remain in the skin and do not transfer significantly to 
the juice. For fruits and vegetables, residues are often 
more concentrated near the stem and the outer layers 
(receptacle and exocarp) than in the flesh (sarcocarp 
or pericarp). Similarly, in leafy vegetables, pesticide 
residues are more abundant in the upper layers than 
in the lower ones [133]. Studies indicate that the outer 
layers of cereal grains absorb the majority of pesticide 
residues, suggesting that processing methods such as 
milling and grinding can help reduce these residues in 
food. Due to the penetrative nature of many pesticides, 
their removal through cooking or washing is often chal-
lenging. The persistence of residues depending on the 
physicochemical properties of both the food and the 
pesticide, with most compounds tending to adsorb to 
surfaces [134]. Techniques such as washing, peeling, 
and treating with agents like ethanol, turmeric, sodium 
bicarbonate, vinegar, and table salt can significantly 
reduce residue levels [134]. In dairy products, pesticide 
contamination is primarily associated with fat, result-
ing from contaminated feed and fodder [135]. Conse-
quently, residue levels are often higher in products like 
butter, cheese, ghee, and malai compared to raw milk 
[136]. In meat, pesticides mainly accumulate in fatty 
tissues and egg yolk, which contain more lipid-soluble 
pesticides than albumin [134]. Research has shown that 
various microorganisms—including bacteria, fungi, 
actinomycetes, and algae—can effectively degrade 
pesticides and organic waste [137–139] (Table  6). For 
example, species such as Micromonospora chalcea, 
Nocardia amarae, Nocardia farcinia, N. vaccini, Strep-
tomyces alanosinicus, Streptoverticillium album, and S. 
atratus from Sangli District, Maharashtra, have been 
identified for their ability to degrade carbofuran [140]. 
Additionally, white-rot fungi and the green microalga 
Chlamydomonas mexicana have been found to degrade 
atrazine [141, 142]. Algal and cyanobacterial species 
like Chlorella, Scenedesmus sp., Chlamydomonas sp., 
Stichococcus sp., Nostoc muscorum, and Anabaena 
sp. can also degrade the toxic organophosphate com-
pound fenamiphos in soil [143]. The use of biosur-
factants in pesticide-contaminated sites enhances the 
bioavailability of pesticides, accelerating bioremedia-
tion. Biosurfactants lower surface and interfacial ten-
sions of immiscible fluids, improving the solubility and 
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adsorption of hydrophobic pesticide contaminants [94]. 
Their biodegradability, low toxicity, high selectivity, and 
broad action spectrum across varying pH, tempera-
ture, and salinity conditions, along with a low critical 
micelle concentration (CMC), make them highly effec-
tive for pesticide remediation efforts [144]. Figure  4 
presents a schematic illustration of in vitro screening of 

biosurfactant-producing microbes and their remedia-
tion mechanisms for soil pesticides.

Alternative methods for the elimination of pesticide residues 
in agricultural products
In addition to natural and biological conversion pro-
cesses, various alternative methods are available to 
remove pesticides from food components [144, 145]. 

Table 6  List of major groups of pesticide degrading microbes

Sl. No. Microbe group Species Degrading pesticide class References

1 Actinomycetes Actinomyces, Micromonospora, Nocardia, 
Streptomyces

Organochlorine, organophosphate, atrazine, 
pyrethroids

Huang et al. [137]

2 Algae Small green algae
Chlamydomonas
Genus of diatoms

3 Bacteria Pseudomonas Organochlorine, organophosphate

Bacillus Organochlorine, organophosphate
glyphosate, polycyclic aromatic hydrocarbons

Upadhyay and Dutt, [138]

Flavobacterium; Alcaligenes

4 Fungus Aspergillus sp., Aspergillus fumigatus, Clad-
osporium, Fusarium, Rhizopus, Penicillium, 
Mortierella sp. Mucor, Trichoderma
spp, white-rot fungi

Alachlor, atrazine, 2,4-D, carbamate
pyrethroid, fipronil, organochlorine

Wolfand et al. [139]

Fig. 4  Laboratory isolation of microbial bio-surfactant and their remediation mechanism against the soil pesticides as adapted and modified Raj 
et al. [94]. Figures created using BioRender software
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These techniques include scrubbing firm fruits and veg-
etables, rinsing with water, soaking in solutions like vin-
egar, salt, or lemon, as well as blanching, peeling, and 
discarding the outer layers of leafy greens. Other meth-
ods such as canning, juicing, baking, pasteurization, and 
wiping dry produce with a clean cloth or paper towel can 
also help eliminate pesticide residues [146]. Boiling ani-
mal and dairy products has been effective in significantly 
reducing pesticide residues, while techniques like con-
centration and dehydration further contribute to lower-
ing residue levels in food materials [146]. However, it is 
important to note that certain processes may inadvert-
ently increase residue levels due to factors such as lipid 
affinity and concentration effects [147]. Nevertheless, 
employing a combination of these strategies offers a com-
prehensive approach to minimizing pesticide residues in 
food, promoting safer and healthier consumption of agri-
cultural products.

Challenges in monitoring pesticide residues: regulatory 
perspectives and health risks
Several health issues have been associated with con-
suming plant-based foods containing pesticide residues 
that exceed maximum residue limits (MRLs), especially 
when considering both daily intake and acute reference 
dose (ARD) standards. Consumers are generally consid-
ered at low risk if their anticipated food intake remains 
within ARD limits. Effective monitoring of pesticide resi-
dues and establishing permissible limits across various 
food commodities are essential to ensure human safety 
[63]. For instance, the European Food Safety Authority 
(EFSA) has set the MRL for glyphosate in lentils at the 
highest level of analytical quantification, irrespective 
of toxicity levels. In 2011, glyphosate residues exceed-
ing MRLs were reported as posing no public health risk 
[123]. Nonetheless, addressing agricultural practices 
directly would likely have been a more effective solu-
tion than simply raising the MRL. The legal framework 
governing pesticide residues is intricate, involving both 
national and international regulations and standards. 
The primary goal is to ensure the safe, responsible use 
of pesticides in agriculture while minimizing risks to 
human health, the environment, and food safety. Each 
country has its regulatory authorities, and international 
agreements are instrumental in addressing the chal-
lenges posed by pesticide residues. The Codex Alimen-
tarius Commission (CAC), established by the Food and 
Agriculture Organization (FAO) and the World Health 
Organization (WHO), sets international food safety 
standards, while the Codex Committee on Pesticide Resi-
dues (CCPR) determines MRLs for pesticides in food. 
The Rotterdam Convention regulates the trade and use of 
specific hazardous pesticides and chemicals, supporting 

informed decision-making regarding their import and 
export through information exchange. However, effec-
tively monitoring pesticide residues remains a significant 
challenge [63], particularly as many countries lack suf-
ficient resources for regular and comprehensive testing. 
The introduction of new pesticides and modifications in 
formulations further complicates risk assessment and 
the establishment of regulatory frameworks [23]. Access 
to reliable data on pesticide usage, residues, and their 
impacts is crucial, yet transparency in reporting and data 
sharing remains limited in many regions. Strengthen-
ing international cooperation and information exchange 
is essential to address these challenges and harmonize 
standards in global trade.

Conclusion and recommendations
Chemical pesticides play a vital role in sustaining agri-
cultural productivity and ensuring global food security 
by effectively controlling pest infestations in crops and 
storage. Despite the growing awareness of alternative 
pest control methods, a full transition away from chemi-
cal pesticides is likely to be gradual, given their wide-
spread usage worldwide. However, the persistent reliance 
on pesticides presents significant challenges. Inadequate 
safety practices, such as limited comprehension of safety 
labels among farmers and the lack of proper protec-
tive equipment, exacerbate health and environmental 
risks. The adverse effects of pesticide use are extensive, 
impacting human health-both physiologically and neu-
rologically—as well as harming non-target organisms, 
soil health, groundwater, and even local climate patterns. 
Recognizing the necessity of pesticides in agriculture, 
akin to the role of medicine in managing illness, empha-
sizes the importance of responsible usage practices. 
Targeted application to effectively manage pests while 
safeguarding food crops is essential. Routine monitoring 
of pesticide residues before export and consumption is 
critical to reduce risks, such as the rejection of contami-
nated consignments in international trade.

Recommendations and future perspectives
This review provides comprehensive insights into the 
challenges and management strategies surrounding pes-
ticide use, contributing novel perspectives on sustainable 
approaches to pesticide residue mitigation. Based on the 
findings, we recommend the following actions:

Enhanced education and training: Improving aware-
ness among farmers and agricultural workers about safe 
pesticide handling, including the proper use of protective 
gear and an understanding of safety labels, is essential. 
Government bodies, agricultural extension services, and 
NGOs can collaboratively develop training programs that 
address these critical knowledge gaps.
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Adoption of integrated pest management (IPM): 
A robust shift towards IPM practices, combining bio-
logical controls, crop rotation, habitat management, 
and reduced pesticide application, offers a sustainable 
alternative to traditional chemical reliance. Expand-
ing IPM adoption through policy incentives can signifi-
cantly reduce the environmental and health impacts of 
pesticides.

Development of advanced remediation techniques: 
Future research should focus on developing and optimiz-
ing food processing techniques, soil amendments, and 
biosurfactant-based remediation methods to effectively 
remove pesticide residues from food products and soil. 
Research into novel, eco-friendly pesticide alternatives 
should also be prioritized to provide safer options for 
pest management.

Strengthened regulatory frameworks and monitor-
ing systems: Establishing stricter regulatory standards 
for pesticide residues, especially in emerging markets, is 
crucial for consumer safety. Implementing routine moni-
toring and setting stringent MRLs (maximum residue 
limits) can minimize exposure risks and prevent non-
compliance in global trade. International collaboration to 
harmonize these standards would further enhance trade 
safety.

Promotion of research and innovation in alterna-
tives: Supporting innovation in non-chemical pest man-
agement solutions, such as biopesticides and genetic pest 
resistance, can reduce dependency on traditional pesti-
cides. Incentivizing research in these areas can pave the 
way for more sustainable agricultural practices.

The insights and recommendations presented in this 
review emphasize the critical need for a multifaceted 
approach to pesticide residue management. By imple-
menting these strategies, agriculture can progress 
towards a more sustainable model, balancing productiv-
ity with environmental stewardship and public health 
protection. This review aims to encourage policymakers, 
researchers, and practitioners to adopt holistic strategies 
that will lead to a safer and more sustainable agricultural 
future.
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