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S-PLM: Structure-Aware Protein Language Model via
Contrastive Learning Between Sequence and Structure

Duolin Wang, Mahdi Pourmirzaei, Usman L. Abbas, Shuai Zeng, Negin Manshour,
Farzaneh Esmaili, Biplab Poudel, Yuexu Jiang, Qing Shao,* Jin Chen,* and Dong Xu*

Proteins play an essential role in various biological and engineering
processes. Large protein language models (PLMs) present excellent potential
to reshape protein research by accelerating the determination of protein
functions and the design of proteins with the desired functions. The
prediction and design capacity of PLMs relies on the representation gained
from the protein sequences. However, the lack of crucial 3D structure
information in most PLMs restricts the prediction capacity of PLMs in various
applications, especially those heavily dependent on 3D structures. To address
this issue, S-PLM is introduced as a 3D structure-aware PLM that utilizes
multi-view contrastive learning to align the sequence and 3D structure of a
protein in a coordinated latent space. S-PLM applies Swin-Transformer on
AlphaFold-predicted protein structures to embed the structural information
and fuses it into sequence-based embedding from ESM2. Additionally, a
library of lightweight tuning tools is provided to adapt S-PLM for diverse
downstream protein prediction tasks. The results demonstrate S-PLM’s
superior performance over sequence-only PLMs on all protein clustering and
classification tasks, achieving competitiveness comparable to state-of-the-art
methods requiring both sequence and structure inputs. S-PLM and its
lightweight tuning tools are available at https://github.com/duolinwang/
S-PLM/.

1. Introduction

Proteins play a crucial role in resolving many of the health, en-
ergy, and environmental challenges facing society today. An es-
sential task is to gain information about proteins of interest
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quickly and accurately. Along this line, com-
putational predictions of protein proper-
ties from protein sequences play important
roles. Protein language models (PLMs) can
reveal the underlying patterns within pro-
tein sequences and predict properties based
on the underlying sequence patterns.[1] The
current paradigm for PLM development
and deployment includes two stages: 1)
train a PLM to convert the amino acid se-
quence into a latent representation (embed-
ding) by means of the masked language
modeling (MLM) or autoregressive strat-
egy, where the model predicts masked or
next amino acids in the sequence based
on the surrounding or previous context[2–4];
and 2) adapt the pretrained PLM with
the protein property[2] data to perform
specific protein tasks. Several PLMs have
been developed following this paradigm,
such as the ProtBert,[3] ESM2[5] models
and ProtGPT2.[6] These PLMs have shown
encouraging results for protein property
predictions and de novo protein designs
and demonstrated their potential for new
knowledge discovery and analyses.[7–9]

One challenge in developing PLMs is enriching critical bio-
physical information into the embeddings. It is well known
that a protein’s function relies on its 3D structure. However,
most PLMs are trained solely on amino acid sequences, thereby
constraining their predictive capabilities, especially those heavily
depending on 3D protein structures. Some methods have been
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developed to enrich the evolutionary or functional information in
the sequence-based embedding. One method integrates multiple
sequence alignments (MSAs) into PLMs, such as AlphaFold’s
Evoformer[10] and MSA Transformer.[11] ProteinBERT incorpo-
rated gene ontology (GO) annotations into the MLM pretraining
scheme.[12] It utilized a denoising autoencoder to pretrain the
model with corrupted protein sequences and GO annotations
and performed comparatively well in many protein tasks despite
its relatively smaller size. These methods enriched the informa-
tion in the sequence-based embedding and boosted the perfor-
mance of the PLMs. However, none of these methods incorpo-
rated the critical structural information in an indirect manner.

Another emerging method is to develop a joint embedding
with both sequence and structural inputs. Chen et al. proposed a
self-supervised learning-based method for protein structure rep-
resentation to leverage the available pretrained PLMs.[13] Zhang
et al. explored the joint embedding for proteins based on ESM2
and three distinct structure encoders.[14] Hu et al. also developed
a joint embedding for proteins by coupling protein sequence and
structure.[15] These joint embeddings performed better in numer-
ous protein property prediction tasks, highlighting the impor-
tance of including structural information in the protein represen-
tation. However, the utilization of these joint-embedding models
requires both sequence and structure as input. Even with pre-
diction tools such as AlphaFold, gaining reliable structures for
some specific proteins remains a challenge. Furthermore, com-
putationally, these methods take an extra step to obtain predicted
structures, which requires extra time and effort.

We propose an alternative approach to protein representation
learning. Instead of creating a joint embedding that needs both
sequence and structural inputs, we have developed a sequence-
based embedding that incorporates structural information. One
feasible strategy for incorporating structural information into
sequence-based embeddings is through cross-view representa-
tion learning. PromptProtein[16] exemplifies this approach by
pretraining on a sequence-to-structure prediction task to gen-
erate structure-aware representations. In contrast, our approach
is based on another technique known as multi-view contrastive
learning. Unlike cross-view representation learning, which trans-
lates embeddings from one view to another, multi-view con-
trastive learning aligns embeddings into a coordinated latent
space across multiple views. This technique has garnered sig-
nificant attention for its ability to capture rich and complemen-
tary features from diverse perspectives.[17,18] During training, the
contrastive loss function pushes the representations of similar
views (sequence and structure of the same protein) to be close to
each other in the embedding space while simultaneously sepa-
rating representations of dissimilar views (between different pro-
teins) further apart. As a result, multi-view contrastive learning
effectively captures underlying semantic patterns in the data. A
head-to-head comparison has demonstrated that multi-view con-
trastive learning can be more effective than cross-view represen-
tation learning.[18]

To this end, we propose S-PLM, a 3D structure-aware PLM
that enables the sequence-based embedding to carry the struc-
tural information through multi-view contrastive learning. One
advantage of S-PLM compared to those joint-embedding models
is that after training, S-PLM only needs amino acid sequences as
the input during inference. This sequence-only input avoids the

overhead of using predicted protein structures. It is worth men-
tioning that two other recent successful cases have illustrated
the potential of contrastive learning in enriching information in
sequence-based embedding. One is the ProtST, which injected
biomedical text into a PLM by aligning these two modalities
through a contrastive loss.[19] After training, their PLM contained
enhanced protein property information and demonstrated supe-
riority over previous models on diverse protein representations
and classification benchmarks. Another one is the CLEAN[20]

model, which utilized information from the EC number to en-
hance the ability of PLM to predict enzymatic functions based
on protein sequence. Although S-PLM can accommodate either
structure or sequence as the input, this paper will only demon-
strate the advantages of S-PLM in encoding protein sequences
and leveraging structural information to improve sequence rep-
resentations for various protein prediction tasks. The sequence
encoder of S-PLM was implemented based on a pretrained ESM2
model, offering extensibility to incorporate new protein proper-
ties incrementally without forgetting previous knowledge in the
model.[21]

To apply pretrained PLMs to specific protein prediction tasks,
a typical domain adaptation approach involves fine-tuning the
PLMs on domain-specific data to update all model parameters.
However, full fine-tuning may not work well for large PLMs
due to limited domain-specific training data that may lead to
catastrophic forgetting[22] or severe computational and mem-
ory costs. To address this challenge, researchers have devel-
oped a set of lightweight tuning strategies, making specific
and parameter-efficient modifications to large preexisting mod-
els. These strategies, such as fine-tuning top layers, adapter
tuning,[21] and low-rank adaptation (LoRA),[23] selectively update
targeted parameters while keeping others frozen, significantly re-
ducing computational and memory requirements and mitigat-
ing data scarcity while achieving comparable or superior perfor-
mance. However, there was limited research on applying these
methods to PLMs.[24,25] This work explored several lightweight
tuning strategies for diverse protein prediction tasks utilizing S-
PLM. Through further lightweight tuning, S-PLM achieved com-
petitive performance in gene ontology,[26] enzyme commission
number,[27] and protein secondary structure prediction tasks. A
library of lightweight tuning methods has been made available at
https://github.com/duolinwang/S-PLM/.

2. Results

2.1. Structure-Aware Protein Language Model (S-PLM)

Figure 1a depicts the framework of S-PLM. The pretraining archi-
tecture of S-PLM consists of two encoders, one to encode protein
sequences and the other to encode 3D protein structures. In this
study, the one-letter amino acid sequences are utilized as the in-
put of protein sequences. The backbone C

𝛼
contact maps are used

to represent the protein 3D structures because inter-residue dis-
tances contain comprehensive and essential information about
protein structure. During pretraining, S-PLM inputs both amino
acid sequences and backbone C

𝛼
contact maps. The protein se-

quence information is converted into the residue-level embed-
ding through a sequence encoder, while the contact map infor-
mation is transformed into a protein-level embedding through
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Figure 1. The framework of S-PLM and lightweight tuning strategies for downstream supervised learning. a) The framework of S-PLM. During pretraining,
the model inputs the amino acid sequences and contact maps simultaneously. The amino acid sequences of proteins are converted into residue-level
embeddings through a sequence encoder (ESM2+Structure-Aware Module), while the backbone C

𝛼
contact maps of proteins are converted into protein-

level embeddings through a structure encoder (Swin-Transformer). With respective projectors, the S-PLM model is trained through contrastive learning
on the protein-level embeddings from each modality. After pretraining, the sequence encoder that generates the residue-level embeddings before the
projector layer is used for downstream tasks, such as protein-level clustering, classification, and residue-level classification tasks. b) Architecture of the
sequence encoder. The sequence encoder of S-PLM is tuned on the top-K Transformer layers of ESM2, each adding a compact Structure-Aware Module.
During the pretraining, the ESM2 backbone model is frozen, and only the Structure-Aware Modules are trainable. c) Adapter tunning for downstream
supervised tasks is implemented by integrating additional paralleled adapters on the ESM2 transformer layers. d) LoRA tuning for downstream supervised
tasks is implemented by adding trainable rank decomposition matrices into the multi-head attention layer of top-K Transformer layers in ESM2.

a structure encoder (Swin-Transformer[28]). Then through each
corresponding projector, sequences and contact maps are con-
verted into separate protein-level embeddings (Methods 1 and
2). Finally, the S-PLM model is trained using contrastive learn-
ing to minimize the contrastive loss for a batch of sequences and
contact maps. The objective of the S-PLM model is to maximize
the alignment of the embeddings for the sequence and struc-
ture from the same protein and clearly separate the embeddings
for the sequences and structures between different proteins (de-
alignment). Inspired by the SimCLR method,[29] our work adapts
the CLIP[30] approach for contrastive language-image pretrain-
ing. Besides the CLIP’s alignment and de-alignment across dif-
ferent modalities, our model also accounts for de-alignment
within the same modality. For instance, as shown in Figure 1a,
our model also emphasizes dissimilarity between embeddings of
sequences (s1↔s2) and embeddings of contact maps (c1↔c2) from
different proteins (Methods 3).

The sequence encoder of S-PLM was implemented by in-
corporating a Structure-Aware Module into the ESM2 model

(Figure 1b). There are several approaches to implementing this
Structure-Aware Module. One option is to fine-tune the ESM2
model by adjusting its pretrained weights, which retains the
original architecture of the ESM2 encoder while integrating
structural information. Alternatively, adapter tuning[21] can
be employed, where adapter modules are integrated into the
top-K Transformer layers of the ESM2 model. These adapter
modules serve as the structure-aware component and are only
trained during the pretraining process. As shown in Figure 1b,
the Structure-Aware Modules consist of a bottleneck structure
and a skip-connection, positioned twice in one Transformer
layer: after the multi-head attention projection and after the
two feed-forward layers (Methods 5). Using adapter tuning
to implement the sequence encoder of S-PLM offers several
advantages. First, the integrated adapter module is compact. It
contains much fewer parameters than the original Transformer
modules of ESM2, which alleviates the training burden. Second,
it allows for continuous training to add new protein features
(e.g., protein function) for the future extension of our model,
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Figure 2. Structure and sequence embedding rearrangement through contrastive learning. a) Trajectories illustrating the alignment of sequence and
structure embeddings via contrastive learning. Blue nodes indicate structure-based 2D-t-SNE embeddings for proteins, whereas red nodes indicate
sequence-based 2D-t-SNE embeddings for proteins. The number beside each node indicates the protein index (from 0 to 24). The trajectories of
four randomly selected nodes (5, 6, 10, 18) before and after the contrastive learning are displayed. The trajectories for other nodes have the same
pattern (omitted for clear illustration). After contrastive learning, the sequence and structure embeddings of the same protein are almost identi-
cal, resulting in overlapping solid circles. b) Distance distribution between sequence or structure embeddings before and after contrastive learn-
ing. Each distance is calculated using the Euclidean distance between a sequence or structure embedding before contrastive learning and the corre-
sponding embedding of the same protein after contrastive learning in the original embedding space. c) Proportion of conserved K-nearest neighbors.
Each bar represents the proportion of conserved K-nearest neighbors for a specific value of K. Five hundred proteins were used for the analyses in
panels (b,c).

without catastrophic forgetting of previously learned features,
because the S-PLM pretraining retains the sequence represen-
tation capabilities of the ESM2 model with the ESM2 backbone
model (the architecture and its weights) intact.

During the inference stage, S-PLM has the flexibility to accept
either sequence or contact map as the input and produces corre-
sponding embeddings at various levels tailored to specific down-
stream tasks (e.g., protein-level clustering, protein-level classi-
fication, and residue-level classification). This versatility allows
S-PLM to adapt and provide suitable representations based on
the specific input data and requirements of the given task. In
this paper and the subsequent results, the S-PLM model pri-
marily generates sequence embeddings from protein sequences.
Therefore, the pre-trained sequence encoder of S-PLM that gen-
erates the residue-level embeddings before deploying projec-
tors is used for downstream tasks. The entire sequence encoder
can be fully frozen or learnable. To fully exploit the potential
of S-PLM in supervised protein prediction tasks, we have de-
veloped several lightweight tuning strategies based on the se-
quence encoder of S-PLM, all of which are incorporated into
the lightweight tuning toolbox, including the fine-tuning top lay-
ers, adapter tuning (Figure 1c), and LoRA tuning (Figure 1d)
(Methods 5).

2.2. Contrastive Learning Rearranges the Alignment Between the
Sequence and Structure Embeddings

We investigated the impact of contrastive learning on the align-
ment between sequence and structure embeddings. Initially, we
randomly selected 25 proteins from an independent test set (500
proteins in total) and projected their corresponding sequence
and structure embeddings onto a 2D t-SNE space. We employed
trajectory plots of sequence and structure embeddings to illus-
trate the movement of embeddings during contrastive learn-
ing. As depicted in Figure 2a, before contrastive learning, the
sequence-based embeddings (obtained from pretrained ESM2-
t33_650M_UR50D) and the structure-based embeddings (ob-
tained from pretrained Swin-Transformer) were distinctly dis-
tributed in the 2D t-SNE space. Embeddings from the same
modality were closer than those from different modalities, in-
dicating no information exchange between the two modalities.
Conversely, after contrastive learning, sequence and structure
embeddings of the same protein moved closer, whereas those of
different proteins became more separated, suggesting successful
integration of protein structure information into sequence-based
embeddings (and vice versa). To show the effect of protein size in
our training strategy, we grouped the proteins in the test dataset
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Figure 3. Visualization and benchmark of protein embeddings for three CATH structural hierarchies (class, architecture, and topology). a) t-SNE visu-
alization of protein embeddings from the five most represented categories from one hierarchy. Embeddings produced by ESM2, PromptProtein, and
ProstT5 are shown side by side with S-PLM. b) Utilizing the CHI to quantitatively assess the capability of embeddings derived from different methods
in clustering CATH structural categories.

into different bins based on their sequence length. Figure S1
(Supporting Information) shows the embedding distributions af-
ter contrastive learning within specific sequence length ranges.
This experiment shows that the observed alignment is not influ-
enced by sequence length.

Notably in Figure 2a, the changes in structure embeddings
were more pronounced than those in sequence embeddings,
causing them to spread around the original embeddings. This
observation is further supported by Figure 2b, which shows the
distribution of embedding distances for each modality across the
entire 500 testing proteins before and after contrastive learning,
revealing more significant embedding changes in structure than
in sequence. This phenomenon also underscores that our se-
quence encoder of S-PLM effectively retained the sequence rep-
resentation capabilities of the base ESM2 model, minimizing
catastrophic forgetting. Additionally, we quantitatively assessed
the effectiveness of contrastive learning in preserving the neigh-
borhood topology and relationships within sequence and struc-
ture embeddings by calculating the proportion of conserved K-
nearest neighbors for each modality after contrastive learning
across different values of K (Figure 2c). For the entire set of
500 testing proteins, over 20% of the first-nearest neighbors of
both the sequence and structure embeddings were preserved af-
ter contrastive learning. Increasing K to 10 preserved 69% of the
sequence embedding neighbors and 89% of the structure em-
bedding neighbors. Across all K values, the proportions of pre-
served structure embedding neighbors were higher than those
of sequence, indicating that our training process effectively pre-
served more topological and geometrical information within the
structure embeddings.

2.3. S-PLM Injects the Structural Information into the Sequence
of Latent Space

To investigate whether S-PLM can inject the structural in-
formation into the sequence latent space, we evaluated the

sequence representations for the CATH protein domains.[31]

Because this experiment prioritizes structural information,
we deliberately chose a single representative sequence from
each CATH superfamily to provide clear visualization. We
utilized the CATHS40 dataset, whose proteins have a maxi-
mal 40% sequence identity. Our analysis focused on the class,
architecture, and topology levels of the CATH hierarchy, ex-
cluding the homologous superfamily at the last level, which
comprises clusters primarily driven by sequence similarity.
We visualized and benchmarked the sequence representations
produced by S-PLM against models that rely solely on sequence
information, including ESM2 (ESM2_t33_650M_UR50D); the
pretrained PLM on which S-PLM is based; PromptProtein[16]

and ProstT5,[32] other two structure-aware models pretrained
by predicting 3D structures or 3D structure tokens from
sequences (Figure 3a). Each row of Figure 3a shows the
t-SNE visualization of protein embeddings from the five
most represented categories of one hierarchy. It shows that
sequence representation from S-PLM separates CATH struc-
tural classes more clearly than the embeddings from other
models.

We further utilized the Calinski–Harabasz index (CHI)[32] to
quantitatively assess the capability of embeddings derived from
different methods in distinguishing CATH structural categories.
The CHI score quantifies the ratio between the sum of between-
cluster dispersion and the sum of within-cluster dispersion. We
applied the CATH categories to define ground-truth clusters, us-
ing sequence embeddings to calculate both between- and within-
cluster dispersion. As shown in Figure 3b, the CHI of S-PLM
is around 30% higher than the second (ProsT5) for Class, Ar-
chitecture, and Topology, and around 300% higher than ESM2.
Given that these CATH categories were established using pro-
tein structures, this analysis strongly suggests that the sequence
embedding produced by the developed S-PLM exhibits an inher-
ent awareness of protein structures, surpassing the other two
PLMs in effectively distinguishing proteins with diverse struc-
tural characteristics. The poor performance of the sequence-only
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Figure 4. Clustering enzymes. a) The t-SNE visualization of protein embeddings from 242 deaminase proteins using sequence representation methods
of ESM2, PromptProtein, ProstT5, and S-PLM. b) Quantitative benchmarks of PLM’s ability to cluster the deaminase proteins for sequence representation
methods. c) The t-SNE visualization of protein embeddings from human kinase groups using pretrained PLM models of ESM2, PromptProtein, ProstT5,
and S-PLM. Different kinase groups are distinguished by different colors. d) Quantitative benchmarks of PLM’s ability to cluster the human kinases
compared with other methods mentioned in (c). For both types of enzymes, ARI was computed by comparing K-Means clustering assignments with
enzyme labels.

ESM2 also indicated its limitations in explicitly acquiring protein
structure knowledge.

2.4. Clustering Enzymes via S-PLM

Recently, Huang et al. applied a structure-based protein cluster-
ing approach for discovering deaminase functions and identi-
fying novel deaminase families.[33] They applied AlphaFold2 to
predict protein structures and subsequently clustered the entire
deaminase protein family based on the predicted structure
similarities through structure alignment. They discovered new
functions of the deaminase proteins and new deaminases; such
findings cannot be obtained by mining amino acid sequences. In
this study, we investigated the effectiveness of our S-PLM model
in clustering the deaminase family by comparing and bench-
marking the sequence embeddings from S-PLM against the

other three PLMs, i.e., the ESM2, PromptProtein, and ProstT5.
We utilized the same sequence data as Huang et al. to generate
representations for each query protein sequence. For this task,
we utilized the S-PLM and obtained a 1280-dimensional em-
bedding for each protein. Subsequently, we employed t-SNE to
reduce the vector to a 2D representation and applied the K-Means
clustering method to the reduced dimension. The Adjusted Rand
Index (ARI) was computed by comparing K-Means clustering
assignments with known deaminase family annotations. We
conducted the t-SNE visualization and calculated the ARI in
the same way for all the benchmarked methods. Based on the
comparison (Figure 4a,b), S-PLM (ARI: 0.87) surpassed the
performance of the other three PLMs (ARI: 0.63 for ESM2, 0.46
for PromptProtein, and 0.80 for ProstT5).

We also studied another enzyme group, kinases, which facil-
itate the transfer of phosphate groups to proteins in a critical
process known as phosphorylation.[34] We extracted 336 kinases,
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categorized into nine kinase groups, along with their respective
kinase domain sequences from GPS5.0.[35] Subsequently, se-
quence embeddings were generated for each kinase using their
corresponding kinase domain sequences. For comparison, we
also obtained sequence embeddings from the other three PLMs,
ESM2 (ESM2-t33_650M_UR50D), PromptProtein, and ProstT5.
From the t-SNE plots (Figure 4c) and the ARI comparison
(Figure 4d), the sequence embeddings produced by our S-PLM
showed superior clustering of kinase groups, with a significantly
higher ARI (0.72) compared to ESM2 (0.28), PromptProtein
(0.28), and ProstT5 (0.61). This is likely because the S-PLM
model incorporates protein structure information essential for
characterizing kinase groups. Taken together, S-PLM provides
effective sequence representation for enzyme clustering.

2.5. S-PLM Outperforms ESM2 for Protein Fold and Enzyme
Reaction Classification

To highlight the performance improvements brought by the
structure-aware module of S-PLM over its base model ESM2-
650M, we compared S-PLM with its base model on two structure-
dominated tasks, including the protein fold and enzyme reaction
classifications. The same classification layer was applied on top
of each encoder, respectively. The comparison comprises two sce-
narios. In the first scenario, we treated both S-PLM and ESM2 as
protein representation models, freezing all parameters of each
encoder and allowing only the classification layers to be trainable.
This approach ensures a fair comparison, as the trainable layers
in both S-PLM and ESM2 have the same architecture. In the sec-
ond scenario, we fine-tuned the top-K layers of both the S-PLM
and ESM2 models, allowing the encoders to be trainable along
with the classification layers. It is important to note that, given the
different architectures of S-PLM and ESM2, achieving absolute
fairness in this comparison is impossible, as the optimal config-
urations for both models may differ. Consequently, to align more
closely with ESM2, all configurations were preselected based on
ESM2’s optimal performance, including the experiments in the
first scenario. For scenario two, the key hyperparameter of ESM2
is K, (i.e., how many top Transformer layers are trainable). For
fold classification, we tried K = 5,6,7, and for enzyme reaction,
we tried K = 1,2. Details regarding the model configurations can
be found in Table S1 (Supporting Information).

Table 1 shows that the proposed S-PLM model consistently
outperformed the base ESM2 models for all the classification
tasks when all encoder layers were frozen (ESM2-fix vs. S-
PLM-fix). When an equivalent number of Transformer layers
were fine-tuned (ESM2-finetune top-K vs. S-PLM-finetune
top-K), S-PLM-finetune outperformed in all tasks except for
family classification. Despite a slight 0.2% decrease in family
classification, S-PLM-finetune demonstrated a notable 2–3%
improvement in superfamily and fold predictions. This finding
highlights the significance of structural information in fold and
superfamily predictions, whereas sequence information prevails
in family prediction. We noted that the superior performance of
S-PLM-finetune does not stem from more trainable parameters
compared to ESM2-finetune. For instance, S-PLM-finetune top5
(116M) has fewer parameters than ESM2-finetune top6 (120M),
yet it outperformed in fold (37.74% vs 36.63%) and superfamily

Table 1. Comparison between S-PLM and ESM2 for protein fold and en-
zyme reaction classification.

Method Protein classification a)Params

Fold Superfamily Family

ESM2-fix 27.86 57.26 98.11 1M

S-PLM-fix 34.72 62.50 98.36 1M

ESM2-finetune top5 34.96 76.24 98.74 99M

S-PLM-finetune top5 37.74 77.59 98.51 116M

ESM2-finetune top6 36.63 75.84 98.82 120M

S-PLM-finetune top6 37.33 77.51 98.35 139M

ESM2-finetune top7 36.49 76.56 98.66 140M

S-PLM-finetune top7 37.19 77.99 98.43 162M

Method Enzyme
reaction

a)Params

ESM2-fix 78.84 0.5M

S-PLM-fix 82.11 0.5M

ESM2-finetune top1 86.53 20M

S-PLM-finetune top1 86.71 23M

ESM2-finetune top2 84.50 40M

S-PLM-finetune top2 86.02 46M

The performance is evaluated by accuracy (%).
a)

Params represent the number of
trainable parameters. Performance is evaluated by accuracy (%). K in “topK” indi-
cates how many top Transformer layers are trainable.

(77.59% vs 75.84%) predictions. In enzyme reaction classifica-
tion, our model achieved 86.71% test accuracy, outperforming
ESM2-finetune top2 (84.50%) with fewer parameters (23M vs
40M). Taken together, these results support the benefits of
integrating structural information into our S-PLM model, par-
ticularly for improving predictions in protein fold and enzyme
reaction classifications, where structure features are crucial.

2.6. Lightweight Tuning Strategies Enhance S-PLM’s
Performance in Selected Protein Prediction Tasks

To adapt S-PLM for various specific supervised protein predic-
tion tasks, we developed lightweight tuning strategies, includ-
ing fine-tuning top layers, adapter tuning (Figure 1c), and LoRA
(Figure 1d), on the sequence encoder of S-PLM. We bench-
marked S-PLM with these lightweight tuning strategies on the
GO term, EC number, and secondary structure predictions (SS)
with state-of-the-art (SOTA) methods. We employed the same
training, validation, and test sets for all these tasks, and the
only differences are our models and the training strategies.
The GO term and EC number predictions served as protein-
level supervised classification tasks, evaluated in terms of the
Fmax, while the SS prediction served as the residue-level su-
pervised classification task evaluated by accuracy (%). Com-
prehensive results across all three training strategies, along
with detailed model descriptions, are provided in Table 2.
For GO and EC number predictions, seven methods—GVP,[14]

GearNet,[36] GearNet-Edge,[36] CoupleNet,[15] ESM-GearNet,[14]

PST (finetuned),[37] and SaProt[38]—that use both sequence
and structure inputs, as well as sequence-only methods ESM2

Adv. Sci. 2024, 2404212 2404212 (7 of 15) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Table 2. Comparing different lightweight tuning methods for sequence encoders of S-PLM on GO, EC, and SS prediction with their key model descriptions.

Method GO (Fmax) a)Params Sequence encoder layers Classification layer

BP MF CC

S-PLM-finetune 0.470 0.674 0.460 42M,40M,40M Finetune top 2 layers, freeze adapter mean pooling over all
residues

ESM2-finetune 0.473 0.677 0.450

S-PLM-adapter 0.495 0.685 0.484 55M,53M,53M Adapter tuning
top 16 layers

ESM2-adapter 0.493 0.683 0.472

S-PLM-LoRA 0.480 0.668 0.472 3M,1M,0.7M LoRA on top 16 layers, r = 2, 𝛼 = 8

ESM2-LoRA 0.478 0.663 0.474

Method EC (Fmax) #Params Sequence encoder layers Classification layer

S-PLM-finetune 0.885 40M Finetune top 2 layers, freeze adapter mean pooling over all
residues

ESM2-finetune 0.888

S-PLM-adapter 0.875 53M Adapter tuning
top 16 layers

ESM2-adapter 0.866

S-PLM-LoRA 0.888 1M LoRA on top 33 layers, r = 2, 𝛼 = 8

ESM2-LoRA 0.864

Method SS (Accuracy%) #Params Sequence encoder layers Classification layer

S-PLM-finetune 87.48 92M Finetune top 2 layers and all adapter
layers

MLP (1280,100,3) on
each residue

ESM2-finetune 87.21

S-PLM-adapter 87.40 52M Adapter tuning
top 16 layers

ESM2-adapter 86.73

S-PLM-LoRA 85.72 0.8M LoRA on top 33 layers, r = 2, 𝛼 = 8

ESM2-LoRA 87.14
a)

Params represent the number of trainable parameters.

(650M)[14] and ESM-S,[39] were considered for comparison. For
the SS task, sequence-only methods, TAPE (Transformer),[40]

ProteinBERT,[12] ESM-1b,[41] and DML[42] were considered for
comparison. Their results were taken directly from their respec-
tive publications.

Upon comparison as shown in Figure 5, our model demon-
strated optimum performance in GO-BP (Fmax: 0.495), GO-MF
(Fmax: 0.686), and SS (Fmax: 87.48) tasks, while exhibiting compa-
rable performance in GO-CC (Fmax: 0.494 for CoupleNet, 0.519
for ESM-S, and 0.484 for our model) and in EC number predic-
tion (Fmax: 0.890 for ESM-GearNet, 0.897 for PST, and 0.888 for
our model). Among the methods under comparison, GVP and
GearNet are designed to capture the invariant and equivariant
features of protein structure, whereas GearNet-Edge is a variant
of GearNet enhanced with an edge message passing layer. Cou-
pleNet requires the integration of sequence and structure infor-
mation by deeply coupling them, and ESM-GearNet is a recently
proposed variant of GearNet that integrates the sequence repre-
sentation from PLM with the structure representation through
various fusion schemes, where the results with the best fusion
scheme were reported in the comparison. SaProt is a newly in-

troduced structure-aware PLM that explicitly utilizes a structure-
aware vocabulary to integrate residue tokens with structure to-
kens derived from protein sequence and structure inputs. In
contrast to these methods, our model relies solely on protein
sequences. Remarkably, it achieves compatible results to Cou-
pleNet, ESM-GearNet, and PST, or even superior results com-
pared to GVP, GearNet, GearNet-Edge, and SaProt, showcasing
the broader practical utility of our model.

Additionally, by employing the same lightweight tuning strate-
gies on the base ESM2 encoder with an equal number of trainable
parameters, we established a fair comparison between our model
and its corresponding base model. The results are presented in
Table 2. In most (10/15) of the one-to-one comparisons, our S-
PLM encoder outperformed its base ESM2 encoder. Although
we could not surpass ESM2 across all tasks under all training
strategies, our S-PLM model consistently achieved the best per-
formance overall for each individual task. Overall, our additional
Structure-Aware Module on ESM2, along with the new pretrain-
ing process, did not diminish ESM2’s original sequence repre-
sentation capability but rather led to superior performance across
all tasks.

Adv. Sci. 2024, 2404212 2404212 (8 of 15) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Figure 5. Benchmarking on GO, EC, and SS prediction. Protein level tasks (BP, MF, CC, and EC); residue level task (SS). Seq refers to the use of protein
sequences as input, while Struct refers to the use of protein structures as input. Seven methods that use both sequence and structure inputs (GVP,[14]

GearNet,[36] GearNet-Edge,[36] CoupleNet,[15] ESM-GearNet,[14] PST finetuned,[37] and SaProt[38]), as well as sequence-only methods ESM2 (650M)[14]

and ESM-S[39] were considered for comparison on GO and EC tasks. For the SS task, sequence-only methods, TAPE (Transformer),[40] ProteinBERT,[12]

ESM-1b,[41] and DML[42] were considered for comparison. The best and the second-best results for each task are shown in bold and underlined symbols,
respectively. We used “our model” to represent the performance of S-PLM with the most effective lightweight tuning strategy tailored to each task.

2.7. Benchmarking Protein Representation Methods on PROBE

The protein representation benchmark (PROBE)[43] provides a
comprehensive evaluation of protein representation methods by
assessing their predictive performance across four independent
tasks: semantic similarity inference (SSI), ontology-based protein
function prediction (PFP), drug target protein family classifica-
tion (PFC), and protein-protein binding affinity estimation (PPI).
The SSI task is unsupervised learning. It measures how well rep-
resentation models capture biomolecular functional similarity by
comparing the calculated similarities between protein vectors us-
ing Manhattan distance with the ground truth-functional similar-
ities derived from GO annotations. Spearman rank-order correla-
tion values between the vector similarities and GO-based seman-
tic similarities were used to assess the success of different protein
representation methods. The PPI task focuses on the model’s
ability to predict changes in binding affinities due to residue-
level mutations. The ontology-based PFP and the drug-target PFC
tasks are addressed using supervised learning, where a linear
support vector classifier is trained on labeled data. The PFP task
assesses the model’s ability to predict protein functions, while
the PFC task evaluates the accuracy of classifying drug target
proteins into their respective families, which involves proteins
with distinct structural features. As mentioned in the PROBE
paper,[43] the drug target PFC tasks should also show how well
the representation can learn structural properties.

In this study, we applied PROBE to evaluate protein represen-
tations generated by three sequence-only, structure-aware meth-
ods: S-PLM, PromptProtein, and ProstT5, alongside our base
model, ESM2-650M. We also introduced a combined represen-

tation, S-PLM & ESM2-650M, by averaging the representations
from S-PLM and ESM2-650M. To streamline the analysis, we only
cite the methods from the pre-generate results that achieved the
highest scores in at least one task or subtask, with all the results
summarized in Table 3, which aligns with Table 2 in the PROBE
paper.

The benchmarking results indicate that ProtT5-XL consis-
tently outperformed other methods across multiple tasks, ben-
efiting from its large encoders with 1.2B parameters. In contrast,
S-PLM & ESM2-650M, offered balanced performance across var-
ious tasks. ProstT5, built on the ProtT5-XL base (1.2B param-
eters), ranked second in the ontology-based PFP benchmarks.
PromptProtein with 650M parameters did not achieve the best
performance in any of the subtasks. Our S-PLM alone performed
well, particularly in drug target PFC, matching top models like
ProtT5-XL and ProtALBERT, likely due to its structure-aware ca-
pabilities. However, S-PLM struggled with PPI binding affinity
estimation (MSE: 0.65), which was worse than PromptProtein
(MSE: 0.55) but better than ProstT5 (MSE: 0.72), possibly be-
cause its protein-level contrastive learning is less sensitive to
residue-level mutations. When comparing S-PLM with its base
model ESM2-650M, S-PLM only outperformed in one SSI task
and one drug target PFC task. Similarly, ProstT5 generally un-
derperformed compared to its base model (ProtT5-XL), except
for a slight improvement in the CC category of the SSI task.
This suggests that while the structure-aware enhancements in
both ProstT5 and S-PLM are valuable, they might slightly com-
promise sequence representation performance. Interestingly, the
combination of S-PLM & ESM2-650M often balances and en-
hances the strengths of both models. For instance, in SSI, the
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Table 3. Benchmark representation methods and their respective predictive performance.

Methods Semantic similarity inference (based
on the Manhattan distance)

Ontology-based protein function
prediction

Drug target protein family classification PPI binding affinity
estimation

Spearman correlation Weighted F1-score MCC (average) MSE (average)

MF BP CC MF BP CC Random 50% 30% 15%

PFAMa) 0.35 0.42 0.51 0.86 0.56 0.58 0.90 0.90 0.90 0.81 2.26

ESM-1ba) 0.38 0.42 0.37 0.83 0.53 0.61 0.87 0.84 0.92 0.86 0.48

ProtALBERTa) 0.22 0.37 0.32 0.89 0.63 0.64 0.92 0.91 0.92 0.88 0.42

ProtT5-XLa) 0.57 0.21 0.40 0.90 0.66 0.68 0.92 0.92 0.92 0.90 0.6

Mut2Veca) 0.55 0.58 0.39 0.57 0.43 0.46 0.44 0.45 0.44 0.46 NA

Prompt
Protein

0.31 0.12 0.34 0.77 0.51 0.59 0.82 0.82 0.84 0.79 0.55

ProstT5 0.44 0.09 0.42 0.87 0.64 0.65 0.91 0.91 0.91 0.88 0.72

S-PLM 0.25 0.14 0.38 0.82 0.55 0.56 0.92 0.91 0.90 0.88 0.65

S-PLM
&
ESM2-650M

0.4 0.37 0.3 0.85 0.58 0.62 0.91 0.92 0.91 0.89 0.52

ESM2-650M 0.3 0.43 0.28 0.85 0.59 0.65 0.91 0.91 0.93 0.90 0.48
a)

Results are directly obtained from Table 2 of the PROBE[43] paper. The performance of representation methods on each task is shown with average scores. The best results
for each task are shown in bold.

combined model achieves higher correlations (e.g., 0.4 in MF)
than S-PLM alone and ESM2-650M, and in drug target PFC, it
maintains a high MCC, showcasing robust performance across
different datasets.

2.8. Ablation Study

In designing S-PLM, we explored various structure encoders, se-
quence encoders, and pretraining strategies. This section sum-
marizes key findings from these explorations.

Given that the contact map representation resembles an im-
age, we considered several well-established image-processing
networks as potential encoders. Specifically, we evaluated
ResNet50,[44] the Segment Anything Model (SAM),[45] and the
Swin-Transformer[28] models due to their prominence in image-
related tasks and strong performance in various competitions.
Using pretrained weights, we assessed these models on CATH
domains with known protein structures. As shown in Figure S2
(Supporting Information), the Swin-Transformer (swinv2-tiny-
patch4-window8-256) exhibited superior feature extraction capa-
bilities from the contact map representation, leading us to select
it as the structure encoder for S-PLM.

For the sequence encoder, we tested various architectures and
pretraining strategies by conducting preliminary training ses-
sions, each lasting 10 000 steps. We used a consistent batch size
of 20 and trained each model variation with three different ran-
dom seeds to ensure robustness. The hyperparameter K was used
to control the number of top Transformer layers of the ESM2 base
model into which the adapter module is inserted, as well as the
number of layers fine-tuned or tuned using LoRA. We evaluated
the performance using three protein clustering tasks: CATH clus-
tering, deaminase clustering, and kinase group clustering. The
Adjusted Rand Index (ARI) was calculated for each task, and an
average ARI score was derived to provide an overall assessment.

For adapter tuning, although we initially explored larger values of
K, we ceased further attempts after observing a performance de-
cline at higher K values. For the fine-tuning strategy, the number
of trainable parameters is significantly larger, which limited our
ability to experiment with higher values of K. As a result, we only
explored values up to 4. In contrast, for LoRA tuning, we could
attempt much larger values of K, but since the base model has a
maximum of 33 layers, K could not exceed 33.

The results are presented in Figure S3 (Supporting Informa-
tion). The results show that increasing K for adapter tuning gen-
erally improved clustering performance in the CATH task, par-
ticularly for the CATH Class and Topology categories. However,
this improvement came at the cost of reduced performance in
the other two tasks. This outcome is expected, as a higher num-
ber of adapter layers exerts a greater influence on the base model,
making the Structural-Aware Module more effective in learn-
ing structural features but potentially compromising the base
model’s sequence representation performance. Fine-tuning with
K = 4 achieved moderate improvements in all tasks, but it did
not match the performance gains seen with higher K values in
adapter tuning. LoRA tuning with larger K values showed com-
petitive performance in the CATH clustering tasks. However,
similar to adapter tuning, there was a trade-off in performance
for the other clustering tasks, particularly when K approached
the upper limit. Based on these findings, we ultimately selected
adapter tuning with K = 16 for our pretraining, balancing the
gains in structural feature learning with the preservation of se-
quence representation performance.

3. Discussion and Conclusion

In this work, we proposed S-PLM, a structure-aware protein
language model pretrained via contrastive learning between
sequence and 3D structure of proteins. Distinguishing from
joint-embedding-based methods, S-PLM independently encodes
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protein sequences and 3D structures. This unique feature allows
S-PLM to make structure-aware predictions using protein se-
quences only without its 3D structure. This aspect is particularly
important when obtaining reliable protein structure is difficult
or time-consuming. By employing a Struct-Aware Module on
the pretrained ESM2 model, the sequence encoder of S-PLM
generates sequence representations that seamlessly incorpo-
rate 3D structure information while maintaining the original
sequence representation capabilities of ESM2. Importantly, this
adapter-based architecture is extensible; in the future, if new
protein attributes need to be included, such as protein function
and protein-protein interactions, the existing ESM2 and Struct-
Aware Module can remain unchanged. New attributes can be
integrated by simply adding a parallel adapter and training on
updated data, as illustrated in Figure 1c.

The results of our study highlight the efficacy of S-PLM across
a range of downstream use cases. First, S-PLM demonstrates the
ability to align sequence and structure embeddings of the same
protein effectively while keeping embeddings from other pro-
teins further apart. Secondly, compared to other PLMs that only
use sequences, S-PLM shows impressive awareness of protein
structures, as evidenced by its superior performance in clustering
CATH domains and enzyme clustering tasks. Finally, together
with S-PLM model, we developed a library of lightweight train-
ing strategies that can be applied to train S-PLM. Even without
inputting protein structure, S-PLM achieves competitive perfor-
mance in protein-supervised prediction tasks, comparable to the
SOTA methods that require both sequence and structure inputs.
These findings collectively highlight the potential of S-PLM, to-
gether with its lightweight tuning toolbox, as an alternative PLM
for protein analysis and prediction tasks.

We also observed that different tuning strategies exhibited
varying performance across tasks (Table 2). This can be attributed
to several factors. First, the number of trainable parameters plays
a role, with fine-tuning top layers generally providing more train-
able parameters than adapter tuning, and LoRA having the fewest
trainable parameters. However, the extent of adaptation to which
the base model can be modified is also crucial. Despite having
fewer trainable parameters, LoRA’s ability to influence more lay-
ers of the base model may enable it to capture complex patterns
better suited for certain tasks that diverge significantly from the
pretraining objective. Additionally, the nature of the tasks them-
selves likely contributes to the performance differences. Some
tasks may benefit more from fine-grained adaptation of the lower
layers, while others might require more substantial changes to
the higher-level representations. The diverse lightweight training
strategies and related open-source tools we provide offer flexibil-
ity in tailoring the number of trainable parameters and the extent
of adaptation, potentially enabling SOTA performance on a wide
range of downstream tasks.

In the benchmarking using the PROBE platform, we observed
that when PLMs are used solely to generate protein representa-
tions or trained with a simple classifier, larger models often per-
form better across a wide range of tasks. Given that S-PLM is not
an exceptionally large model, it does not excel in all tasks. An-
other possible explanation for S-PLM’s underperformance in cer-
tain tasks compared to the ESM2 base model could be attributed
to the fact that around 32% of the sequences in the PROBE
datasets exceed the maximum length (512) used during our pre-

training. This suggests that our structure-aware approach may
not be fully effective for longer sequences, indicating a need to
increase the maximum sequence length during training, poten-
tially up to 1024 amino acids, as is done with other PLMs. Ad-
ditionally, enhancing S-PLM’s performance at the residue level
will be an important area for future improvement. Furthermore,
it appears no single PLM can outperform all others for all down-
stream tasks. This suggests the need to have multiple PLMs, each
with multiple settings, to address diverse protein downstream
tasks. Hence, the goal of S-PLM is not to replace others, but to
serve as one of valuable PLM options for users to choose and
adapt for their tasks.

Interestingly, the combined S-PLM & ESM2-650M model,
which merges the representations from both S-PLM and ESM2-
650M, demonstrated balanced and often enhanced performance
across various PROBE tasks. These results suggest that while
S-PLM provides specific advancements, particularly in integrat-
ing structural information, the base ESM2-650M model remains
highly valuable. Their combination leverages the strengths of
both models, leading to more robust and versatile performance
across a diverse set of tasks.

While S-PLM has shown promising results using the
AlphaFold2-SwissProt database (0.5 M proteins), there is signifi-
cant potential for further improvement by expanding our training
to include more comprehensive protein structure repositories.
Our current adapter-tuning approach provides a strong founda-
tion for continuous, lifelong learning. By continually refining
and expanding the training dataset, we aim to equip S-PLM with
a broad understanding of protein structures across diverse bio-
logical contexts. This iterative process of data augmentation and
model refinement holds promise for pushing the boundaries of
sequence-based protein representation learning, allowing S-PLM
to achieve even greater efficacy in a broader range of protein anal-
ysis and prediction tasks.

4. Experimental Section
Sequence Encoder: Our sequence encoder was developed based on

the pretrained ESM2 model.[5] Given the constraints of computational re-
sources and model capacity, ESM2-t33_650M_UR50D as our base PLM
model was selected, which had 650 million parameters. In particular, the
input protein sequence was first tokenized by one-hot encoding for each
amino acid and then applied 33 layers of Transformer encoders. The em-
bedding dimension for each position was 1280. In this procedure, a BE-
GIN token (“<cls>”) and END token (“<eos>”) were added to the se-
quence and went through the Transformer together with the amino acid to-
kens, and a “<pad>” token was used for padding sequences. Through the
Transformer layers, the output was a tensor of 1280D vector per residue,
with the embedding of the BEGIN and END tokens as well as the em-
beddings for padding sequences. The embeddings for each residue were
used for residue-level representations of a protein for downstream tasks.
The average of per-residue embeddings, excluding the padding tokens,
was used for protein-level embedding for the contrastive-learning train-
ing and downstream tasks. Then, two projector layers were applied to the
protein-level embedding that transformed the dimension into the final out-
put protein-level embedding, which was 256D. The projectors were imple-
mented using two dense neural network layers, with the output dimension
of 256.

To optimize training efficiency with batch training while conserving
GPU memory, input sequences longer than 512 residues were truncated.
For protein representation generation, a parameter was provided that
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allowed the user to choose between using the full-length sequence or ap-
plying truncation. For downstream tasks requiring further training, protein
sequences were truncated according to task-specific maximum lengths.
The exact truncation lengths are detailed in the corresponding task section
and can be configured through the task-specific configuration files.

Structure Encoder: The contact map was utilized to represent the 3D
protein structure because it contains complete protein structure informa-
tion, possesses inherent invariance capabilities, and was straightforward
for implementation. Therefore, our structure encoder was specifically
designed to encode the protein contact maps. Because the contact
map representation resembles an image, any widely adopted networks
for image-related takes can be employed as the encoder. ResNet50,[44]

Segment Anything Model (SAM),[45] and Swin-Transformer[28] models
were considered due to their popularity as image networks and superior
performance in various competitions. By evaluating them with pretrained
weights on the CATH domains with known protein structures (Figure S2,
Supporting Information), the Swin-Transformer (swinv2-tiny-patch4-
window8-256) was finally applied because it enables more effective
feature extraction from the contact map representation. To meet the
requirement of the image network, which expects three input channels,
the contact map was transformed into a representation with three chan-
nels. The raw contact map was generated by calculating the coordinate
distance between the C

𝛼
atoms for each amino acid for one sequence. In

general, a contact map was a binary matrix with a value of 1 if the pairwise
distance was within a chosen threshold, indicating contact between the
residues; otherwise, its assigned value was 0.

In our case, a distance threshold was applied for each channel and con-
verted the raw contact map into a continuous similarity matrix. Specifically,
the distance threshold for each channel was d: 22Å, the same value used
in AlphaFold2. The value of the similarity matrix ranges from 0 to 1, with
1 indicating the shortest pairwise distance, and 0 indicating the longest
distance. The final contact map representation can be formulated as the
following:

(d − CLIP (C, d)) ∕d (1)

where C represents the element of the raw contact map, and CLIP was a
function that can change the C values higher than d into d. By averaging the
embeddings of the representation layer of Swin-Transformer and excluding
the padding representation, the protein-level embedding of structure was
obtained for the contrastive-learning training. Then, two projector layers
were applied to the protein-level embedding to transform the dimension
into the final output protein-level embedding, which was 256D, the same
as the final output protein-level embedding from sequence.

Multi-View Contrastive Learning: The objective of contrastive learning
in this study was to bring closer the sequence embeddings and structure
embeddings from the same protein and further repel all the embeddings
from different proteins in the latent space. To achieve this, a multi-view
contrastive loss function was applied to the protein-level embeddings ob-
tained from the last projection layer of the sequence and structure en-
coders. The multi-view contrastive loss function was modified based on
the NT-Xent (the normalized temperature-scaled cross-entropy loss) in
SimCLR.[29] In contrast to the SimCLR paper, in our approach, the pos-
itive pair was only defined for sequence embedding (Ei

seq) and structure

embedding (Ei
str) from the same protein i. Then the multi-view contrastive

loss function for the positive pair (Ei
seq, Ei

str) is defined in the following
equation:

LEi
seq, Ei

str
= − log

exp

(
sim

(
Ei

seq,Ei
str

)
𝜏

)
∑N

k=1 1k≠iexp

(
sim

(
Ei

seq,Ek
str

)
𝜏

)
+ 1k≠iexp

(
sim

(
Ei

seq,Ek
seq

)
𝜏

)
+ 1k≠iexp

(
sim

(
Ei

str ,Ek
str

)
𝜏

) (2)

where 1k≠i ∈ {0, 1} is an indicator function equaling 1 if k ≠ i and 𝜏 de-
notes a temperature parameter; N is the batch size. The sim(x, y) is a func-
tion that quantifies the similarity between embeddings x and y, defined as
follows:

sim (x, y) =
xT y‖x‖ ‖‖y‖‖ (3)

This loss function helps to maximize the alignment of the embeddings
for protein i in the two views (Ei

seq, Ei
str) and minimize the alignment be-

tween protein i and the other proteins (k ≠ i). The final contrastive loss
was calculated for all positive pairs within a mini-batch of samples.

Preparation of Training Dataset for Contrastive Learning and Training
Process: The training database was prepared by obtaining the protein’s
amino acid sequences from the Swiss-Prot library and saving them in the
FASTA format. The 3D structures of the proteins were obtained from the
AlphaFold2 repository. The C

𝛼
–C

𝛼
contact maps for individual proteins

were determined using in-house Python code based on the AlphaFold2
predicted 3D structures. A random selection of 500 000 proteins was made
from the Swiss-Prot library for training and 41 500 proteins selected for
validation. Sequences in the validation set similar to the ones in the train-
ing set were not removed. Given the massive size of the Swiss-Prot library
(542 378 proteins in total), such similarity was negligible.

During the pretraining, input proteins larger than 512 residues were
truncated, retraining only the first 512 residues for both sequence and con-
tact map. For optimization, two separate SGD optimizers with a momen-
tum of 0.9, were employed tailored for both the sequence and structure
backbones. A cyclic learning rate schedule was applied, reducing the learn-
ing rate from 0.001 to 0 over 100 steps per cycle. The batch size was set to
20, with a weight decay of 0.0005, and no gradient accumulation was used.
The temperature parameter 𝜏 was set to 0.05. To ensure training stability,
gradient norm clipping was applied with a threshold of 1.0. Additionally,
the mixed precision technique[46] was utilized to accelerate training and
optimize GPU memory usage in all the experiments conducted in this
study. The training was performed on a single A100 GPU for more than
20 epochs using the computational facility of the University of Missouri.

Lightweight Tuning on Sequence Encoder: The lightweight tuning strat-
egy in this paper refers to training approaches that make specific and
often parameter-efficient modifications to a preexisting model, reducing
the computational resources and memory needed compared to training a
model from fully fine-tuning. The fine-tuning top layers, LoRA, and adapter
tuning were implemented on the sequence encoder of S-PLM, as shown
in Figure 1, for downstream protein sequence prediction tasks. The details
for each strategy are as follows:

Lightweight Tuning on Sequence Encoder—Fine-Tuning Top Layers: The
ESM2 backbone model had 33 total Transformer layers. Here, “fine-tuning
top layers” refers to fine-tuning only the top K ≤ 33 transformer layers and
freezing the remainder. Here, K was a hyperparameter in our configuration.

Lightweight Tuning on Sequence Encoder—LoRA: LoRA refers to low-
rank adaptation,[23] which freezes the pretrained model weights and in-
jects trainable rank decomposition matrices into each layer of the Trans-
former architecture. It can greatly reduce the number of trainable param-
eters for downstream tasks. For a pretrained weight matrix W0 ∈ ℝdxk,
its update ΔW can be represented as a low-rank decomposition ΔW =
BA, where B ∈ ℝdxr , A ∈ ℝrxk, and the rank r ≪ min(d, k). During train-
ing, W0 is frozen, A and B contain trainable parameters. For an input x, the
LoRA forward pass yields the following:
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h = W0 + ΔWx = W0 + BAx (4)

In the implementation of LoRA, ΔWx is scaled by 𝛼

r
, where 𝛼 is a con-

stant in r. In our implementation, the low-rank decomposition matrices
were applied to the query, key, value, and output projection matrices in the
self-attention module of the top-K Transformer layers of ESM2 (Figure 1d).
Here, K, 𝛼, and r were hyperparameters in our configuration.

Lightweight Tuning on Sequence Encoder—Adapter Tuning: Adapter
tuning involves integrating adapter modules into the Transformer layer
of the ESM2 model. The adapter modules were implemented accord-
ing to Houlsby’s study.[21] It was positioned twice in one Transformer
layer of ESM2: after the self-attention projection and after the two feed-
forward. Each adapter module consisted of a bottleneck structure and a
skip connection. The bottleneck structure compressed the input data into
a reduced-dimensional space and then reconstructed the data to restore
it to the original input dimension. The bottleneck structure enabled the
adapter module to have few parameters relative to the attention and feed-
forward layers in the original Transformer. The integration of the ESM2
model with the Structure-Aware Modules is illustrated in Figure 1b. Unlike
the original adapter tuning,[21] which applied the adapter modules into all
Transformer layers, these were specifically inserted into the top-K Trans-
former layers of ESM2. In our configuration, K is a hyperparameter.

For supervised downstream tasks, adapter tuning was implemented by
integrating an additional set of parallel adapters into the Structure-Aware
Modules, with each adapter dedicated to a specific task, as depicted in
Figure 1c. Each of these adapter modules shared the same architecture
as those in the Structure-Aware Module and captured different aspects of
the input features tailored to various downstream tasks. These modules
independently processed the same input features, extracting unique repre-
sentations that were then combined. For training a new downstream task,
a new trainable adapter module was added to the list of parallel adapters,
while all previously added parallel adapters were frozen. The process for
merging the parallel adapters is detailed in Equations (5) and (6):

h′ = h +
N∑

i=1

ai (h) (5)

a (h) = Wup ⋅ 𝜎 (Wdown ⋅ h + bdown) + bup (6)

where h represents the input features for a Transformer layer, N is the
number of parallel adapters and ai(·) denotes a single adapter module
with Wup and Wdownas trainable projection matrices for up-projection and
down-projection, respectively, and the ReLU activation function 𝜎, along
with trainable biases bup and bdown, were also part of the adapter module.

In our experiments, which involved only a single task, N was set to 2,
representing the Struct-Aware Module plus one parallel adapter for task-
specific tuning.

The hyperparameter used and the number of trainable parameters for
each training strategy for all the downstream tasks is shown in Table 2.

Data Preprocessing for CATH Superfamily Clustering: The sequence
data was downloaded with CATH annotations from the CATH database (re-
lease v4_3_0)[31] and the cath-dataset-nonredundant-S40-v4_3_0 dataset,
whose proteins of maximally 40% sequence identity were used. Only se-
quences that had records of known protein structures were retained. One
represented sequence with the longest sequence length was selected from
one CATH superfamily. The three most represented categories of class
(1553 sequences), the five most represented categories of architecture
(1,049 sequences), and the five most represented categories of topology
(306 sequences) from the CATH hierarchy were considered. The selected
CATH sequences are provided in Data S1 (Supporting Information).

Downstream Supervised Protein Prediction Tasks: The downstream su-
pervised protein prediction tasks included four protein-level prediction
tasks—protein fold classification, enzyme reaction classification, GO term
prediction, and EC number prediction—and one residue-level prediction
task, protein secondary structure prediction. For protein-level tasks, mean
pooling was applied to obtain protein-level representations, while for the
residue-level task, the residue-level representations were directly used as

generated by the sequence encoder. A task-specific classification layer was
then applied to the corresponding representations.

Downstream Supervised Protein Prediction Tasks—Fold Classification:
Protein fold prediction was utilized to accurately determine the fold class
label of a given protein. The same dataset splits from the study were
used.[47] The dataset comprised 16 712 proteins, classified into 1195 dis-
tinct fold classes. The dataset has three test sets: “Fold,” “Superfamily,”
and “Family.” In the “Fold” set, training was conducted, excluding pro-
teins from the same superfamily. In the “Superfamily” set, proteins from
the same family were excluded from training. In the “Family” set, proteins
belonging to the same family were included in the training process. Input
sequences exceeding 512 residues were truncated, retaining only the first
512 residues for each sequence. It was formulated as a multi-class classi-
fication problem. A dense neural network layer with an output dimension
of 1195 was used as the classification layer, and focal loss[48] (gamma =
2.0) was applied to the output.

Downstream Supervised Protein Prediction Tasks—Enzyme Reaction Clas-
sification: The goal of enzyme reaction classification was to determine
the class of enzyme-catalyzed reactions for a protein, utilizing all four
levels of EC numbers.[49] Following the methodology described in the
study,[50] the dataset was split into training, validation, and test sets, com-
prising 37 428 proteins categorized across 384 four-tiered EC numbers. All
proteins had less than 50% sequence similarity across the data splits. In-
put sequences exceeding 512 residues were truncated, retaining only the
first 512 residues for each sequence. It was formulated as a multi-class
classification problem. A dense neural network layer with an output dimen-
sion of 384 was used as the classification layer, and focal loss (gamma =
2.0) was applied to the output.

Downstream Supervised Protein Prediction Tasks—GO Term Prediction:
The objective of GO term prediction was to ascertain the association of a
protein with a specific GO term, including three tasks: biological process
(BP), molecular function (MF), and cellular component (CC). Each task
was formulated as a multi-label classification problem. The same dataset
splits from the study were used,[51] where the test set has up to 95% (30%,
40%, 50%, 70%, and 95%) sequence similarity with the training set. Input
sequences exceeding 512 residues were truncated, retaining only the first
512 residues for each sequence. A dense neural network layer was used
as the classification layer for each subtask, with an output dimension of
1943 for BP, 489 for MF, and 320 for CC. The binary cross-entropy loss, im-
plemented using ‘torch.nn.BCEWithLogitsLoss’ in Pytorch, was applied to
each output.

Downstream Supervised Protein Prediction Tasks—EC Number Prediction:
The objective of this task was to identify the 538 distinct third- and fourth-
level EC numbers, which characterize the catalytic functions of various pro-
teins in biochemical reactions. It was formulated as a multi-label classifica-
tion problem. The same dataset splits from the paper were used,[51] where
the test set has up to 95% (30%, 40%, 50%, 70%, and 95%) sequence
similarity with the training set. Input sequences exceeding 512 residues
were truncated, retaining only the first 512 residues for each sequence. A
dense neural network layer with an output dimension of 538 was used as
the classification layer. The binary cross-entropy loss, implemented using
“torch.nn.BCEWithLogitsLoss” in Pytorch, was applied to the output.

Downstream Supervised Protein Prediction Tasks—Secondary Structure
Prediction: This task aims to predict the local structures of protein
residues into three secondary structure labels (i.e., coil, strand, or helix).
The same dataset splits in the reference were used,[41] adopting Klausen’s
dataset[52] as the training set and the CB513 dataset[53] as the test set. No
two proteins have greater than 25% sequence identity, and the test set has
less than 25% sequence identity against the training set. As done in the
reference,[41] sequences with more than 1022 residues were truncated by
keeping the first 1022 residues. It was formulated as a residue-level multi-
class classification problem. A shared dense neural network layer with an
output dimension of three was used as the classification layer for each
residue. The focal loss (with gamma = 2.0) was applied to the output,
with padding tokens masked.

The statistics of the dataset for each task is shown in Table S2 (Support-
ing Information). The data can be downloaded from https://github.com/
duolinwang/S-PLM/tree/main/SPLM_Data/. For all downstream training,
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the Adam optimizer were utilized. Detailed configuration settings can be
found in the GitHub repository associated with this paper (https://github.
com/duolinwang/S-PLM/tree/main/configs)

Implementation of the Lightweight Tunning Tools: The source code
of the lightweight tunning tools is available at https://github.com/
duolinwang/S-PLM/. Developed primarily using PyTorch (version 1.12.1),
these tools facilitate training and evaluation for the protein prediction
tasks described in Methods 7. Users can reproduce the results presented
in this paper by retraining with the provided configuration files in the “con-
figs” folder. For customized training with user-specific data, users should
incorporate specific data-processing functions into the data.py file to adapt
the data format to our model. Protein-level prediction tasks, such as fold
and GO tasks, can be referenced for protein-level prediction, while the sec-
ondary structure task serves as a reference for residue-level prediction. Ad-
ditionally, users have the flexibility to select the desired lightweight tuning
strategy and modify specific parameters by adjusting the parameters in the
configuration files.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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