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A B S T R A C T

Understanding and manipulating the cofactor preferences of NAD(P)-dependent oxidoreductases, the most
widely distributed enzyme group in nature, is increasingly crucial in bioengineering. However, large-scale
identification of the cofactor preferences and the design of mutants to switch cofactor specificity remain as
complex tasks. Here, we introduce DISCODE (Deep learning-based Iterative pipeline to analyze Specificity of
COfactors and to Design Enzyme), a novel transformer-based deep learning model to predict NAD(P) cofactor
preferences. For model training, a total of 7,132 NAD(P)-dependent enzyme sequences were collected.
Leveraging whole-length sequence information, DISCODE classifies the cofactor preferences of NAD(P)-
dependent oxidoreductase protein sequences without structural or taxonomic limitation. The model showed
97.4% and 97.3% of accuracy and F1 score, respectively. A notable feature of DISCODE is the interpretability of
its transformer layers. Analysis of attention layers in the model enables identification of several residues that
showed significantly higher attention weights. They were well aligned with structurally important residues that
closely interact with NAD(P), facilitating the identification of key residues for determining cofactor specificities.
These key residues showed high consistency with verified cofactor switching mutants. Integrated into an enzyme
design pipeline, DISCODE coupled with attention analysis, enables a fully automated approach to redesign
cofactor specificity.

1. Introduction

NAD(H) and NADP(H), hereafter referred to as simply NAD and
NADP, are essential cofactors ubiquitous in all domains of life forms,
playing a pivotal role in the transferring reducing equivalents in most
oxidoreductase reactions. Despite their near-identical structures, NADP
is distinguished by an extra phosphomonoester moiety at the 2′ position
of its adenine ribose. This slight structural variance leads to distinct
enzymatic affinities for the two cofactors, facilitating functional segre-
gation based on cellular demands (Agledal et al., 2010; Goldford et al.,
2022; Russell and Cook, 1995). Managing the balance of these cofactors
in line with cellular demands is complex, yet essential for processes like
metabolic engineering or synthetic biology, where optimizing these
balances is crucial for efficient biochemical production (Bennett et al.,
2009; Wang et al., 2013). To overcome these challenges, ‘cofactor
switching’ – altering an enzyme’s native cofactor specificity to its

alternative form – has emerged as a strategic approach (Chánique and
Parra, 2018; Vidal et al., 2018; Wang et al., 2017). This can either
replenish the cofactor supplies (Cheng et al., 2023; Jia et al., 2022; Ma
et al., 2023; Son et al., 2023) or tailor the enzymatic cofactor preference
to align with the host organism’s metabolism (Jia et al., 2022; Meng
et al., 2016; Pick et al., 2014). Furthermore, King & Feist conducted a
comprehensive study using constraint-based modeling to analyze
cofactor switching impacts. Their research showed that cofactor
switching can enhance the production yields of various substances in
Escherichia coli and Saccharomyces cerevisiae (King and Feist, 2014).

Extensive studies on NAD(P)-dependent enzymes have shed light on
protein engineering techniques for cofactor switching. A predominant
NAD(P) binding motif in these enzymes is the Rossmann fold (Medvedev
et al., 2019, 2021; Rossmann et al., 1974). However, studies have also
identified other NAD(P)-dependent oxidoreductases with different
structural motifs, such as TIM barrel, 3-Dehydroquinate synthase-like
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fold, and FAD/NAD-binding fold (Brakoulias and Jackson, 2004;
Campbell et al., 2013; Carpenter et al., 1998; Nagano et al., 2002). Since
the initial breakthrough in protein engineering for cofactor switching
(Scrutton et al., 1990), numerous instances of successful cofactor
switching have been documented (Chánique and Parra, 2018). These
studies highlight that cofactor preferences often hinge on specific resi-
dues near the adenine moiety of bound NAD(P) (Cahn et al., 2017;
Carugo and Argos, 1997; Laurino et al., 2016). Additionally, the pres-
ence of glycine-rich motifs, GXXXXG/A, in the Rossmann fold, has been
noted to influence enzyme’s cofactor preferences (Dambe et al., 2006;
Kleiger and Eisenberg, 2002). Nonetheless, these findings suggest that
cofactor preferences are influenced by the overall structure of the
binding pocket, and rational engineering requires thorough investiga-
tion, experiment, and expertise. Furthermore, approaches like random
mutagenesis and screening face limitations due to the vast number of
potential combination of mutants (Cahn et al., 2017; Naylor et al.,
2001).

To overcome the complexities in designing cofactor switching,
various computational strategies have been employed to either differ-
entiate or redesign cofactor specificities. These methods range from
physics-based simulations, sequence or structure-based studies, and
machine learning-based predictions (Cahn et al., 2017; Cui et al., 2015;
Geertz-Hansen et al., 2014; Kallberg and Persson, 2006; Kaminski et al.,
2022; Khoury et al., 2009; Sugiki et al., 2022). Among these, machine
learning-based Cofactory and Rossmann-toolbox stand out for their
ability to perform high-throughput, sequence-based predictions of
cofactor specificities (Geertz-Hansen et al., 2014; Kaminski et al., 2022).
However, their effectiveness is largely contingent on identification of
Rossmann fold motifs, limiting their applicability to variants of these
motifs and other types of NAD(P)-dependent enzymes. Additionally,
their use in mutant design is constrained by the computational costs
involved in examining the vast array of possible sequence combinations.

Deep learning models, while achieving remarkable successes in
analyzing diverse biological data, are often criticized as ‘black boxes‘
due to their opaque reasoning processes. This lack of transparency
hinders interpretability and trust in their decision-making capabilities.
Explainable AI (XAI) emerges as a solution to address these limitations
(Karim et al., 2023). Existing XAI methods, such as Local Interpretable
Model-agnostic Explanations (LIME) (Ribeiro et al., 2016),
Gradient-weighted Class Activation Mapping (Grad-CAM) (Selvaraju
et al., 2017), and Integrated Gradients (Sundararajan et al., 2017), have
provided insights into the behavior of models in protein property pre-
diction (Chen et al., 2021; Kim et al., 2021; Yang et al., 2023). However,
the transformer architecture (Vaswani et al., 2017), currently the state
of the art in natural language processing, offers a unique advantage for
interpretation in protein sequence analysis. By analyzing its multi-head
self-attention layers, we can directly assess the importance of each input
token in the model’s decision-making process, intuitively unveiling its
focus from multiple perspectives. Moreover, the transformer excels at
processing sequential data and capturing long-range dependencies,
which are crucial aspects of protein sequences. This makes it more
suitable than other deep learning models, like convolutional neural
networks (CNN) that primarily extract local features and struggle with
sequential data processing (Chandra et al., 2023). Recently, while
transformer-based protein sequence models have emerged (Chandra
et al., 2023; Lin et al., 2023), a limited number of studies explored their
attention layers (Kim et al., 2023; Zhou et al., 2023), especially for
practical bioengineering applications. This gap underscores the poten-
tial for further research in leveraging transformer interpretability for
more insightful protein sequence analysis.

In this study, we present DISCODE (Deep learning-based Iterative
pipeline to analyze Specificity of COfactors and to Design Enzyme), a
broadly applicable model for classifying NAD/NADP cofactor speci-
ficity. This model incorporates the transformer architecture due to its
explainability and ability to capture long-range dependencies common
in protein sequences, further enhanced with ESM-2 embeddings (Lin

et al., 2023; Vaswani et al., 2017). Leveraging the self-attention mech-
anism inherent to the transformer architecture (Chandra et al., 2023;
Hao et al., 2021), DISCODE effectively predicts the cofactor preferences
of NAD(P)-dependent oxidoreductases across a wide range of sequences.
This makes it universally suitable for any NAD(P)-dependent oxidore-
ductases. Moreover, the attention-based interpretative capability of
DISCODE allows for a meaningful representation of protein sequences in
relation to cofactor specificities. This, in turn, offers valuable insights
and guidelines for the design of site-directed mutants aimed at cofactor
switching.

2. Methods

2.1. NAD(P)-dependent oxidoreductases dataset

NAD and NADP binding protein sequences were retrieved from the
Swiss-Prot database (released May 2023) (Bateman et al., 2023). The
enzymes showed dual selectivity were excluded. To prevent over-
representation of redundant proteins, the collected sequences were
clustered based on 90.0% similarity using the UCLUST algorithm built in
USEARCH (Edgar, 2010). The remaining protein sequences were further
manually curated based on several criteria: The reactions that are not
related to transfer reducing equivalents, such as NAD, NADP synthesis,
degradation, transport reactions, and allosteric bindings were excluded
from the dataset. For multi-subunit enzymes, the only subunit directly
binding with NAD or NADP (e.g. a reductase subunit) was retained in the
dataset. Fragmented sequences and those with a length over 512 were
excluded (this does not indicate that DISCODE has a sequence length
limitation). The dataset was further trimmed in cases when other co-
factors such as FAD is preferred over NAD or NADP based on literature
search. To characterize the dataset, an EC number, taxonomy, and CATH
code were assigned to each protein sequence. The EC number and tax-
onomy were retrieved from the metadata in UniProt (Bateman et al.,
2023). For CATH classification, the dataset was annotated using Inter-
ProScan 5, and a CATH code was assigned based on G3DSA accession
(Jones et al., 2014; Orengo et al., 1997). A total of 7,132 sequences are
listed in Supplementary dataset 1.

2.2. Cofactor switching mutation dataset

To collect cofactor switching cases, sequences and kinetic parame-
ters were retrieved from extensive literature search. Catalytic efficiency
was defined (equation (1)) using Kcat and cofactor Km values, and it was
used to calculate the cofactor specificity ratio (equation (2)). Given that
NAD(P)-dependent enzymes generally follow a Bi-Bi reaction mecha-
nism, we used cofactor Ka value as the apparent Km when the concen-
tration of the other substrate remain constant. A case is considered
reversed only if the cofactor specificity ratio exceeds 1.

Catalytic efficiency=
kcat
Km

(equation 1)

Cofactor specificity ratio=
CENAD or NADP

CENADP or NAD
(equation 2)

when calculating the catalytic efficiency, the kinetic parameters of both
wild type and mutants were considered based on their respective ligand
preferences: the wild type for its original preference and the mutants for
the opposite preference. A total of 43 cases and their kinetic parameters
are summarized in Supplementary dataset 2. The assay conditions (pH
and temperature) for each case were within typical biological ranges.

2.3. Model architecture and training

DISCODE consists of eight encoder layers of the transformer
(Vaswani et al., 2017) and two fully connected layers (Fig. 1A). Each
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encoder layer comprises 20 heads and employs the GELU (gaussian error
linear unit) activation function internally. At the final stage of the
model, the sigmoid function is utilized as the activation function, while
binary cross entropy is applied as the loss function, respectively. The
input protein sequence is pre-processed by ESM-2 transformer (Lin et al.,
2023) for tokenization and embedding. The dimension of the embedded
sequences remains at (L, 480; L is length of input sequence) until it
leaves the encoder. Using global average pooling (GAP), a feature vector
is extracted from the final layer of the encoder with 480 dimensions. The
feature vector is subsequently processed by two fully connected layers
with a decreasing number of nodes (96 and 2, respectively), followed by
label prediction using the sigmoid function. Total 7,132 NAD
(P)-dependent oxidoreductase sequences were divided into training,
validation, and test datasets, with the proportions approximately
70:15:15, respectively. During training, early stopping was employed by
monitoring the validation loss (Supplementary Fig. 1). DISCODE was
implemented using PyTorch v.2.0.1 (Paszke et al., 2019). The
well-trained model and its associated codes are available in the GitHub
repository (https://github.com/SBML-Kimlab/DISCODE).

2.4. Benchmarking of models

To evaluate predictive performance of DISCODE, the model was
compared with Cofactory (Geertz-Hansen et al., 2014) and
Rossmann-toolbox (Kaminski et al., 2022) using the test dataset

described in above section (1,070 sequences). For benchmarking using
the test dataset, since both Cofactory and Rossmann-toolbox require
Rossmann motif detection, only the sequences that succeeded in the
detection were evaluated and cases which fail to detect the motifs were
treated as ‘not predicted’. For the three tools, predictions were desig-
nated as specific cofactor only in cases where the label value with the
highest probability was over 0.5. If all label probabilities were below
0.5, the sequence was considered as ’others’. In addition, FAD and SAM
labels in results of Cofactory and Rossmann-toolbox were designated as
‘others’. As metrics for comparison of the results, accuracy and F1 score
were calculated for NAD and NADP labels, where TP, TN, FP, and FN
denoted true positive, true negative, false positive, and false negative,
respectively (equations (3) and (4)). Macro-scale accuracy and F1 score
were calculated as by averaging corresponding metrics.

Accuracy=
TP+ TN

TP+ FN+ FP+ TN
(equation 3)

F1 score=
TP

TP+ 1
2 (FP+ FN)

(equation 4)

2.5. Model interpretation

Attention weights of an input sequence can be obtained from the 20
heads within each of 8 attention layers of DISCODE. The overall shape of
attention layers is [8, 20, L, L] where L is a length of an input sequence.

Fig. 1. Architecture overview of transformer-based enzyme sequence model, its performance assessment, and the characteristics of sequence dataset used
for model training. A) Description of the DISCODE model architecture. This model was built upon a transformer framework consisting of eight consecutive encoder
layers, each containing 20 self-attention heads. The initial step involves preprocessing the input enzyme sequence using the ESM-2 language model, which handles
tokenization and embedding. Following this, the sequence undergoes processing through the encoder layers, global average pooling, and fully connected layers. In
the final stage, sigmoid function is employed to transform the logits into probability scores, indicating cofactor preferences for either NAD or NADP. B) Confusion
matrix of the test dataset. The transformer model underwent training, validation, and testing using the dataset split training, validation, and test sets in a 70:15:15
ratio. The generated confusion matrix for the test set demonstrates an accuracy performance of 97.4%. C) Confusion matrix of the mutation dataset. The transformer
model, once trained, was applied to predict the preference labels of curated laboratory mutants, specifically those altered for NAD/NADP cofactor switching through
site-directed mutagenesis. Notably, the model accurately predicted 32 out of 43 mutants that exhibited reversed cofactor specificity. D) Taxonomic classification of
the enzyme sequences. Among the total 7,132 enzyme sequences analyzed, a substantial 74.3% originated from bacteria. The rest were distributed among five other
groups: fungi, plants, animals, protists, and archaea. Additionally, there were 9 sequences that, unlike the rest, were derived from viruses rather than traditional
organisms. E) Classification of enzyme sequences by EC number. In the dataset, the vast majority of enzyme sequences were identified as oxidoreductases (EC 1,
99.8%). The remaining 12 sequences fell into others categories. Within the EC 1 group, these enzyme sequences were further divided into 11 distinct subcategories,
each characterized by specific functional attributes. F) CATH-based classification (Orengo et al., 1997). Most sequences belong to the alpha beta fold (3.-) class. This
includes the Rossmann fold (3.40.50), a well-known structural motif for NAD(P) binding. A small fraction of sequences belonged to 1.- (mainly alpha) and 2.- (mainly
beta) classes.
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To visualize a maximum attention map, the maximum value among [L,
L] shaped attention matrix in each head was taken and the shape of the
maximum attention map is [8, 20] to indicate the maximum value of
each head. In addition, to calculate the attention sum for each residue,
attention values from all attention layers were first summed by position.
The resulting matrix was then summed along the vertical axis to produce
a 1-dimensional array with a shape of [L]. If the overall attention score
matrices are denoted as A and if its axes are i, j, k, and l, equation (5)
describes how the attention sum array is derived, which contains the
attention sum of each residue.

Attention sum array=
∑

j

∑

k

∑

l

Ai,j,k,l (equation 5)

Then, outlier residues were chosen based on a criterion given by
equation (6), using the mean (M) and the standard deviation (S) calcu-
lated from the attention sum array. Only positions that satisfy the
threshold are selected as outlier residues. Our test results for other
threshold metrics are shown in Supplementary Fig. 6.

Attention scorei > M+ 2*S (equation 6)

3. Results

3.1. Development of a transformer-based model for predicting NAD(P)
preference

DISCODE, a transformer-based deep neural network model, was
developed for the purpose of determining the preference of NAD(P)-
dependent oxidoreductases between NAD(H) or NADP(H), based on
their protein sequences. This model was designed to analyze entire
protein sequences for preference prediction, thereby avoiding limita-
tions associated with specific structural motifs like the Rossmann fold. A
secondary aim of this model was to provide explainable AI functionality.
Therefore, we adopted a transformer architecture, which is effective not
only for sequential data processing but also for interpreting the results.
The model incorporates 8 encoder layers from the transformer archi-
tecture (Vaswani et al., 2017), each featuring 20 heads (Fig. 1A). Protein
sequences undergo initial preprocessing using the ESM-2 transformer
model for embedding (Lin et al., 2023), after which the resulting matrix
is input into the multi-head attention layer. Following this, the feature
vector is processed via average pooling and fully connected layers to
make a prediction.

For model training, protein sequences of NAD(P)-dependent oxido-
reductases were sourced from the Swiss-Prot database (released May
2023) (Bateman et al., 2023). These sequences were further carefully
curated, excluding enzymes with dual cofactor selectivity, resulting in a
collection of 7,132 non-redundant sequences (detailed in Methods). The
dataset was then randomly partitioned into training, validation, and test
datasets following a 70:15:15 ratio. To avoid overfitting during the
training process, strategies such as early stopping, batch normalization
and dropout were implemented (Fig. 1A, Supplementary Fig. 1).
Consequently, the model demonstrated a high accuracy of 0.9738 on the
test dataset (Fig. 1B).

In the creation of NAD(P) preference prediction model with universal
applicability, an extensive array of protein sequences was gathered.
Each sequence was analyzed for its taxonomic origin, EC number, and
CATH identifier (Supplementary dataset 1) (Orengo et al., 1997). The
majority of these sequences were bacterial (5,300, 74.3%) and archaeal
(353, 4.9%). A significant fraction also originated from the eukaryotic
domain (1,470, 20.6%), including fungi (533, 7.5%), animals (449,
6.3%), plants (409, 5.7%), and protists (79, 1.1%). Additionally, 9
virus-derived sequences (0.1%) were identified (Fig. 1D). The dataset
predominantly consisted of oxidoreductases (EC 1), totaling 7,120 se-
quences (99.8%), spread across more than 10 sub-categories (Fig. 1E).
According to CATH identifiers, the most common structural group was
the Rossmann fold (3.40.50.-, 4,732, 66.3%) and its strict portion

(3.40.50.720, 4,248, 59.6%). Nonetheless, a significant proportion
showed structural variations while retaining the alpha-beta fold char-
acteristic of the Rossmann domain—97.2% for the 3.- (alpha-beta)
group and 80.8% for the 3.40.- (alpha-beta-alpha sandwich) group.
Notably, 2.8% (200) of sequences had different CATH identifiers start-
ing with 1 (mainly alpha) or 2 (mainly beta) (Fig. 1F). These included
non-Rossmann folds like TIM barrel (3.20.20), FAD/NAD(P)-binding
domain superfamily (3.50.50), and 3-dehydroquinate synthase-like
fold (1.20.1090.10 or NA). This diversity underscores the importance
of not relying solely on the Rossmann fold domain for a universally
applicable model, considering the convergent or divergent evolution of
NAD(P)-dependent oxidoreductases.

3.2. Evaluation of the predictive accuracy of DISCODE and analysis of
cofactor switching mutation impacts

The predictive performance of DISCODE was benchmarked against
other cofactor prediction models, namely Cofactory (Geertz-Hansen
et al., 2014) and Rossmann-toolbox (Kaminski et al., 2022). Cofactory
utilizes a feed-forward fully connected network for classifying NAD,
NADP, and FAD labels, whereas Rossmann-toolbox employs a con-
volutional neural network to classify NAD, NADP, FAD, and SAM labels.
These tools, reliant on the Rossmann fold sequence detection, had their
accuracy assessed only in scenarios where such detection was feasible.
The evaluation used a test dataset (detailed in Methods) for comparison
and benchmarking. DISCODE surpassed both Cofactory and
Rossmann-toolbox in terms of accuracy and F1 scores (Table 1).
Impressively, DISCODE managed to process all 1,070 sequences in the
dataset, in contrast to Cofactory which processed 568, and
Rossmann-toolbox which processed 698 due to their preprocessing steps
(Table 1). Furthermore, when focusing on the Rossmann fold subset of
the test dataset, comprising 635 sequences with the 3.40.50.720 CATH
identifier, DISCODE continued to exhibit higher accuracy and F1 scores
compared to the alternative tools (Table 1). This was noteworthy, even
as Cofactory and Rossmann-toolbox displayed improved accuracies,
aligning with their previously reported performance (Kaminski et al.,
2022).

The effectiveness of DISCODE was further assessed using a dataset of
experimentally verified mutations. Following specific selection using the
criteria (detailed in Methods), a collection of 43 instances of site-
directed mutagenesis was compiled, each demonstrating a complete
shift in cofactor specificity. For all these instances, the model accurately
predicted all 43 labels of the wild-type sequences. When applied to the
mutant sequences, DISCODE correctly predicted the cofactor specificity
reversal in 32 out of the 43 cases (74.4%) (Fig. 1C). This indicates that
while most evolutionary traits from the full-length sequence still retain
features favoring the original cofactor preference, the model could
sensitively discern the effects of the cofactor switching mutations.

In summary, DISCODE exhibits higher accuracy and a more exten-
sive range of predictive capabilities compared to other available tools.
Furthermore, it is able to reasonably predict the outcomes of mutations,
though with a marginally lower level of accuracy compared to its pre-
dictions for wild-type cases.

3.3. Analyzing protein sequences for cofactor specificities using attention-
based interpretation

In an effort to comprehend how DISCODE discerns cofactor speci-
ficity, an analysis of the attention layers of the model was conducted, as
attention weights can be interpreted as indicating the relative impor-
tance between tokens in this binary classification. This examination was
exemplified by analyzing the attention weights of Neurospora crassa L-
arabinitol 4-dehydrogenase (PDB: 3M6I), an NAD-dependent Rossmann
fold enzyme whose cofactor switching has been well studied. The
attention weights across its 160 heads (20 heads per each of the 8 layers)
showed a vertical pattern (Supplementary Fig. 2). Within these heads,
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Table 1
Evaluation of DISCODE predictive accuracy relative to other models.

Dataset Classification Methods True label Prediction Accuracy F1 score

NAD NADP Others No

Test dataset Cofactory NAD 230 9 21 200 0.7465 0.7455
NADP 62 194 52 302

Rossmann-toolbox NAD 239 18 26 177 0.8209 0.8175
NADP 19 334 62 195

DISCODE NAD 439 21 0 0 0.9738 0.9732
NADP 7 603 0 0

Rossmann fold subset Cofactory NAD 209 9 5 42 0.8361 0.8359
NADP 60 104 5 111

Rossmann-toolbox NAD 239 18 5 3 0.9124 0.9104
NADP 19 334 13 4

DISCODE NAD 253 12 0 0 0.9764 0.9756
NADP 3 367 0 0

Fig. 2. Interpretation of the trained transformer model focusing on attention mechanisms to identify key residues determining cofactor specificity be-
tween NAD and NADP. A) Representation of maximum attention maps of 3M6I and 1CYD, corresponding to NAD- and NADP-dependent enzymes, respectively. In
these maps, each value signifies the maximum attention weight for each respective head. Notably, the attention maps for these two enzymes exhibited distinct
patterns. B) Interpretation of the model based on the attention sum. The red dotted lines indicate the threshold for identifying outlier residues, and yellow circles
highlight the outlier residues. C) Crystal structures of 3M6I and 1CYD. The outlier residues are highlighted in purple. In 3M6I, residues D211 and I212 are located in
proximity to adenine and ribose moieties in NAD. In contrast, in 1CYD, residues T38, R39, and T40 are positioned close to the adenine, ribose, and phosphate
moieties of NADP. This highlights the correlation between the attention sum and structurally significant positions that influence cofactor specificities. D) Frequency
distribution of amino acids in outlier residues from the test dataset. The amino acid counts exhibited varying distributions between NAD- and NADP-
dependent enzymes.
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certain patterns exhibited uniformly low attention weights, while others
had more pronounced attention weights concentrated at specific posi-
tions (Supplementary Fig. 2). These latter instances were highlighted by
visualizing the maximum attention of each head, which is likely to
provide residue-specific insights into cofactor specificities (Fig. 2A). A
residue-specific attention sum was calculated by summing all attention
weights for each position, based on the vertical pattern and focused
attention on certain residues (equation (5)). Consequently, the attention
sum for 3M6I was visualized (Fig. 2B), revealing 6 outlier positions
according to a threshold (equation (6)). Among these, D211 and I212
stood out with higher scores. In comparison with the experimental
structure (PDB: 3M6I), both D211 and I212 were part of a structural
motif in the Rossmann fold, near the adenine moiety of NAD. The
original research (Bae et al., 2010) indicated the critical role of D211
and I212 in NAD specificity, with a D211S/I212R double mutant
exhibiting a reversed cofactor specificity toward NADP. Furthermore,
D211 might serve as an evolutional signature of NAD-specific dehy-
drogenase (Laurino et al., 2016).

In a second example, using Mus musculus carbonyl reductase (PDB:
1CYD), an NADP-dependent Rossmann fold enzyme whose cofactor
switching also has been well studied, analysis of its maximum attention
map revealed distinct patterns from those of 3M6I (Fig. 2A). While high
maximum attentions were similarly noticed in layers 2, 3, 4, and 5, the
specific heads within these layers exhibiting high scores varied consid-
erably. This variation suggests that different heads in the model may
contribute differently to the prediction of NAD and NADP preferences.
To investigate this, the average maximum attention maps were calcu-
lated for both NAD (460 sequences) and NADP (610 sequences) cases
from the 1,070 sequences in the test dataset (Supplementary Fig. 3).
These averaged maps mirrored the patterns observed in 3M6I and 1CYD
(Fig. 2A), supporting the hypothesis that these trends are not exclusive
to just these two instances. The attention sum analysis of 1CYD identi-
fied eight outlier residues, with T38, R39, and T40 showing higher
attention sums. These residues are located within the structural motif of
the Rossmann fold, adjacent to the adenine moiety of NADP (PDB:
1CYD; Fig. 2C). According to its cofactor switching study, T38 is crucial
for interaction with the 2′-phosphate moiety of NADP and serves as the
counterpart of Asp in NAD(H)-dependent oxidoreductases (Nakanishi
et al., 1997). Notably, the T38D mutant was reported to showing a
sufficient shift in cofactor specificity towards NAD (Nakanishi et al.,
1997). These findings imply that in both NAD and NADP cases, the
attention sum of each residue is a reliable indicator of its significance in
determining cofactor specificity.

To know which amino acids are frequently discerned as important by
the model for each cofactor, we performed a cumulative count of the
amino acid types from the outlier residues identified in the attention
analysis (Fig. 2D). This analysis encompassed the 1,070 sequences from
the test dataset, highlighting the differences in the amino acid frequency
of outlier residues between NAD and NADP-dependent enzymes. In the
case of NAD-dependent enzymes, amino acids such as Asp, Ile, Pro, and
Val were found to be more prevalent compared to their occurrence in
NADP-dependent enzymes (Fig. 2D). On the other hand, for NADP-
dependent enzymes, amino acids like Arg, His, Ser, and Thr were
observed more frequently than in NAD-dependent enzymes (Fig. 2D).
These variations in amino acid distribution identified by the model
consistent with previous studies, which empirically analyzed amino acid
frequencies in the context of mutations known to influence cofactor
switching (Cahn et al., 2017; Chánique and Parra, 2018).

Overall, the attention sum generated by the model serves as a reliable
indicator of the significance of particular residues in establishing
cofactor specificities. This interpretation is bolstered by the analysis of
two enzymes with distinct cofactor specificities, the aggregated data
from maximum attention maps, and the patterns observed in amino acid
distributions. Consequently, the attention analysis enables a deeper
understanding of the ‘black box’ of the model, shedding light on its
predictive processes. Notably, the optimized attention layers refined

during training appear to effectively capture changes most relevant to
NAD/NADP specificity, highlighting their role in discerning subtle dif-
ferences between cofactors. This suggests that the model not only per-
forms well in prediction but also suggests a strategic method for ranking
the importance of residues when designing mutations.

3.4. Utilizing attention analysis for mutation cases and a pipeline for a
design of cofactor switching

In evaluating the relationship between residues identified through
attention analysis and those used in experimental cofactor design, we
compared the outlier residues from the wild-type sequences in the mu-
tation dataset (detailed in Methods) with the positions of experimentally
verified side-directed mutagenesis for cofactor switching. The findings
revealed that in 81.4% of the instances (35 out of 43 cases), there was at
least one point of correspondence between the identified outliers and the
mutation sites (Fig. 3A). This underscores the model’s capability in
identifying viable candidates for mutation, particularly for cofactor
switching purposes. It is important to note, however, that since these
mutations are not derived from high-throughput experiments, it is not
feasible to verify every outlier residue. Moreover, the lack of overlap in
the remaining seven cases does not necessarily imply incorrect pre-
dictions, given the variety of potential strategies in mutation design. For
instance, the Q362K mutant of the human malic enzyme (PDB: 1PJ3)
(Hsieh et al., 2006), which is known for its reversed cofactor specificity,
does not reside within its Rossmann fold motif (Supplementary Fig. 4).
However, the substitution of 345D or 346K, as suggested by the atten-
tion analysis, could also serve as promising targets for cofactor switching
(Supplementary Fig. 4).

For the development of complex mutants that go beyond single-site
mutagenesis, the attention sum of a mutant sequence was analyzed.
Taking the NAD-dependent Escherichia coli pyruvate dehydrogenase
enzyme (PDB: 4JQ9) (Bocanegra et al., 1993), DISCODE accurately
predicted its preference for NAD and pinpointed nine outlier residues in
the wild-type sequence. Among these outliers, E205 and M206 were also
identified in experimental designs for cofactor switching. When E205V
or M206R were individually mutated, the model still predicted a pref-
erence for NAD. However, introducing a E205V/M206R double muta-
tion shifted the model prediction towards NADP preference, with a
probability of 0.9860 (Fig. 3B). Intriguingly, the attention analysis of the
double mutant highlighted F207K as a new outlier residue, aligning with
experimental designs (Fig. 3C). For the assessment of the
E205V/M206R/F207K triple mutant indicated an NADP preference with
a slightly increased probability of 0.9957 (Fig. 3B). This outcome im-
plies that reselecting outliers from mutant sequences can potentially
uncover more effective mutation targets for the modified sequence,
compared to those originally identified from the wild-type sequence.

A novel iterative pipeline for the automatic design of cofactor
switching mutants has been established, leveraging an attention-based
approach to select residues from both wild-type and mutant se-
quences. The pipeline operates through four iterative stages: (i) DIS-
CODE first predicts the cofactor preference of the input sequence; (ii) it
then identifies potential substitution sites via attention analysis; (iii)
mutant sequences are subsequently generated by altering amino acids at
these identified positions; (iv) finally, the model evaluates the cofactor
preference of each mutant, selecting those with a reversed cofactor
preference (Fig. 3D). For more complex designs involving multiple
mutations (N ≥ 2, where N represents the number of mutations), com-
binations are generated using outlier residues from both the wild-type
sequence and mutant sequences derived from the previous iteration
round (Fig. 3D).

This pipeline is capable of generating designs for cofactor switching
in a computationally efficient manner, suitable for use on a standard
desktop computer, even for intricate designs. It also offers options to
prioritize either maximizing the probability of preference changes or
optimizing computational efficiency. In the case of the mutation dataset,

J. Kim et al. Metabolic Engineering 87 (2025) 86–94 

91 



the pipeline successfully designed cofactor switching mutants in the
majority of instances (41 out of 43 cases), with the time required ranging
from seconds to a several hours (Supplementary dataset 3). In each case,
the designed mutant with the highest probability of cofactor reversal
was selected and compared with the verified mutations. As a result,
82.9% (34 out of 41 cases) showed overlaps in the mutation positions
(Supplementary Fig. 5). When comparing the entire set of designed
mutants, the overlap increased slightly to 87.8% (36 out of 41 cases).

4. Conclusion

In this study, we present DISCODE, a novel transformer-based model,
purpose-built for NAD(P) cofactor preferences in enzymes. Our findings
demonstrate that DISCODE is capable of accurately classifying protein
sequences, free from the confines of structural or taxonomic limitations.
Furthermore, DISCODE proves to be an effective tool for predicting
cofactor switching mutation sequences and identifying key residues
through attention analysis. A key feature of DISCODE is its designing
pipeline, which facilitates the fully automated generation of cofactor
switching designs, operating independently of additional data
requirements.

The exploration of deep learning models, particularly the attention
layers of the transformer architectures, has sparked considerable inter-
est in recent years (Kovaleva et al., 2019; Sundararajan et al., 2017;
Vaswani et al., 2017; Wiegreffe and Pinter, 2019). However, their
application in biological research remains relatively limited. This study
showcases a practical application of interpreting the attention layers in a
protein sequence-based model. The fully automated design pipeline with
DISCODE effectively overcomes the computational hurdles typically
encountered in in silico screening due to combinatorial complexity. This
makes DISCODE accessible for researcher, whether designing a small
number of rational mutations or generating a vast array of protein de-
signs, which could potentially be useful for biofoundry-like platforms
(Lee et al., 2023).

Nevertheless, it is crucial to acknowledge that DISCODE can produce
incorrect predictions in scenarios where the NAD(P) utilization in

proteins is ambiguous or poorly defined. In these instances, it is advis-
able to use DISCODE in conjunction with experimental evidence or
annotation tools such as Pfam (Mistry et al., 2021) or COFACTOR
(Zhang et al., 2017). As the field of high-throughput protein engineering
progresses (Madhavan et al., 2021), further enhancements and learning
about cofactor switching mutations are anticipated to enhance the
capability of our model. Looking ahead, our research aims to apply
mutations designed by DISCODE in practical experimental settings,
potentially offering new insights and advancements in the field.
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Fig. 3. The mutation design pipeline facilitated by DISCODE for cofactor switching. A) Overlaps between outlier residues and experimental designs for cofactor
switching. Each value of horizontal axis specifies corresponding indices of cofactor switching cases in Supplementary dataset 2. In 35 out of the 43 cases analyzed
(81.4%), there was at least one instance of overlap. B) Sequential mutation impact on label prediction for 4JQ9. The Escherichia coli pyruvate dehydrogenase (4JQ9)
and its M206R mutants were identified as having a preference for NAD. In contrast, E205V/M206R and E205V/M206R/F207K mutants were predicted to prefer
NADP. C) Attention analysis of 4JQ9 during sequential mutations. Outlier residues are depicted as circles, with those experimentally verified as mutations high-
lighted in blue. D) Schematic diagram representing the designing pipeline of DISCODE. This pipeline is structured into four essential stages: 1) Predicting the cofactor
preference label for the input enzyme sequence; 2) Identifying suitable positions for mutation within the sequence; 3) Creating mutant sequences for evaluation and
screening; 4) The model then predicts the cofactor preference labels of each mutant, selectively retaining mutants that demonstrate a reversal in their original label.
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Supplementary data to this article can be found online at https://doi.
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