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ABSTRACT
Fractional vegetation cover (FVC) and aboveground biomass (AGB) 
are critically important for monitoring grassland degradation, and 
their accurate estimation can be used as key proxies for assessing 
land degradation. The main purpose of this study was to estimate 
the FVC and AGB in the eastern Mongolian steppe using remote 
sensing and machine learning. In this context, spectral bands and 
vegetation indices were extracted from the processed Sentinel-2 
data and used as predictors. The field vegetation data were derived 
from the Mongolian pasture-monitoring database, which consisted 
of 256 plots with FVC and AGB measurements. Consequently, we 
derived FVC and AGB from Sentinel-2 imagery using 256 field 
vegetation measurements in the vast eastern Mongolian steppe 
as a reference for random forest (RF) models (R2

FVC = 0.81, R²AGB =  
0.76). Among the variables, the predictor variables derived from 
spectral vegetation and soil indices, especially NDVI, Simple Ratio 
(SR), and OSAVI, were highly important for predicting FVC and AGB. 
As expected, a comparison among the map values showed that the 
spatial distribution of FVC and AGB was consistent with the land
scapes and ecoregions in the study area. As the FVC and AGB maps 
only showed the current condition of vegetation cover, we also 
analysed NDVI trends to explain vegetation cover changes. We 
tested temporal trends in vegetation using Landsat NDVI time 
series data and the Mann-Kendall trend test. This revealed that in 
7.3% of the area, the NDVI significantly increased, whereas 
a significant decrease was observed in 58% of the area.
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1. Introduction

Grasslands are critically important ecosystems, covering 26%–40% of the Earth’s terrestrial 
surface (Suttie, Reynolds, and Batello 2005; Gholami Baghi and Oldeland 2019). Mongolia 
hosts an important part of the largest natural grassland region in the world, and is home 
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to one of the last intact steppe ecosystems with traditional land use and significant 
biodiversity (Batsaikhan et al. 2014; Pfeiffer, Dulamsuren, and Wesche 2020). In recent 
decades, grasslands in Mongolia have come under threat due to land degradation, 
climate change, aridity, grazing, and human activities (Reading, Bedunah, and 
Amgalanbaatar 2010). In particular, land degradation poses severe challenges to ecosys
tems and sustainable livelihoods in the eastern Mongolian steppes (Girvetz et al. 2014; 
Batnyambuu, Bendix, and Lehnert 2020a). Studies on land degradation use proxies for 
vegetation cover assessments that can directly be derived from both remote sensing data 
and field measurements (Quang Bao, Nkonya, and Mirzabaev 2015). For instance, frac
tional vegetation cover (FVC) and aboveground biomass (AGB) are important parameters 
that describe vegetation degradation and soil erosion, and are often used to evaluate and 
monitor land degradation status (Chu 2020; Liang and Wang 2020). Therefore, several 
previous studies have used estimates of vegetation cover and biomass as proxies for land 
degradation (Bai et al. 2008; Higginbottom and Symeonakis 2014; Quang Bao, Nkonya, 
and Mirzabaev 2015) Furthermore, approaches based on vegetation cover have been 
increasingly used in recent decades and have shown that the results of these studies 
effectively indicate the status and process of land degradation (Dubovyk 2017; Wessels, 
Prince, and Reshef 2008; Easdale et al. 2019; Dashpurev et al. 2021).

Optical remote sensing approaches are becoming increasingly popular for estimating 
FVC and AGB (Chu 2020; Jin et al. 2014; Morais et al. 2021). In particular, advances in 
machine learning have enabled the accurate estimation of FVC and AGB by combining 
optical remote sensing data with data measured in the field (Zhang et al. 2020; Morais 
et al. 2021). Recently, a comprehensive review summarized different machine learning 
methods to estimate the AGB of grasslands from remote sensing data and found generally 
high accuracies for random forest (RF) technique (Morais et al. 2021). To improve the 
accuracy of FVC and AGB estimations, many previous studies have used spectral vegeta
tion indices, such as the normalized difference vegetation index (NDVI), which is derived 
from the reflectance measured by remote sensing imagery (Morais et al. 2021). For 
reasons related to its strong correlation with FVC and AGB, NDVI is increasingly used to 
predict vegetation cover and biomass (Prabhakara, Hively, and Gregory 2015; Cabrera- 
Bosquet et al. 2011). In addition, field measurements are an important part of remote- 
sensing-based FVC and AGB modelling, which are often collected by traditional methods 
(Jin et al. 2014). However, surveying FVC and AGB using traditional vegetation sampling 
methods is costly, labour-intensive, and time-consuming, and it is impossible to cover 
large areas. For this reason, there have been very few efforts to estimate FCV and AGB in 
Mongolia using both field measurements and satellite imagery (Kim et al. 2020; 
Otgonbayar et al. 2019). More specifically, Otgonbayar et al. (2019) estimated the AGB 
using Landsat 8 and field survey data from Mongolia. Unfortunately, this study was not 
based on any field samples in the Eastern Mongolian Steppe area due to the low number 
of field vegetation plots. Fortunately, the continuous development of rangeland health 
monitoring systems in Mongolia has resulted in extensive databases that provide free-of- 
charge reference data on FVC and AGB (Densambuu et al. 2018). To our knowledge, there 
is no study on FVC and AGB which was conducted by combining in situ data from this 
rangeland health monitoring database as a field reference with remotely sensed data 
providing a vegetation cover product in Mongolia. The disadvantage of this new range
land health monitoring data source is that the data have only become available in recent 
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years. Therefore, changes in FVC and AGB over a longer timescale cannot be assessed. An 
alternative method for identifying the direction of change in vegetation cover is the 
analysis of NDVI trends based on a time series of remote sensing data (Huang et al. 2021). 
Several studies have demonstrated that changes in satellite-derived NDVI time series have 
the potential to serve as a proxy for land degradation assessments (Yengoh et al. 2015; 
Huang et al. 2021; Bai et al. 2008). As the NDVI correlates directly with vegetation 
productivity (Tucker and Sellers 1986), this index is easily calculated from spectral bands 
available over a long time period. Additionally, rapid advancements in remote sensing 
technology and applications have made the use of NDVI more popular for vegetation 
cover assessments (Yengoh et al. 2015; Huang et al. 2021)

Grasslands in the Mongolian steppe have long been used as pasturelands for nomadic 
pastoral systems (Sheehy 1993). Livestock grazing pressure largely influences grassland 
degradation in Mongolia (Sainnemekh et al. 2022), which leads to altered vegetation 
cover and AGB in the steppes (Munkhzul et al. 2021). Therefore, there is a high demand for 
FVC and AGB map products with reasonable accuracy at the regional-to-country scale for 
monitoring grasslands. The main aim of this study was to accurately estimate the FVC and 
AGB for grasslands and to determine the changes in vegetation cover over time in the 
eastern Mongolian steppe. To achieve this, we first derived FVC and AGB from Sentinel-2 
imagery using data measured in the field as a reference for the RF regression models. We 
then performed a trend analysis to estimate the changes in NDVI over time in the eastern 
Mongolian steppe.

2. Materials and methods

2.1. Study area

Dornod aimag (or province) is the study area and is located in the easternmost part of 
Mongolia, bordering Russia to the north and China to the east and south (Figure 1). It 
occupies approximately 124,000 km2 between 50°28‘N and 46°25’ N in latitude and 112° 
05‘E and 119°56’ E longitude. The study area has three distinct ecoregions: Mongolian 
Daurian (or Mongol Daguur) forest steppe, Eastern Mongolian steppe, and Numrug forest 
steppe. The Mongolian Daurian forest steppe in the northern part of the study area covers 
the marginal branches of the Khentii Mountain Range and plains.

The eastern Mongolian steppe, the main part of the study area, mainly consists of 
broad plains and rolling hills, where the vegetation is dominated by bunch grasses such as 
Stipa krylovii and Cleistogenes squarrosa. The Numrug forest steppe, in the far eastern part 
of the study area, comprises marginal branches of the Greater Khingan Mountains, foot
hills, and plains. The study area is characterized by an extremely continental climate. The 
average monthly temperature minimum reaches −20 to −26°C in January, and the 
average maximum monthly temperature of 21°C occurs in July. The average annual 
precipitation amounts to 300–350 mm in the Mongolian Daurian forest steppe and 
200–300 mm in the Eastern Mongolian steppe and Numrug forest steppe, with monthly 
maxima occurring mainly in summer (Girvetz et al. 2014; Pfeiffer et al. 2018; Shukherdorj 
et al. 2019; Yembuu 2021b). The study area has three strictly protected areas (SPA) and 
three nature reserves (NR). Traditionally, land use has been associated with livestock 
pastoralism, but mining- and oil extraction-related activities are becoming increasingly 
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important. Other land-use types in this area include settlements, agriculture, and infra
structure (Tsedev 2021).

2.2. Remote sensing of grassland vegetation cover

2.2.1. Data for FVC, AGB estimation and trend analysis
2.2.1.1. Remote sensing data. Multispectral imagery of Sentinel-2 was used to estimate 
the FVC and AGB, encompassing 13 spectral bands in the visible, near-infrared, and short- 
wave infrared regions of the spectrum with 10–60 m spatial resolution. The L1C images 
were downloaded free-of-charge from the United States Geological Survey’s (USGS) 
website (https://earthexplorer.usgs.gov/). A set of 54 images with low cloud cover (25 
tiles) of Sentinel-2 data acquired during 7– 17 July 2020 were used in this study. These 
images were atmospherically corrected and clouds were masked using the Sentinel 
Application Platform (SNAP) of the European Space Agency. Subsequently, single scenes 
of Sentinel-2 were merged into a mosaic to achieve a dataset covering the entire area of 
investigation. Finally, spectral indices were calculated from the spectral bands of Sentinel- 
2 imagery and used as an additional predictor for FVC and AGB estimation. The spectral 
indices and their corresponding descriptions are listed in Table 1.

For the trend analysis of vegetation cover, we used atmospherically corrected surface 
reflectance collections from Landsat 5 ETM and Landsat 8 OLI sensors on the Google Earth 
Engine platform. In these datasets, all satellite images were atmospherically corrected 
using the LEDAPS algorithms for Landsat 5 (Sayler 2020) and the LaSRC algorithms for 
Landsat 8 (USGS 2020) (USGS Landsat Surface Reflectance Tier 1). For all images acquired 
between 1st of June and 31st of August in the years 2010–2020, we employed the CFMask 
algorithm to identify and mask clouds and cloud shadows (Foga et al. 2017). 
Subsequently, the NDVI was calculated based on the red and near-infrared bands. 

Figure 1. Location of study area and pasture photo-monitoring data. source: environmental informa
tion center Mongolia (NAMEM 2021).
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Finally, the annual NDVI mosaics were produced by calculating the median NDVI value of 
all available images for the indicated time period within a year.

2.2.1.2. Pasture monitoring data. Pasture monitoring data were downloaded free-of- 
charge from the Agency for Land Administration and Management, Geodesy, and 
Cartography in Mongolia (https://egazar.gov.mn). The database contains FVC and AGB 
with corresponding land cover photos of 256 plots in Eastern Mongolia (Figure 1). Field 
data were collected during the vegetation growing season of August 2020. Each sampling 
plot in the pasture-monitoring database consisted of nine photos taken in the nadir with 
a footprint of approximately 1 m2. Each image was 5 m from the next image. Therefore, all 
images were aligned along a 50 m transect. The FVC values for each sampling plot are the 
mean values of nine different image locations. Monitoring images were collected annually 
at 5 metre intervals along two parallel 50 m long tapes by land management authorities. 
Analysis was performed using the Sample Point software that facilitates manual, pixel- 
based image analysis from nadir digital images of any scale, and automatically records 
data to a spreadsheet (Cagney, Cox, and Booth 2011). The AGB in each plot was sampled 
using a 1 × 1 m quadrat. The plants in each quadrat were harvested at the ground surface 
and dried at 80°C to obtain the dry weight. A rangeland-monitoring network was 
established and developed for grazing management and to report vegetation trends in 
Mongolian pasturelands.

2.2.2. Random forest regression
In this study, two regression models were separately applied to Sentinel-2 data using the 
RF algorithm (Breiman 2001). RF, a representative ‘ensemble learning’ method (Saini and 
Ghosh 2017), is widely used for regression and classification tasks in remote sensing. In 
the estimation of FVC and AGB, the spectral bands and indices of the Sentinel-2 data were 
used as predictors (Table 1). Training and validation data for both RF regression models 
were selected from the Mongolian pasture-monitoring data. For each model, 256 field 
vegetation measurements were randomly divided into training and independent valida
tion datasets (90% and 10% of the data, respectively). Consequently, 230 samples were 

Table 1. Description of the spectral indices used in RF regression models for FVC and AGB.
Spectral indices Abbreviation Formula Reference

Normalized difference vegetation 
index

NDVI (NIR − Red)/(NIR + Red) (Tucker 1979)

Red-Edge Normalized Difference 
Vegetation Index

NDVIRed-edge (NIR – RE)/(NIR + RE) (Gitelson and Merzlyak 1994)

Green Normalized Difference 
Vegetation Index

NDVIGreen (NIR - Green)/(NIR + Green) (Gitelson, Kaufman, and 
Merzlyak 1996)

Simple Ratio SRvalue NIR/Red (Jordan 1969)
Red-Edge Simple Ratio SRRed-Edge NIR/RedEdge (Gitelson et al. 2002)
Green Chlorophyll Index CLGreen (NIR/Green) − 1 (Gitelson, Gritz, and Merzlyak  

2003)
Red-Edge Chlorophyll Index CLRed-Edge (NIR/RedEdge) − 1 (Gitelson et al. 2005)
Red-Edge Triangulated Vegetation 

Index
RTVICore (100*(NIR – RedEdge) − 10* 

(NIR - Green))
(Haboudane et al. 2004)

Soil-Adjusted Vegetation Index SAVI 1.5*(NIR – Red)/(NIR + Red + 
0.5)

(Huete 1988)

Optimized Soil Adjusted Vegetation 
Index

OSAVI (NIR – Red)/(NIR + Red + 0.16) (Rondeaux, Steven, and Baret  
1996)
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used as the training dataset. For the validation dataset, 26 samples were used. The models 
were validated and their accuracies were estimated using 10-fold cross-validation. 
R-squared values were calculated from the independent estimates to evaluate the per
formance of the RF regression models (Belgiu and Drăgu 2016; Sheykhmousa et al. 2020).

2.2.3. Mann-Kendall trend test
A Mann-Kendall trend test and Sen’s slope test were applied for each pixel in the time series to 
analyse NDVI trends for significance and slope of change, respectively. The Mann-Kendall test 
determines whether there is a monotonic trend (upward or downward) in the multidimen
sional time series data of NDVI. It compares the two sets of ranks given by the same datasets. 
The trend values range between −1 (negative trend) and +1 (positive trend). The slope of the 
trend for each pixel was calculated using the nonparametric coefficient developed by Sen (Sen  
1968). The Sen’s slope test detects the magnitude of the slope based on the assumption of 
a linear trend (significance levels of 0.01 (high), 0.05 (medium), and 0.1 (low)).

3. Results

3.1. Estimation of fractional vegetation cover and aboveground biomass

The RF regression model was applied to the spectral bands and indices of Sentinel-2 data 
to estimate FVC and AGB in the eastern Mongolian steppe in 2020 (Figure 2(a,b)). The 
training and validation data for the RF model were prepared from Mongolian pasture- 
monitoring data. The validation results showed that the RF regression models performed 
well at R-squared values of 0.81 for FVC and 0.76 for AGB (Table A1). Supplementary 
Figure A1 shows the variable importance values for the RF models. According to the ranks, 
the important variables in the FVC and AGB regressions were similar. To estimate FVC, the 
most important variables were spectral vegetation indices, including the simple ratio (SR) 
vegetation index, NDVI, and NDVI red-edge. For the spectral bands, the red and vegeta
tion red-edge bands were also considered very important for model performance. For 
AGB, the most important predictor variables were NDVI, SR vegetation index, OSAVI, SAVI, 
red-edge chlorophyll index (Cl red-edge), NDVI red-edge, red band, and vegetation red- 
edge band. The spectral vegetation and soil indices were generally dominant in promot
ing the performance of the model.

As shown in Figure 2, the FVC and AGB had similar spatial distributions. Large values of both 
maps were concentrated in the northwestern and far eastern parts, where FVC ranged 
between 67%–90%, whereas AGB ranged between 1800–2604 kg/ha. These areas are covered 
by mountains and meadow steppes. According to the histogram charts in Figure 2, a larger 
FVC value occupied 20% of the total area, while AGB accounted for 11% of the total area. The 
intermediate values of both maps, 44%–67% and 1000–1800 kg/ha, were located in the 
transition zone of high and low fractions of vegetation value, which accounted for 47% of 
the total area in FVC, while AGB accounted for 22% of the total area. The low values of both 
maps, 20%–44% and 198–1000 kg/ha, were clustered in the central and northeastern parts of 
the study area, where the land is composed of moderately dry steppe and dry steppe. The 
histogram charts of both maps show that the low FVC values accounted for 33% of the study 
area, while AGB accounted for 67% of study area.
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3.2. The result of Mann-Kendall trend test

The Mann-Kendall trend test statistics were obtained from the median NDVI value of 
Landsat time series during the vegetation period of 2010–2020 at a spatial resolution of 
30 m. Based on Sen’s slope, positive and negative NDVI trends were observed in different 
ecological regions, which are presented in Figure 3. According to the trend magnitude of 
the Mann-Kendall analysis, the NDVI values in 29% of all pixels in the study area increased 
(Figure 4).

Regarding spatial distribution, these areas tended to be clustered along the 
northern and far eastern parts of the study area, where the landscape mainly 
consisted of forest steppe. Of these, only 25% gained a statistically significant 
trend, with a maximum magnitude of 0.15. In other words, 7.3% of the study 
area experienced statistically significant positive trends. In contrast, the NDVI in 
71% of the study area exhibited a decreasing trend. Of those, 84% had 
a statistically significant trend that was most concentrated in the middle-eastern, 
central, and northeastern boundaries of the study area. These areas were composed 
of moderately dry steppes and dry steppes. Figure 3(b) shows that significantly 

Figure 2. Maps of FVC (a) and AGB (b) for year 2020 using sentinel-2 data in eastern Mongolian steppe. 
Water surface and forest area were excluded for FVC and AGB.
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decreasing trends were located in areas that are mostly used for oil exploration and 
exploitation around the middle-eastern cluster, the centre of the province, and 
areas along the northeastern country borders.

Figure 3. Mann-Kendall trend test results of NDVI time series 2010–2020. Magnitude of trend is shown 
in (a) and (b) and represents significant levels. Water surface was excluded.

Figure 4. Comparison of Sen’s slope and significance level (p-value).
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4. Discussion

4.1. Relevance of the FVC and AGB estimation

The main objective of this study was to produce FVC and AGB maps that have been 
estimated based on Mongolian pasture-monitoring data and Sentinel 2 satellite imagery 
using RF algorithms. The results of the FVC and AGB estimation models provide the 
following new contributions compared to the existing literature. First, the pasture- 
monitoring system in Mongolia has been newly developed; however, its platform has 
already accumulated an unprecedented amount of vegetation data. Nevertheless, no 
studies have prepared vegetation cover maps using the aforementioned large vegetation 
cover data over Mongolia and our study region. Therefore, our models and their results 
provide an effective way to use this pasture monitoring data for producing vegetation 
maps over Mongolia and the eastern Mongolian steppe regions. Very few studies have 
mapped the FVC and AGB over Mongolia and steppe regions (Yamamoto, Kajiwara, and 
Honda 2000; Nyamsuren et al. 2019), and even these have used very limited field 
measurement data. For instance, Otgonbayar et al (2019) recently mapped AGB using 
an RF model and Landsat imagery over Mongolia that used 553 field measurement sites as 
training data for the RF model for over 1.56 million km2 area. A recent comprehensive 
review suggested that the accuracy of AGB estimation in grasslands using RF algorithms is 
strongly dependent on the number of field sites (Morais et al. 2021). For this study, we 
used 256 field measurement sites as the training and validation data of the RF model for 
123.5 thousand km2 area. Third, our results showed that the spectral indices and char
acteristics of Sentinel-2 data enabled the derivation of FVC and AGB maps with a spatial 
resolution of 20 m in Mongolian grasslands. Sentinel-2 imagery is one of the most widely 
used remote sensing data for vegetation cover mapping worldwide (Bareth and Waldhoff  
2017; Phiri et al. 2020). However, no study has thus far been conducted to derive FVC and 
AGB from Sentinel-2 data in Mongolian grasslands, except for forest AGB estimation at 
small spatial scales (Norovsuren et al. 2019). As expected, the spectral indices and 
channels ranging from visible red to near-infrared were the most influential variables in 
the RF models. In particular, NDVI, SR, and red and vegetation red-edge channels have 
been ranked as the most important for the estimation of FVC and AGB, which confirms the 
findings of other studies (Wang et al. 2018; Jie et al. 2019). Regarding the map products, 
a comparison between the higher and lower vegetation values shows that the spatial 
distribution of FVC and AGB is highly correlated to landscapes and ecoregions. The 
northwestern and far eastern parts are at higher altitudes, with high vegetation coverage 
and less human interference, while the conditions in the central and northeast areas are 
the opposite.

The application of Sentinel-2 data in modelling FVC and AGB in semi-arid grasslands 
still faces challenges due to soil factors and sparse vegetation. For instance, high soil 
reflectance significantly reduces the capabilities of vegetation indices to estimate FVC and 
AGB in sparsely vegetated areas (Montandon and Small 2008; Ren, Zhou, and Zhang  
2011). To reduce the effects of soil reflectance, previous studies used a combination of 
both spectral vegetation and soil indices in FVC and AGB estimations and achieved 
varying degrees of success. Recent comparative studies have reported that OSAVI is one 
of the most appropriate soil indices for estimating FVC and AGB in semi-arid regions (Fern 
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et al. 2018; Gholami Baghi and Oldeland 2019). In our models, the OSAVI contributed 
significantly to the estimation of FVC and AGB, which is consistent with the findings of 
these comparative studies. In addition, cloud cover and shadows strongly affect FCV and 
AGB estimation. Although Sentinel-2 has a higher temporal resolution (5 days) than other 
medium spatial and temporal resolution satellites (e.g. Landsat OLI), it is hardly possible to 
find cloud-free satellite imagery during the vegetation growing season in the eastern 
Mongolian steppe. Cloud cover and its shadows on optical images typically result in the 
absence of vegetation reflectance information at phenological stages. Consequently, it 
limits FVC and AGB prediction accuracy (Whitcraft et al. 2015). Therefore, further studies 
on FVC and AGB monitoring should use integrated satellite data such as the harmonized 
Landsat and Sentinel-2 data (Claverie et al. 2018) which could improve vegetation cover 
and biomass monitoring by increasing the temporal resolution. Such integrated data 
increases the chances of obtaining satellite data with little or no cloud cover. Therefore, 
these data are suitable for monitoring changes in vegetation cover, biomass, and 
phenology.

4.2. Relevance of the NDVI trend

The majority of similar studies for NDVI trend analysis usually considered that the signifi
cantly increasing trends could be a proxy for vegetation cover restoration, while signifi
cantly decreasing trends are interpreted as ongoing degradation. Thus, NDVI trends have 
been commonly used to detect areas of ecological vulnerability (Easdale et al. 2019; 
Lamchin et al. 2019; Jiani et al. 2020; Deng, Yin, and Han 2020). Likewise, the results of 
the Mann-Kendall trend test showed that both vegetation cover restoration and degrada
tion spatially varied over the study area. Focusing on statistically significant parts, a large 
cluster of decreasing NDVI trends has been observed in the central part of the study area 
over the past decades. This observation is generally similar to those found by (Wang et al.  
2020; Meng et al. 2021), who used classification methods on the same NDVI dataset in 
different years (1990–2015 and 1990–2020) to estimate the vegetation cover trends over 
Mongolia. In addition, Nasanbat et al. (2018) found that the moderately dry and dry steppes 
of Eastern Mongolia experienced decreasing NDVI trends in 2000–2016 based on the 
Mann-Kendall trend analysis through NDVI time series. Decreasing trends were particularly 
observed in June and July during the same period (Nasanbat et al. 2018). The significant 
decreasing trend can be related to an increase in human activities. For example, the central 
part of the study area is under high human pressure which is mostly related to oil 
exploration, exploitation, and mining. In this area, our previous spatio-temporal analysis 
showed that land use for dirt roads, oil exploration, and exploitation infrastructure has 
increased by 75% in the past decade (Batnyambuu, Bendix, and Lehnert 2020b). In addition 
to land-use change, several studies have confirmed that the aridity of semi-arid ecosystems 
is one of the driving forces behind land degradation, potentially accelerating the degrada
tion process due to climate change in Mongolian grasslands (Yembuu 2021a; 
Nandintsetseg et al. 2021; Miao et al. 2017). For instance, air temperatures have increased 
by approximately 1.4–2.4°C in Mongolia since the 1960s, while the warm season precipita
tion has rapidly declined in the central and eastern parts of Mongolia (Yembuu 2021a). In 
addition, our literature review confirms that livestock grazing pressure largely influences 
land degradation in Mongolia (Tuvshintogtokh and Ariungerel 2013; Batkhishig 2013; Yintai 
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et al. 2018; Sainnemekh et al. 2022). However, a recent livestock-caused land degradation 
assessment showed that Eastern Mongolian steppe grazing has been consistently low 
compared to other parts of Mongolia (Jamsranjav et al. 2018).

5. Conclusion

This study mapped the current land degradation that involved the estimation of FVC, AGB, 
and NDVI trends. In this study, we used 256 field vegetation measurement sites as training and 
validation data for 124,000 km2 of area. As a result, we obtained maps of FVC and AGB with 
good accuracy (R-squared = 0.76–0.81). Additionally, we found that a statistically significant 
decreasing trend in NDVI occurred in 59% of the study area, which was mostly clustered 
around the central, middle-eastern, and northeastern parts. These results are particularly 
important for policymakers to counteract land degradation and improve land management. 
Furthermore, our models and results show the best practice for using Mongolian pasture- 
monitoring data to produce land degradation and vegetation maps at regional to country- 
wide scales.
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Appendix A

Table A1. Evaluation of RF regression performance for Sentinel-2 data. In performance, 10% of 
reference data excluded for validation.

Land cover types

Out of Bag (OOB) Errors Validation data for regression

Number of 
Trees

Percentage of variation 
explained R-Squared p-value

Standard 
Error

Fractional vegetation 
cover

250 57.85 0.81 <0.01 0.12

Aboveground biomass 250 50.9 0.76 <0.01 0.11

Figure A1. Variable importance of FVC (a) and AGB estimation (b).
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