构建多元化食物供给体系: 挑战机遇、经验借鉴与推进路径

● 张哲晰¹杨玉洁¹黄雨¹曹芳芳²

(1. 农业农村部农村经济研究中心 北京 100810;

2. 中国农业科学院农业经济与发展研究所 北京 100081)

摘要:保障粮食和重要农产品稳定安全供给是建设农业强国的头等大事。本文研究按照"研判现实基础—借鉴国际经验—谋划政策框架"的思路展开,得出:中国构建多元化食物供给体系正处于经济高质量发展和建设农业强国的历史机遇期,具有制度、食物多样、后发赶超、传统文化、科技创新等方面的优势,但也面临来自禀赋条件、膳食结构、国际环境不确定性等多重约束。纵观典型国家和地区,其通过挖掘本土资源禀赋,释放农业生产潜力;强化科技研发推广,筑牢技术支撑体系;践行生态低碳路径,促进农业绿色转型;完善保障激励机制,激发生产者内生动力等方面确保食物供给的稳定性和安全性。综合来看,中国应从完善顶层设计、丰富食物来源、发展农业新质生产力、优化消费观念、突出绿色发展、提高产业韧性等维度发力,推动加快构建多元化食物供给体系。

关键词: 多元化食物供给体系: 现实基础: 国际经验: 推进路径

DOI: 10. 13856/j. cn11-1097/s. 2025. 10. 005

1 引言

随着中国经济社会的快速发展,人们对食物的需求更关注供给充足、营养均衡、选择多元,居民食物需求已从"吃得饱"向"吃得好"和"吃得营养健康"转型,然而现有食物供应系统面临着国内资源约束趋紧、食物供需体系结构性失衡、部分重要农产品高度依赖国际市场、国际形势复杂多变等多重挑战。因此,必须把全方位夯实粮食安全根基、多元化拓展食物供给来源放到突出位置,加快构建多元化食物供给体系,从而更紧端牢"中国饭碗"。

从国家粮食安全战略出发,构建多元化食物供给体系是保障食物供给安全的重要路径,加快推进构建多

收稿日期: 2024-07-04。

基金项目:国家自然科学基金青年项目"产业集聚、专业化分工与农业生产性服务发展路径研究——来自蔬菜生产专业村的证据" (72103109),国家自然科学青年基金项目"农业社会化服务对农户粮食产后损失的影响机制与优化路径研究" (72403236),中国农业科学院重大科技任务"大豆市场信息智能监测与决策支撑研究" (CAAS-ZDRW202509)。

作者简介: 张哲晰 (1991—), 女,吉林吉林人,博士,副研究员,研究方向为农业经济理论与政策;杨玉洁 (1990—),女,湖北孝感人,博士,副研究员,研究方向为农业经济理论与政策;黄雨 (1987—),男,黑龙江大庆人,博士,助理研究员,研究方向为农业经济理论与政策。

通信作者:曹芳芳(1991—),女,安徽安庆人,博士,副研究员,研究方向为农业经济理论与政策, E-mail: caofangfang@ caas. cn。

元化食物供给体系是当务之急。早在 2015 年,中央农村工作会议便提出"树立大农业、大食物观念"。党的二十大以来,构建多元化食物供给体系被提升到前所未有的高度。2024 年 9 月,国务院办公厅印发《关于践行大食物观构建多元化食物供给体系的意见》,从拓展食物来源渠道、提升食物开发质量效益、提升食物开发价值链等维度进行部署。从政策话语体系的演变来看,从概念到要求再到政策细化,体现了构建多元化食物供给体系对于保障粮食安全的重要性与迫切性。

从学界来看,学者们主要从以下三个维度围绕大食物观和构建多元化食物供给体系开展研究。一是大食物观与粮食安全的关系。大食物观是对粮食安全问题的拓展,是由狭义的粮食安全观扩展为广义的食物安全观^[1-3],其基础和前提是保障粮食安全,但不仅仅局限于粮食产量和质量,还涉及纵向维度的生态供应可持续性和横向维度的多功能性^[4-5]。二是树立大食物观、构建多元化食物供给体系的现实迫切性。居民食物消费不断转型升级,对于营养健康的优质食物需求越来越迫切,同时,食物的多样性和替代性明显增强,构建多元化食物供给体系是满足居民更加平衡健康的膳食营养结构需求的重要举措,也是发展大农业和缓解农区生态压力的客观需要^[6-7]。三是从不同视角提出有关建议,具体包括调整发展思路^[8]、强化科技支撑和创新生产方式^[9-10]、完善政策引导^[11-13]、提高风险应对能力^[13-14]、布局国际市场^[15]等措施。

相关研究从不同维度探讨了树立大食物观、构建多元化食物供给体系的重要性和构建思路,为本文研究提供了有益借鉴,但对以下三个方面的探讨存在优化空间。一是已有研究较少系统全面地梳理中国构建多元化食物供给体系的现状挑战、机遇优势,对于构建多元化食物供给体系政策的完整性、协调性、配套性等方面仍有进一步完善的空间,从多维资源优势整合视角的研究还有待补充。二是国际经验的本土化适配性研究不足,发达国家(地区)在其特色农产品上积累了较为丰富的政策与经验,对中国发展多元化食物供给体系有一定参考意义。三是对新质生产力如何赋能构建多元化食物供给体系研究仍待深化,新一轮科技革命和产业变革深入发展,农业新质生产力将在智慧农业技术应用、生物技术与食品创新、多元化资源开发与利用、产业链延伸与跨界融合等方面发挥重要作用。综上,本文研究将对以上三个方面进行拓展,深入剖析中国构建多元化食物供给体系现状及挑战,厘清中国面临的机遇与优势,借鉴美国、日本、欧盟等典型国家和地区在保障食物安全方面的有关经验,侧重从农业新质生产力发展视角提出构建多元化食物供给体系的政策构想。

2 中国食物供给的现状及挑战

近年来,中国农产品综合生产能力不断提升,但居民食物消费呈现快速增长和多元化发展趋势,也增加了对国际市场的需要。构建多元化食物供给体系,可以说是根据新发展阶段中国粮食安全形势和居民食物消费趋势作出的战略性判断。

2.1 供给端的形势及挑战

从供给端来看,中国粮食和重要农产品供给保障能力总体增强。中国一直高度重视粮食安全,通过构建一揽子农业支持和保护政策体系,保障粮食和重要农产品安全供给。由表 1 计算可知,2013—2023 年,主要植物性农产品中除糖料外(-9.52%),粮食、油料、蔬菜、水果等产量呈现总体增长态势,产量增幅分别为10.32%、18.18%、31.17%、44.05%;动物性农产品中肉类、禽蛋、牛奶、水产品等产量亦整体呈增长态势,产量增幅分别为12.79%、24.14%、40.00%、24.56%。据中国农业科学院发布的《中国农业产业报告2024》,2023 年中国重要农产品,如谷物、油料作物、水果、蔬菜、糖料、肉类、蛋类、奶类、水产品的自给率分别为94.0%、86.6%、97.5%、100.0%、70.8%、94.3%、100.0%、71.2%、95.9%,中国食物数量安全总体上有保障。在确保数量安全的同时,中国也注重提高质量安全水平,主要农产品质量安全监测合格率连续稳定在97.4%以上,食品安全评价性抽检合格率稳定在98%以上[16],保障粮食安全从注重数量安全

转向数量和质量安全并重。

表 1 2013—2023 年中国重要农产品产量

单位: 亿吨

				一一二
种类	2013 年	2015 年	2020年	2023 年
粮食	6. 30	6. 61	6. 69	6. 95
油料	0. 33	0. 34	0. 36	0. 39
糖料	1. 26	1. 12	1. 20	1. 14
蔬菜	6. 32	6. 64	7. 49	8. 29
水果	2. 27	2. 45	2. 87	3. 27
肉类	0.86	0. 87	0. 77	0. 97
禽蛋	0. 29	0.30	0. 35	0. 36
牛奶	0.30	0. 32	0. 34	0.42
水产品	0. 57	0. 62	0. 65	0.71

数据来源:据国家统计局数据整理。表2同。

但在粮食安全保障的背后,中国食物生产仍然面临自然水土资源约束,以及农业基础设施建设和物质装备不足的短板。一是自然资源相对稀缺,且自然灾害频发。当前,中国耕地面临来自工业化、城镇化推进带来的挤占压力。有研究表明,大食物观视角下的玉米、大豆等 9 种食物存在缺口,虚拟水和虚拟土地缺口分别为 2 695.50 亿米³和 6 882.83 万公顷,缺口比例分别为 22.49%、40.80%^[17]。同时,中国本就是全球人均水资源贫国,且水资源分布不均、南多北少,农业生产北移,超采地下水维持农业生产或将引发一系列生态环境问题。此外,中国区域性、阶段性的极端天气事件频发,也加剧了农业生产的风险,气候变化使农业生产更加脆弱。二是设施装备存在短板,农业生产条件仍待改善。中国农业基础设施建设和物质装备尚有不足。例如,部分地区高标准农田建设投资标准偏低、规划设计科学合理性不足、工程管理不规范、管护机制有待完善;部分地区农田水利建设在投资与管护环节存在治理失灵等问题。高性能农机装备供给不足,与不同生产环节、不同农作物和不同区域的实际需要仍有差距^[18]。设施农业存在总量不足,机械化、智能化、绿色化水平总体偏低等问题。农业生产条件滞后叠加传统生产方式制约,导致农业生产起伏较大、发展后劲受限,影响了农业生产效率和农产品的有效供给。

2.2 需求端的形势及挑战

从需求端来看,中国居民食物消费正在向多元化转型。随着城镇化的快速推进和居民收入水平的不断提高,中国重要农产品消费总量不断增长、消费结构持续改善,食物消费已逐步从"吃得饱"向"吃得好"转变。当前,中国居民食物消费总体呈升级趋势,逐步由谷物淀粉类向蛋白质类等多元化食物转变。由表 2 计算可知,2013—2023 年,除粮食(-9.62%)、食用油(-5.66%)和食糖(0%)外,中国人均蔬菜及食用菌、鲜瓜果类、肉类、禽类、水产品、蛋类、奶类等重要农产品消费量总体呈上涨趋势,消费量增幅分别为16.51%、60.85%、55.47%、72.22%、46.15%、82.93%、12.82%,其中肉类、禽类、蛋类和水产品等蛋白质类食物消费需求大幅增加。从发达国家和地区的经验来看,动物性及高热量食物增长趋势难以逆转,中国居民食物消费的转型也对加快构建多元化食物供给体系提出了新要求。

— 56 **—**

表 2 2013—2023 年中国人均农产品消费量

单位: 千克

种类	2013 年	2015年 2020年		2023 年
粮食	148. 7	134. 5	141. 2	134. 4
食用油	10. 6	10. 6	10. 4	10. 0
蔬菜及食用菌	97. 5	97. 8	103. 7	113. 6
鲜瓜果类	37. 8	40. 5	51. 3	60. 8
食糖	1.2	1.3	1.3	1.2
肉类	25. 6	26. 2	24. 8	39. 8
禽类	7. 2	8. 4	12. 7	12. 4
水产品	10. 4	11. 2	13. 9	15. 2
蛋类	8. 2	9. 5	12. 8	15. 0
奶类	11. 7	12. 1	13	13. 2

与此同时,中国居民食物消费面临着因膳食失衡引致的营养状况不佳和较为严重的食物损失浪费问题。有研究表明,2021年谷类、食用植物油、肉类、蛋类、蔬菜人均食用消费规模远高于推荐摄入量,呈现摄入量过剩状态,但薯类、大豆、奶类、水产品和水果的消费量分别存在1820.32万吨、1147.47万吨、10667.30万吨、652.46万吨和1636.83万吨的营养缺口[17]。2021年中国营养学会发布的《中国居民膳食科学研究报告》也表明,中国居民对全谷物、深色蔬菜、水果、奶类、鱼虾类和大豆类摄入普遍不足。居民食物消费结构仍存在较大不平衡,而膳食结构的不平衡也是诱发居民发生疾病和死亡的重要因素之一。此外,食物消费端损失浪费也十分严重。习近平总书记指出,"据有关机构估算,每年损失浪费的食物超过22.7%,约9200亿斤①,若能挽回一半的损失,就够1.9亿人吃一年"[19]。据中国农业科学院发布的《中国农业产业发展报告2023》,仅水稻、小麦和玉米三大主粮的损失就约占三大主粮总产量的20.7%,势必要加快推动树立正确的食物观。

2.3 贸易端的形势及挑战

从贸易端来看,为满足居民日益丰富的农产品消费需要,中国食物进口增加,主要农产品存在不同程度的国际市场进口需求。由表 3 计算可知,2014—2023 年中国粮食,食用植物油,食糖,鲜、干水果及坚果,肉及杂碎,乳品,水产品,进口量增幅分别为 61. 28%、50. 92%、13. 75%、101. 56%、57. 69%(2016—2023 年)、43. 28%、84. 87%(2015—2023 年)。进一步从净进口与自给率来看,据中国农业科学院发布的《中国农业产业发展报告 2024》,2023 年粮食净进口量高达 1. 59 亿吨,自给率仅为 81. 1%,其中大豆净进口量将近 1 亿吨,自给率仅为 17. 3%;此外,油料、糖、肉类和水产品的净进口量分别为 540 万吨、370 万吨、544 万吨和 303 万吨,自给率分别为 86. 6%、70. 8%、94. 3%和 95. 9%,均存在不同程度的国际市场依赖。利用国际市场是保障国内食物供给的重要途径。

表 3 2014—2023 年中国重要农产品进口量

单位: 万吨

种类	2014年	2015年	2016年	2020年	2023 年
粮食	10 042	12 477	11 468	14 262	16 196
食用植物油	650	676	553	983	981

① 1斤=0.5千克。

(续)

种类	2014年	2015 年	2016年	2020年	2023 年
食糖	349	485	306	527	397
鲜、干水果及坚果	384	430	397	652	774
肉及杂碎	_	_	468	991	738
乳品	201	185	225	337	288
水产品	_	271	265	402	501

数据来源:中国海关。

需要注意的是,在农产品进口规模扩大的同时,进口结构也表现出以土地密集型产品为主、重点产品进口来源集中度高的特点。中国作为世界农业大国,在资源掌控权、市场议价能力等方面却并未表现出应有的大国地位,中国利用国际市场与资源存在风险隐患。例如,中国重要农产品各品种新增净进口量占全球新增总净出口量的比重普遍较高^[20],大豆等重要农产品或将成为美国等遏制中国的"武器";地缘冲突导致的粮食、能源等大宗商品区域性禁运,或将通过影响原材料供应及价格对中国农业生产造成传导性影响,且近年来贸易保护主义卷土重来,出口限制等系列措施增加了国际农产品市场不确定性风险^[21]。此外,美国等西方国家在高科技领域构筑"小院高墙"实施对华封锁,农业技术引进和国际合作难度加大。

总体来看,中国粮食供给处于紧平衡的现实背景和居民食品消费升级的内在趋势促使中国必须尽快推进以大食物观为引领的食物系统转型。一方面,从供求关系来看,中国粮食供需将长期呈现紧平衡趋势,尤其是以大豆为代表的饲料粮、糖类和奶类等农产品对国际市场的依赖程度较大[15,22]。而受资源和环境的约束,短期内利用国内资源实现这些农产品的完全自给既不经济也不现实,但国际市场的不确定性也增加了中国相关农产品的进口风险。另一方面,从消费趋势来看,中国居民未来食物消费总体呈升级趋势,尤其增加了肉蛋奶及水产品等高蛋白的消费,从"吃得饱"向"吃得好""吃得营养健康"迈进。因此,构建多元化食物供给体系是内在需求和必然选择。必须立足充分挖掘国内资源,在保护好生态环境的前提下,从耕地资源向整个国土资源拓展,从传统农作物和畜禽资源向更丰富的生物资源拓展,向森林、草原、江河湖海要食物,向植物动物微生物要热量、要蛋白,全方位多途径开发食物资源,有效满足人民日益增长的多元化食物需求。

3 构建多元化食物供给体系面临的机遇与优势

面对国内粮食供求紧平衡态势、居民食物消费持续升级以及国际环境复杂多变带来的潜在风险,更需把握当前蕴含的历史性机遇与独特优势,以之有效应对挑战。

3.1 战略基点:需求升级与政策赋能

第一,高质量发展下的需求牵引。2019年,中国人均国民总收入首次突破1万美元大关,高于中等偏上收入国家的平均水平。尽管经历了新冠疫情等冲击,中国经济回升向好、长期向好的基本趋势没有改变。从长期来看,促进消费的关键在于收入增长。经济质量和规模的提升意味着人民的生活更加殷实,也将反映在食物消费需求上。同时,在构建初次分配、再分配、三次分配协调配套的基础性制度安排下,也有利于缩小收入差距,优化边际消费倾向,释放食物消费需求侧潜力。可以预见的是,随着居民收入的持续增长、新型城镇化的加速推进,食物消费结构仍将持续改善,人均食物消费仍有提高空间,这客观上要求必须以大食物观战略思维来推动国内食物生产系统转型。尽管中国人口呈现老龄化特点,对于老年人仍需要确保食物品种丰富,做到谷物类食物粗细搭配、动物性食物蛋白充足,做到适量但优质、营养。

— 58 **—**

第二,制度供给的支撑保障。中国有集中力量办大事的社会主义制度优势。中国共产党成立以来,因地因时制定了不同的食物策略,把解决人民吃饭问题置于党治国理政头等大事的战略高度^[23]。首先是奠定了"耕者有其田"的制度根基,让中国小农户获得稳定的权利保障^[24]。近年来,中国不断加强顶层设计、完善制度建设,2023年以来中央一号文件连续提出大食物观,2023年和2025年还专门提出"构建多元化食物供给体系",并且内涵进一步丰富。此外,中国还出台了《新一轮千亿斤粮食产能提升行动方案(2024—2030年)》《关于践行大食物观构建多元化食物供给体系的意见》等文件,形成了更加多元、系统的食物政策体系,不断激发各类生产主体潜能,释放其保障食物安全的活力。

第三,生产方式的效能提升。一是积极培育新型农业经营主体,强化食物供给效能。构建多元化食物供给体系需要经营主体具备承载多途径开发食物资源的能力。有研究表明,家庭农场粮食产量约占全国粮食总产量的 1/5,在粮食主产省,新型农业经营主体在稳固粮食供应方面成效更为显著^[25],在新型农业经营主体引领、社会化服务主体支撑的格局下,中国食物综合生产能力得到大幅提升,增强了农业市场竞争力。二是不断健全产业体系,提高食物供给价值。食物的开发需要基于食物产业全环节、全领域的突破,并以不断提高产业综合效益促进科研产出成果应用于产业发展。其中,发展食品加工和流通业是延伸和拓展农业产业链的重要突破口。近年来,中国大力发展食品加工业,鼓励食品企业加大科技研发投入,挖掘食物功能、加快产品迭代,同时,注重配套发展仓储保鲜冷链物流建设,延长储存时间、降低储存损失,最大限度地提升农产品附加价值。

3.2 要素基底:多维优势的系统集成

第一,食物多样性禀赋优势。中国是世界上面积第三大的国家,经纬度跨度较大,生物多样性特征明显,在食物多样性上优势突出,为构建多元化食物供给体系奠定了得天独厚的自然基础。当前,覆盖森林、草原、海洋等多维度的食物供给体系正加快构建。在林业资源开发方面,积极发展林下种植、养殖产业,推广林菌、林禽、林药等复合经营模式,挖掘森林生态系统的食物生产潜力。在草地资源利用方面,充分挖掘广袤草原优势,推进畜牧业与饲草产业协同发展,释放农牧结合的生产潜力。在海洋生物资源利用领域,通过深远海养殖技术突破和海洋牧场建设等,持续拓展蓝色粮仓发展空间。此外,生物经济发展成绩斐然,面向农业现代化的生物农业产业体系不断完善。总的看,向森林、草原、江河湖海要食物,向植物动物微生物要热量、要蛋白,均有着广阔的挖潜空间。

第二,后发赶超优势。由于"信息外溢"效应和跨越式技术进步带来的新技术替代的成本降低和时间压缩,发展中国家在技术创新方面往往具有后发优势,并有望通过后发优势实现赶超。中国作为发展中国家,天然具备后发优势,未来预计将有一大批革命性技术向农业领域渗透^[26]。但后发国家在对先发国家技术差距收敛过程中,即便能够无限趋近,或许也可能无法通过技术追赶模式跨越"最后最小距离"^[27],还会因不平等地位和依附关系制约发展进程^[28]。因此,必须强化自主创新能力,结合时代趋势和要求发展农业新质生产力,发挥好新一轮科技革命引领农业农村现代化的强劲力量,实现"农业大国"向"农业强国"跨越。

第三,思想文化优势。中国有着源远流长的农耕文化和丰富的饮食文化,为构建多元化食物供给体系提供价值引领。农耕文化崇尚人与自然和谐共生,要求因地制宜开展可持续的农业生产,蕴含大资源观、大农业观的理念,而构建多元化食物供给体系、面向整个国土要食物,正是对这种优秀文化的传承与创新;饮食文化崇尚品类多样、应时顺天和节俭节制,有利于引导健康消费、减少食物浪费^[29],构建多元化食物供给体系是传承中华优秀传统食物文化的必然要求。这种文化传承与创新,不仅为开发森林、草原、海洋特色食物资源提供了文化认同基础,更通过构建"从田间到舌尖"的全链条节约机制,为应对全球粮食安全挑战贡献了中国方案,彰显出生态文明时代农业伦理重构的文化自觉。

3.3 创新引擎:技术突破与模式升级的驱动

第一,生物技术的突破应用。生物技术的突破应用正引领农业等领域迈向新高度。一是基因编辑技术重

构作物生产性能天花板。如 CRISPR-Cas9 基因编辑技术,研究人员可精准对作物基因组进行操作,改变作物性状,使作物产量与品质实现质的飞跃,有效保障和提升粮食产量^[30]。二是细胞工厂技术创造非传统蛋白获取路径。它不依赖传统畜牧养殖和植物种植,利用微生物等细胞的生长繁殖高效生产蛋白质^[31],为居民提供多种蛋白质来源。三是合成生物学推动食物基料生产方式转型。通过对生物系统的从头设计和构建,利用可再生资源为原料生产食物基料。例如,将农作物秸秆等纤维素经合成生物学方法转化为发酵糖,进而生产乙醇等食物基料,实现可持续的食品生产模式^[32]。生物科技的进程加快,不断创新农业生产场景,拓展食物来源边界。

第二,数字技术的深度融合。数字技术与农业的深度融合全方位重塑了农业生产与销售。一是物联网技术实现精准种养管理,提升特色农产品品质稳定性。在农田、养殖场安装传感器设备,实时监测温度、湿度、光照等信息,为农户提供精准数据,开展生产过程精细化调控,为农作物和动物提供最适宜生长环境,保障特色农产品品质稳定^[33-34]。二是电商平台扩展销售半径,促进区域特色产品全国性供给。打破地域限制,让偏远地区的特色农产品借助电商平台进入全国大市场,有效提升农产品市场流通效率,丰富广大居民的食物选择。三是大数据分析指导产销动态匹配,降低多元化供给市场风险。通过收集、整理和分析农业生产、市场需求等海量数据,帮助农户和企业了解市场动态,合理安排生产计划,降低因市场供需不平衡带来的风险,提高食物供需匹配的效率。

第三,循环模式的系统构建。该模式为农业资源高效利用与生态环境保护开辟新路径。一是农业废弃物饲料化利用,开发新型养殖业蛋白原料供给。将农作物秸秆等废弃物加工处理为养殖业蛋白原料,既解决了废弃物处理问题,又通过提供饲料缓解中国饲料粮短缺问题^[35]。二是稻渔等综合种养模式提升单位面积产出,实现空间复合供给。把水稻种植与水产养殖有机结合,水产品为水稻松土、增氧、除害,其排泄物又为水稻提供肥料,提高单位土地资源利用效率。三是加工副产物高值化利用延伸产业链。对农产品加工副产物深度开发,如从水果加工废渣中提取果胶、纤维等,用于食品添加剂、保健品生产,推动食物的多层次开发与供给。

4 典型国家保障食物供给的经验及对中国的借鉴

保障粮食和重要农产品稳定供给是国际社会共同关注的重大课题。美国、日本、欧盟等国家和地区在不同发展阶段,根据各自的战略定位和国际环境,采取了多层次政策手段以确保食物供给的稳定性和安全性。通过对这些典型国家和地区保障食物供给经验的分析,或将为中国构建多元高效的食物供给体系提供一定的借鉴和启示。

4.1 挖掘本土资源禀赋,释放农业生产潜力

保障食物供给安全,优化资源配置释放农业生产力是基础。土耳其、挪威、荷兰、新加坡等国家基于本土资源禀赋,因地制宜探索出现代农业发展路径,通过扬长避短的资源整合策略,在有限空间内创造出超预期的农业生产效率。土耳其是全球最大的榛子生产国,全球约有70%的榛子产自土耳其,围绕榛子资源构建起涵盖种质改良、全果开发到精深加工的完整产业链,从种源创新到成分提取,形成完整的榛产业价值体系^[36]。挪威作为全球最主要的大西洋鲑生产国,已形成覆盖种苗培育、规模化养殖、冷链运输、加工处理及高附加值产品的完整产业链,通过系统化深度开发单一鱼种构建起全链条发展模式,并尤其注重产业技术研发体系构建,使高品质挪威大西洋鲑在国际市场形成显著竞争优势^[37]。荷兰立足土地资源稀缺的客观条件,推行以资本投入替代土地扩张的集约化路径,通过制定适合其自然环境和国家农业发展实际情况的政策和战略,全国形成总面积超1万公顷的玻璃温室集群,以技术密度置换空间广度的模式,成就了欧洲"菜篮子"的产业地位^[38]。新加坡突破国土面积限制,在90%食物依赖进口的困境中突围,构建起高效的垂直农

— 60 **—**

业体系,其 Sky Greens 是世界上第一个低碳液压驱动的垂直农场,以尽可能少的土地、水和能源来实现新鲜作物生产,作物可轮番种植,能提高 10 倍的产量^[39],其阿波罗水产养殖集团打造了一个水泥陆地咸水渔场,以垂直渔场方式每年可在节约 30%能耗的同时产量提高 20 倍^[40]。

4.2 强化科技研发推广, 筑牢技术支撑体系

保障食物供给安全,强大的科技研发和推广体系是重要支撑。日本、德国等发达国家以"公益+盈利""政府+企业+科研院所"等多元化的科研体系和推广体系为农业产业链提供技术保障。日本"国家队"在农业科技研发推广方面发挥重要作用。日本采取政府公益性农业科技研发、推广和农协营农指导制度相结合为主体的农业科技推广体系[41]。其中,公益性农业科技推广体系的主要任务包括保障粮食安全、强化农业生产主体能力、通过智慧农业推进农业生产和流通技术革命、有效应对气候变化等,主要采用对农户上门巡访、对农民组织讲座座谈的巡回推广和通过网络推广相结合的推广方式。农民合作经济组织是公益性农业科技推广的重要中介,日本农协建有营农指导部门,配合落实国家农业政策。此外,行业协会、民营企业、农业教育机构和学术团体也是日本农业科技推广体系中的重要组成部分。德国依托现代农业科研和推广体系,在动植物良种培育、生物能源开发、生态农业、生物多样性保护、信息网络技术应用与食品安全等国际前沿领域取得较为突出的成果[42]。在农业科技研发方面,联邦政府研究机构、食品和农业部下属研究机构等政府公益性研究机构、农业高校、社会私人公司等构成了德国多元化的农业科研与开发体系,由政府根据科研前沿及产业发展需求提出研究方向和重点,科研机构重点负责科技突破。在农业科技推广方面,主要包括农会、州农业办公室、私有推广体系等组织形式,通过公益性和营利性相结合的方式,为农民提供智慧农业、农场管理、环境保护、市场营销等方面的技术指导和信息服务。

4.3 践行生态低碳路径,促进农业绿色转型

保持食物供给安全,确保农业绿色可持续发展是客观要求。在欧盟现行可持续发展战略的实施框架下,积极抵御气候变化影响、妥善保育自然资源以及深度强化生物多样性保护,以此保障欧盟食物供应体系的稳定、安全与可持续性,确保民众能够获得充足且优质的食物资源。欧盟共同农业政策经历了从增产导向向市场化、绿色化转型的过程,将对农民的价格和市场支持政策逐步过渡为直接支付政策,如单一农场支付政策、交叉遵守义务、开辟独立绿色直接支付、提高第二支柱支付比例等政策,在促进欧盟农业绿色转型中发挥了重要作用。2018年,为更有效应对不断严峻的气候变化问题、环境污染压力和日益严重的经济社会挑战,欧盟委员会提交《关于未来食品和农业的立法建议》,不断健全并强化既有绿色政策的实施[43]。2019年,新一届欧盟委员会发布欧盟绿色新政——《欧洲绿色协议》,实现农业领域绿色低碳发展是欧盟绿色新政的重要组成部分。2020年,"从农场到餐桌战略"和"欧盟 2030 生物多样性战略。自然回归生活"发布,旨在有机联系大自然、农民、企业和消费者,致力于缓解气候变化、遏制丧失生物多样性,确保粮食安全、营养和公共卫生。2021年,新的共同农业政策被批准,欧盟在环境和气候行动方面以及发展绿色、低碳、生态农业等方面的决心不断凸显[44]。

4.4 完善保障激励机制,激发生产者内生动力

保障食物供给安全,稳定和调动生产者积极性是保障。当前全球气候变化加剧、生产成本攀升、粮食贸易波动等因素持续冲击农业生产体系,美国、日本等发达国家通过制度设计与政策创新稳定农业生产预期、激发生产者内生动力。美国支持政策经过不断优化调整,先后采取了基于目标价格的差额补贴、生产灵活性合约补贴、反周期补贴,2014年以后,政府逐步放松了对农业生产和农产品市场的直接干预,取消直接支付,保留了营销援助贷款项目,并新设价格损失保障计划(PLC)和农业风险保障计划(ARC)^[45]。美国的价格与收入政策为调动农民生产积极性发挥了重要作用。日本采用农业保险帮助农民规避农业生产风险,是

政府支持和保护农民的重要"绿箱"手段,主要包括农业灾害保险、农业收入保险等。2022年4月,日本最新的《农业保险法》开始实施,在农业共济项目、收入保险项目和政府再保险等方面展开多维立体的系统安排。其中,农业共济项目只有可以进行保险精算的品种方可列入保障范围,重要粮食作物纳入强制性保险;收入保险项目与农业共济保险项目实施主体相同,但相比共济保险项目,收入保险项目在价格风险防范、保障高附加值农产品等方面具有一定优势;政府再保险是为防范农业保险大灾风险制定的分层再保险^[46]。此外,日本为提高本国农产品自给率,出台了严格的食品检验制度、复杂的关税制度等有效保护本国农产品,并通过推进双边和多边贸易谈判、宣传"和食"文化等方式提高出口竞争力。

5 推动加快构建多元化食物供给体系的政策建议

在未来相当长一段时间内,中国粮食等重要农产品消费升级的趋势仍将持续,构建多元化食物供给体系的提出符合中国国情农情和食物供求关系的变化,也是中国食物进入高质量发展新阶段的战略安排。构建多元化食物供给体系,要立足中国现有资源禀赋、发展阶段、国情农情、制度环境等条件,综合考虑数量安全、质量安全、营养安全、生态安全、经济安全、能力安全等多元目标,更好满足人民对美好生活的要求。

5.1 完善顶层设计,加强整体谋划

一是优化完善现有政策体系。以耕地保护与食物多样性协同为切入点,在严守耕地红线的基础上,通过耕地轮作、立体种养等模式拓展食物生产空间;制定林草资源开发、水域生态养殖等专项规划;针对微生物蛋白、细胞培养肉等新兴领域,加快制定行业标准与安全监管体系,形成传统与新型食物互补的供给格局。二是构建跨部门协同治理网络。建立由农业农村部门牵头的联席会议制度,整合科技、生态、商务等部委资源,重点开展三方面协同:①科研端推动种质资源、智能农机装备等关键技术联合攻关;②生产端统筹粮食主产区与特色农产品优势区布局;③流通端搭建全国农产品供需大数据平台,实现从田间到餐桌的全程追溯。此外,注重政策执行中因地制宜保有弹性空间。三是打造区域协同发展新范式。例如,在黄淮海平原强化粮食产能保障,在西南丘陵区发展木本粮油,在草原牧区推动草畜平衡示范;规划三大枢纽,即东北一京津冀冷链物流通道、长江经济带水产品流通网络和粤港澳大湾区进口食品集散中心等。

5.2 充分利用资源,丰富食物来源

一是筑牢粮食安全根基。坚持耕地保护与种业振兴双轮驱动:一方面,严守 18 亿亩^①耕地红线,践行"数量-质量-生态"三位一体保护体系,守住粮食生产"命根子";另一方面,深入实施种业振兴行动,重点突破基因编辑、智能育种等核心技术,提高国家级基因库数量及质量,培育具有国际竞争力的种业领军企业。二是多元化挖潜各类资源。中国林下经济、草地畜产品、水产养殖、设施农业、微生物等领域仍有较大的发展潜力,应构建陆海空协同开发格局。在陆域进一步推进林下经济;在旱区发展节水设施农业,建设"盐碱地+"特色农业示范区;向海洋要蛋白,加快建设全链条现代化海洋牧场。加快形成与资源承载力相匹配的农业生产力布局,加快构建符合现代化大农业发展要求的产业、生态和空间格局。三是健全全球化供应链。在"一带一路"沿线布局跨境农业合作区,构建贸易和生产协同机制,合理布局和利用国际市场来丰富国内食物种类。

5.3 发展农业新质生产力,提升生产效率

一是利用科技创新拓展食物来源。加快发展基因编辑等生物育种技术、培育高产、抗逆、营养强化的作

① 1亩=1/15公顷。

[—] 62 **—**

物新品种;利用无土栽培、智能温控等技术发展垂直农业与设施农业,减少对自然条件的依赖;通过细胞培养技术、替代蛋白开发技术,补充传统畜牧业产能。二是推广资源高效利用技术挖掘食物潜力。推广耐盐碱作物、节水灌溉技术,将盐碱地、荒漠等非传统耕地转化为生产用地;推广深远海养殖、智慧渔场、藻类养殖等技术,扩大水产品供给;通过生物转化技术将农业废弃物加工成饲料、食用菌基质或食品添加剂,减少浪费并创造新价值。三是打造数字化与智能化食物供给体系。借助物联网、遥感监测和大数据分析,发展精准农业管理;应用区块链技术追溯食品安全,冷链物流减少损耗;基于消费者健康数据,定制化调整农产品加工方向,促进功能食品、特医食品开发。四是坚持生态友好模式保障可持续供给。通过气候智慧型农业技术应对极端天气,稳定多区域、多季节的食物供给能力。此外,积极增设所需新专业、新学科,培育有关领域研究型人才,并有效统筹科研院所、高校、企业等科技力量,推动产学研深度合作,提升关键核心技术协同攻关效率,夯实多元化食物供给体系构建的技术根基。

5.4 优化消费观念,减少食物浪费

一是加强宣传引导。针对当前居民消费不断升级与结构不合理并存的问题,应通过传统媒体、新媒体、线下活动等多种形式,向消费者推广膳食结构多样化的健康消费模式,帮助居民树立健康饮食观念,优化食物消费结构,为全社会践行大食物观营造良好氛围。同时,对供应商在食物品种、质量和卫生安全等方面提出规范要求,确保食物供应的质量和安全。二是减少损耗浪费。在构建多元化食物供给体系的过程中,既要加快推动开源,也要注重节流。应从标准体系、考核监督等各环节入手,推动食物全产业链节约减损取得实效,提高食物利用效率,减少浪费。三是注重食物消费公平。低收入群体和欠发达地区是食物消费的弱势部分。应在符合当地实际情况的前提下,制定相关支持政策,通过降低营养食物价格、发放食物消费券等措施,保障低收入群体的健康膳食,提升弱势群体和欠发达地区的食物可及性,促进不同区域和不同人群之间的膳食质量公平,实现食物消费的均衡发展。

5.5 突出绿色发展,推动生产持续

一是坚持推进化肥控量增效、农药减施增效。构建多元化食物供给体系的前提条件是符合资源环境承载力,在确保国家粮食安全的前提下,以提高投入品利用效率为核心,继续巩固化肥、农药等农业投入品减量增效的良好势头,加快发展生态低碳农业,推动农业生产方式向绿色高效转型。二是推动种养结合。种养结合是中国千年来传承的经营理念,也是绿色低碳循环农业的典型代表^[47],通过整合植物、动物、微生物的循环利用,促进跨食物生产过程的融合,鼓励发展"以种带养、以养促种"的模式,实现协同推进降碳减污扩绿增长,提升农业系统的整体效益。三是生态产品价值实现。践行"绿水青山就是金山银山"理念,将生态效益与经济社会效益有机结合。以"双碳"目标为契机,推动农业绿色发展与生态红利的转化,建立健全激励机制,鼓励食物供应链主体采用减排固碳等环境友好型技术,让"低碳+"理念贯穿食物生产的各个环节,实现生态与经济的良性互动,推动农业可持续发展。

5.6 提高产业韧性,强化风险应对

一是有效激活农民生产积极性。针对农产品价格波动、信息不对称等问题,需完善"价格稳定+市场浮动"机制,对小麦、水稻实行最低收购价,对高附加值产品试点价格保险;依托大数据平台动态传递市场趋势、灾害预警等信息,引导农民科学调整种植结构。同时,健全农业社会化服务体系,推广托管种植、电商营销等专业化服务,帮助小农户降本增效、对接高端市场,融入现代农业价值链。二是构建全产业链抗风险网络。在生产端重点突破抗逆育种、智能农机等关键技术,如推广耐旱作物抵御气候风险,应用无人机提升植保作业效率。在流通端建设加工、仓储、物流配套的产业集群,维护产业链供应链安全稳定。在风险防控端建立"预防—缓冲—应急"三级机制。通过上述措施,实现"主体有动力、产业有弹性、应急有保障"

的韧性体系。

参考文献

- [1] 周立, 罗建章, 方平. 21世纪中国的食物安全与食物主权 [J]. 中国农村经济, 2022 (10): 2-23.
- [2] 周立. 从农业大国迈向农业强国: 兼论大农业、大安全、大食政[J]. 求索, 2023 (1): 105-112.
- [3] 杨少文, 熊启泉. 中国式现代化下粮食安全的内容架构、现状与趋势 [J]. 华南农业大学学报(社会科学版), 2023, 22 (5): 1-12.
- [4] 周竹君, 郝晓燕, 程锦慧. 大食物观的生成逻辑及践行路径 [J]. 中国食物与营养, 2023, 29 (10): 5-9.
- [5] 何可,宋洪远.资源环境约束下的中国粮食安全:内涵、挑战与政策取向[J].南京农业大学学报(社会科学版), 2021,21(3):45-57.
- [6] 纪志耿. 新常态下构建大食物安全观研究 [J]. 现代经济探讨, 2016 (5): 59-62.
- [7] 李国祥. 新时代国家粮食安全的目标任务及根本要求: 学习习近平关于国家粮食安全论述及十九届六中全会相关精神的体会[J]. 中国农村经济, 2022 (3): 2-11.
- [8] 程国强. 深刻把握大食物观的内涵和要求 [J]. 中国食品工业, 2022 (20): 6-7.
- [9] 黄季焜, 解伟. 中国未来食物供需展望与政策取向[J]. 工程管理科技前沿, 2022, 41 (1): 17-25.
- [10] 陈萌山.大食物观:运用新发展理念解决粮食安全问题的生动实践[J].中国食物与营养,2022,28(4):2.
- [11] 韩磊. 大食物观下我国重要农产品稳产保供的现实困境与政策思路 [J]. 当代经济管理, 2023, 45 (4): 1-10.
- [12] 朱晶. 树立大食物观,构建多元食物供给体系 [J]. 农业经济与管理,2022 (6):11-14.
- [13] 樊胜根, 龙文进, 冯晓龙, 等. 联合国食物系统峰会的中国方案 [J]. 农业经济问题, 2022 (3): 4-16.
- [14] 王晶晶, 孟婷, 樊胜根. 应对国际局势变化 提升农业食物系统韧性 [J]. 农村工作通讯, 2022 (8): 25-26.
- [15] 陈秧分, 王介勇, 张凤荣, 等. 全球化与粮食安全新格局 [J]. 自然资源学报, 2021, 36 (6): 1362-1380.
- [16] 郭静原. 主要农产品监测合格率连续稳定在 97.4%以上: 食品安全形势稳中向好 [N]. 经济日报, 2023-11-30 (1).
- [17] 熊学振, 王明利. 大食物观下中国食物缺口规模估算与破解路径 [J]. 自然资源学报, 2025, 40 (3): 750-766.
- [18] 韩杨. 中国粮食安全战略的理论逻辑、历史逻辑与实践逻辑 [J]. 改革, 2022 (1): 43-56.
- [19] 习近平. 加快建设农业强国 推进农业农村现代化 [EB/OL]. (2023-03-15) [2025-05-16]. http://www.qstheory.cn/dukan/qs/2023-03/15/c_1129432282. htm.
- [20] 龙文进, 樊胜根. 基于大食物观的多元化食物供给体系构建研究 [J]. 农业现代化研究, 2023, 44 (2): 233-243.
- [21] 朱晶,王容博,徐亮,等.大食物观下的农产品贸易与中国粮食安全[J].农业经济问题,2023(5):36-48.
- [22] 孔祥智, 何欣玮. 筑牢建设农业强国的基础: 大食物观下中国的粮食安全 [J]. 河北学刊, 2023, 43 (3): 120-130.
- [23] 苏玉波,王樊.大食物观的生成逻辑、内涵意蕴与实践进路[J]. 学习与实践, 2023 (7): 44-53.
- [24] 方平, 李彦岩, 周立. 国际视野和权利视角下的大食物观 [J]. 农业经济问题, 2023 (5): 86-99.
- [25] 袁纯清, 张峭, 王克, 等. 新型农业经营主体调研报告 [J]. 农村工作通讯, 2024 (8): 4-9.
- [26] 金文成, 靳少泽. 加快建设农业强国: 现实基础、国际经验与路径选择 [J]. 中国农村经济, 2023 (1): 18-32.
- [27] 李俊江, 孟勐. 技术前沿、技术追赶与经济赶超: 从美国、日本两种典型后发增长模式谈起 [J]. 华东经济管理, 2017, 31 (1): 5-12, 2.
- [28] 黄群慧. 新发展格局: 我国经济现代化的路径选择 [J]. 企业观察家, 2021 (9): 18-19.
- [29] 周应恒, 李娜. "大食物观"与我国食物安全保障新思路 [J]. 中国农业大学学报(社会科学版), 2023, 40 (4): 147-158.
- [30] 殷文晶, 陈振概, 黄佳慧, 等. 基于 CRISPR-Cas9 基因编辑技术在作物中的应用 [J]. 生物工程学报, 2023, 39 (2): 399-424.
- [31] 赵鑫锐, 张国强, 李雪良, 等. 人造肉大规模生产的商品化技术 [J]. 食品与发酵工业, 2019, 45 (11): 248-253.
- [32] 陈坚. 中国食品科技: 从 2020 到 2035 [J]. 中国食品学报, 2019, 19 (12): 1-5.
- [33] 翟凌宇, 孙凯旋. 基于云计算的智慧农业物联网云平台[J]. 软件, 2020, 41 (1): 258-262.
- [34] 韩光.农业物联网技术在智慧农场建设中的应用与效益分析[J].农业产业化,2024(10):81-84.
- [35] 崔艺燕, 田志梅, 刘志昌, 等. 农业及农产品加工废弃物饲料化利用技术 [J]. 广东畜牧兽医科技, 2020, 45 (6): 1-5, 10.
- [36] 乔金亮.向森林要食物应讲科学重生态 [N/OL].(2023-11-14) [2025-05-16]. http://www.jingjiribao.cn/static/de-— 64 —

tail. jsp?id = 490472.

- [37] 梁铄, 韩立民. 海洋强国视域下我国深蓝渔业发展路径研究[J]. 太平洋学报, 2023, 31 (10): 69-81.
- [38] 丁亚会,张云鹤,孙宁,等.我国设施农业发展的国际经验与启示[J].江苏农业科学,2023,51(16):1-8.
- [39] 易卫华. 垂直农业发展动因、制约因素及对策[J]. 四川农业科技, 2023 (8): 18-21.
- [40] 唐博文. 从国际经验看中国农业温室气体减排路径[J]. 世界农业, 2022 (3): 18-24.
- [41] 曹斌. 日本农业 [M]. 北京: 中国农业出版社, 2021.
- [42] 李婷. 德国农业 [M]. 北京: 中国农业出版社, 2021.
- [43] 马红坤,毛世平. 欧盟共同农业政策的绿色生态转型: 政策演变、改革趋向及启示 [J]. 农业经济问题, 2019 (9): 134-144.
- [44] 黄茉莉. 欧盟共同农业政策对中国农业绿色发展的启示[J]. 可持续发展经济导刊, 2023, (12): 40-43.
- [45] 刘景景. 美国农业补贴政策演进与农民收入变化研究[J]. 亚太经济, 2018 (6): 70-77, 147-148.
- [46] 魏腾达,穆月英,张峭.日本农业保险法:制度背景、法律框架与镜鉴启示[J].农业现代化研究,2023,44(4):597-608.
- [47] 金书秦,张哲晰,胡钰,等.中国农业绿色转型的历史逻辑、理论阐释与实践探索[J].农业经济问题,2024(3):4-19.

Establishing a Diversified Food Supply System:

Challenges and Opportunities, Experience Reference and Promotion Path

ZHANG Zhexi YANG Yujie HUANG Yu CAO Fangfang

Abstract: Ensuring the stable and secure supply of grain and important agricultural products is of paramount importance in building a strong agricultural country. The research is carried out in accordance with the thinking path of "assessing the current situation-drawing on international experience-formulating a policy framework", and the following conclusions are drawn: China is currently in a historical opportunity period for constructing a diversified food supply system, with the high-quality economic development on the demand side and the strategy of building a strong agricultural country on the supply side. It has the advantages of policy system, food diversity, catch-up, traditional culture, scientific and technological innovation, but it also faces multiple constraints from endowment conditions, dietary structure and international uncertainty. Throughout the typical countries and regions, they ensure the stability and security of food supply by tapping into their local resource endowments and unleashing the potential of agricultural production, strengthening scientific and technological research, development, and promotion to build a solid technical support system, practicing an ecological and low-carbon path to promote the green transformation of agriculture, and improving the guarantee and incentive mechanisms to stimulate the internal motivation of producers. On the whole, China should make efforts in dimensions such as optimizing the top-level design, enriching food sources, developing new productive forces in agriculture, optimizing consumption concepts, highlighting green development, and enhancing industrial resilience, so as to accelerate the construction of a diversified food supply system.

Keywords: Diversified Food Supply System; Current Situation Basis; International Experience; Promotion Path

(责任编辑 张雪娇 卫晋津)