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• A high-activity catalase was identified 
via deep learning models.

• ProteinMPNN-ΔΔG design enhanced 
catalase thermostability and activity.

• The D78P/K201R/E384Y/T435A 
variant showed 1.9 × activity and 4.9 ×
half-life.

• The engineered catalase removed H2O2 
from three simulated industrial 
matrices.

• Coupling with alditol oxidase enabled 
glycerol-to-glycerate conversion.
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A B S T R A C T

Catalases are ideal biocatalysts for hydrogen peroxide removal in industrial wastewater and enzymatic processes, 
yet the practical application is hindered by poor thermostability. In this study, a highly active catalase was 
identified from Fictibacillus enclensis using a computer-assisted screening strategy. To overcome thermal insta
bility, a computational design framework integrating ProteinMPNN-based sequence optimization with physics- 
based energy calculations was developed. The engineered variant, D78P/K201R/E384Y/T435A, exhibited a 
1.9-fold increase in catalytic efficiency and a 4.9-fold extension of half-life at 40◦C. Molecular dynamics simu
lations and structural analyses revealed that the mutations conferred enhanced global rigidity through stabilized 
hydrogen-bond networks. Moreover, the variant was employed for the treatment of industrial effluents con
taining hydrogen peroxide residues and the biocatalytic upgrading of glycerol. This study not only paved the way 
for industrial applications of catalase but also established a strategic framework for enhancing both stability and 
catalytic activity in enzyme engineering.
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1. Introduction

Hydrogen peroxide (H2O2) functions as a broad-spectrum biocide 
and bleaching agent, with pervasive applications spanning diverse in
dustries, including food processing, textile bleaching, and medical 
sterilization (Ciriminna et al., 2016; Fukuzumi et al., 2021). However, 
the discharge of H2O2-laden wastewater poses significant environmental 
risks, and residual H2O2 in food products raises concerns regarding 
health implications upon ingestion (Arslan-Alaton et al., 2012; Bopitiya 
et al., 2021). The removal of residual H2O2 has emerged as a critical 
priority in textile production, food safety protocols, and environmental 
pollution mitigation strategies (Tian et al., 2012). Conventional treat
ment methodologies for H2O2 effluents involve water dilution, thermal 
degradation, and chemical reduction approaches, which are associated 
with unsustainable energy demands and risks of secondary contamina
tion (Yu et al., 2016).

Catalase has been demonstrated to exhibit exceptional catalytic ef
ficiency in rapidly decomposing H2O2 into water and molecular oxygen 
(Tehrani and Moosavi-Movahedi, 2018). This unique property renders it 
an ideal candidate for the elimination of residual H2O2 in diverse ap
plications (Lončar and Fraaije, 2015). The direct introduction of catalase 
into H2O2-containing wastewater not only ensures rapid detoxification 
but also minimises secondary environmental impacts (Vasudhevan 
et al., 2025; Fruhwirth et al., 2002). Beyond industrial applications, 
coupling catalase with oxidases is critical for enzymatic cascade re
actions, as it prevents enzyme inactivation caused by H2O2 accumula
tion and facilitates oxygen regeneration (Wang et al., 2024; Chen et al., 
2022). However, the commercially catalases are extracted from animal 
liver tissues, involving complex processing steps and high production 
costs (Meyer et al., 1997). Although microbial fermentation offers an 
alternative, it often encounters a trade-off between activity and stability. 
Catalases derived from sources such as Aspergillus niger and Bacillus 
subtilis typically exhibit high catalytic activity but limited stability, 
whereas thermophilic-origin catalases display enhanced thermostability 
at the expense of reduced catalytic activity (Eberhardt et al., 2004; 
Kocabas et al., 2008; Wang et al., 1998). The trade-off between activity 
and stability imposes limitations on industrial feasibility, underscoring 
the importance of engineering catalases with both high catalytic effi
ciency and thermal stability.

The integration of artificial intelligence and protein engineering has 
introduced unprecedented opportunities for enzyme discovery and 
enhancement of protein stability (Bian et al., 2024; Silverstein et al., 
2025). Accurate prediction of catalytic constants is key for the identi
fication of enzymes with high catalytic efficiency. TurNuP introduced a 
novel approach for identifying highly active enzymes, employing reac
tion fingerprints to comprehensively consider substrate and product 
profiles (Kroll et al., 2023). The DLKcat model implemented a hybrid 
architecture that demonstrates superior predictive capability in kcat 
determination (Li et al., 2022). In parallel, AI-driven strategies have 
been leveraged to improve protein stability. The deep learning-based 
protein sequence design model ProteinMPNN has demonstrated 
remarkable capabilities in guiding stability optimization (Justas et al., 
2022; Sumida et al., 2024). Nevertheless, a critical limitation arises from 
the inherent design paradigm of ProteinMPNN, prioritising native 
sequence recovery over explicit identification of physical stability de
terminants (Dieckhaus et al., 2024). Conventional physics-based protein 
stabilization strategies utilize computational predictions of Gibbs free 
energy changes to evaluate mutational effects, yet frequently neglect the 
accompanying alterations in enzyme activity induced by such mutations 
(Weinstein et al., 2021; Musil et al., 2017). Therefore, strategic inte
gration of the sequence design capabilities of ProteinMPNN with 
physics-based energy modeling enables precise identification of muta
tions that enhance stability while maintaining catalytic activity, and this 
strategy has not yet been applied to catalase engineering.

In this study, the high-activity catalase A0A0V8J8H6 was identified 
through the utilisation of learning models. To address industrial 

application requirements, we developed a computational workflow 
integrating ProteinMPNN-guided sequence design with ΔΔG profiling to 
construct a high-confidence variant library. Guided by this strategy, the 
optimal variant D78P/K201R/E384Y/T435A exhibited a 4.9-fold in
crease in half-life at 40 ◦C and a 1.9-fold improvement in catalytic ef
ficiency. In addition, the optimal variant exhibited robust efficacy in the 
treatment of H2O2-containing wastewater. Coupling the optimal variant 
with alditol oxidase enabled a cascade system for the value-added 
conversion of glycerol. Overall, this work demonstrated the potential 
of artificial intelligence in the computational-aided identify and engi
neering of catalase with enhanced catalytic activity and thermal 
stability.

2. Materials and methods

2.1. Database mining for enzymes

To acquire highly active and thermostable catalase sequences, the 
uniprot database was searched using the catalase from Ureibacillus 
thermosphaericus (uniprot ID: A0A2H4YCD5) as the query sequence, 
with a sequence identity threshold of < 90 %. Phylogenetic analysis of 
the candidate proteins was performed using the Maximum Likelihood 
algorithm implemented in MEGA 11 (Tamura et al., 2021). Computa
tional prediction of thermal stability for the candidate proteins was 
conducted via DeepSTABp, with the melting temperature serving as a 
quantitative metric for structural robustness (Jung et al., 2023). To 
effectively screen candidate proteins with high catalytic potential, two 
deep learning models, DLKcat and the Kcat prediction model, were 
employed.

2.2. Protein structure modeling and proteinMPNN design

The protein structures of catalase were predicted using AlphaFold3 
(https://golgi.sandbox.google.com/), with heme incorporated as the 
ligand into protein structure (Abramson et al., 2024). All parameters 
were set to their default values during the prediction process. The model 
with the highest pTM and ipTM scores was selected from the five pre
dicted structures for subsequent structural analysis. To validate the 
reliability of the selected model, a comprehensive quality assessment 
was performed using the SAVES v6.1 suite (Colovos and Yeates, 1993). 
The tunnel analysis was conducted utilizing the CAVER 3.0 PyMOL 
plugin with the following computational parameters applied to the 
protein’s three-dimensional structure: a probe radius of 1.4 Å, shell 
radius of 3 Å, shell depth of 4 Å, max distance of 3 Å, and desired radius 
of 5 Å (Chovancova et al., 2012).

Designing catalase using ProteinMPNN. The protein structure of 
catalase from Fictibacillus enclensis (UniProt ID: A0A0V8J8H6) was 
employed as input to ProteinMPNN. To maintain the integrity of the 
catalytic function, all residues within a 6 Å radius of the heme cofactor 
were excluded from the designable positions. Sequence generation was 
conducted using a ProteinMPNN model that was trained with the 
application of 0.2 Å backbone noise to enhance its robustness. Three 
different temperatures (0.1, 0.2, and 0.3) were sampled, with 20 se
quences generated at each temperature to ensure a comprehensive 
exploration of potential sequences. The structures of sequences gener
ated by ProteinMPNN were predicted using AlphaFold3. The sequences 
generated by ProteinMPNN were filtered based on the predicted local 
distance difference test (plDDT) scores and Cα root-mean-square devi
ation (RMSD) values, with the selection criteria set at Cα RMSD < 1.2 Å 
and plDDT > 87.0 to ensure high accuracy and reliability.

2.3. Gibbs free energy change calculations

Utilizing the protein structure, Gibbs free energy changes (ΔΔG) 
were calculated using both the FoldX and Rosetta ddg_monomer meth
odologies. FoldX was employed using standard parameters, with each 
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calculation repeated for five replicates to determine the ΔΔG. Based on 
the reported FoldX error margin (0.46 kcal/mol), mutations yielding 
ΔΔG values exceeding + 0.92 kcal/mol were classified as destabilizing 
(Studer et al., 2014). For Rosetta ddg_monomer calculations, we 
employed the settings described by Kellogg et al. (options: − ddg:: 
local_opt_only true-ddg::opt_radius 8.0-ddg::weight_file soft_rep_design 
− ddg::iterations 50-ddg::min_cst false-ddg::mean true-ddg::min false- 
ddg::sc_min_only false-ddg::ramp_repulsive false). Within this protocol, 
destabilizing mutations are defined as those exhibiting ΔΔG ≥+ 3 kcal/ 
mol (Kellogg et al., 2011).

2.4. Protein expression and purification

For recombinant protein expression, the E. coli BL21 (DE3) expres
sion system was employed in combination with the pET-28a (+) 
expression vector. The cells harboring the recombinant plasmid were 
cultured in 100 mL of LB medium supplemented with 50 mg L-1 kana
mycin at 37 ◦C with shaking at 220 rpm. Protein expression was induced 
by adding 0.2 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) when 
the OD600 reached 0.6–0.8. Following induction at 18 ◦C for 16 h, the 
cells were harvested by centrifugation and resuspended in 50 mL of KPi 
buffer (pH 8.0) containing 10 mM imidazole and 500 mM NaCl. Cell 
lysis was then performed using high-pressure homogenization, and the 
lysate was centrifuged at 7000 rpm for 20 min at 4 ◦C. The His-tagged 
target protein was purified from the supernatant using nickel- 
chelating affinity chromatography. The purification process involves 
washing with 60 mM imidazole to remove impurity proteins and elution 
of the target protein with 200 mM imidazole. The enzyme purity was 
assessed via SDS-PAGE and quantified utilizing the BCA Protein Assay 
Kit from Tiangen (Beijing, China).

2.5. Construction of variants

Site-directed mutations were introduced by PCR. Primers for site- 
directed mutagenesis were designed using the wildtype catalase gene 
as a template. Whole plasmid PCR amplification was performed to 
generate the mutants, which were subsequently transformed into E. coli 
DH5α for cloning amplification and DNA sequencing verification. The 
mutant plasmids were transformed into E. coli BL21 (DE3) cells for re
combinant protein expression.

2.6. Enzyme activity assays and kinetic parameters analysis

The activity of catalase was assayed using the reaction mixture 
containing 50 mM H2O2 and 0.0001 g L-1 catalase in 100 mM KPi buffer. 
The reaction solution was incubated in a thermostatic metal bath for 
1 min. After the reaction, 200 μL of the reaction mixture was added to 
100 μL of 20 % trichloroacetic acid (TCA) solution to terminate the 
reaction. Subsequently, 100 μL of the terminated reaction solution was 
mixed with 100 μL of 50 mM ammonium molybdate solution. The color 
of the mixture changed from colorless to yellow, and the absorbance at 
405 nm was measured as an indicator of catalase activity. One unit of 
catalase activity was defined as the amount of enzyme that converted 1 
μmol of substrate H2O2 per minute. In addition, to estimate the optimal 
reaction temperature and pH, catalase activities were determined to be 
in the range of 20–70 ◦C and pH 5.0–9.0, respectively.

Under optimal conditions, the initial reaction rates were determined 
at varying concentrations of H2O2 to calculate the kinetic parameters. 
Km, Vmax, and kcat were derived by fitting the experimental data to the 
Michaelis-Menten equation through nonlinear regression analysis.

2.7. Thermal stability calculation

The thermal stability of the purified enzyme was assessed by 
measuring its residual activity after incubation at 40 ◦C or 50 ◦C for 
varying time intervals. The thermal inactivation kinetics of the enzyme 

were analyzed using a first-order kinetic model (Eq. (1)), where A rep
resents the residual enzyme activity at time t (in hours), A0 corresponds 
to the initial enzyme activity, and k denotes the first-order inactivation 
rate constant (h− 1). Based on this kinetic analysis, the thermal stability 
of the enzyme was quantitatively expressed through its half-life (t1/2), 
which was defined as the time required for the residual activity to 
decrease to 50 % of the initial activity. 

lnA = lnA0 − kt (1) 

The melting temperature (Tm) of the enzyme was determined using 
circular dichroism (CD) spectroscopy. Purified enzyme was diluted to a 
final concentration of 0.2  g L-1 in phosphate buffer (100  mM, pH 8.0). 
The temperature was ramped from 20-90 ◦C at a rate of 1 ◦C/min, and 
the detection wavelength range was 180–260  nm. The Tm value was 
calculated by analyzing data using Global 3 software.

2.8. MD simulation

Molecular dynamics (MD) simulations of the wildtype and the 
optimal variant were performed using the GROMACS 2020.3 software 
package with the AMBER14SB force field (Spoel et al., 2005). The 
simulation system was constructed using a rectangular box filled with 
TIP3P water molecules, with a minimum distance of 10 Å between the 
protein and the box boundaries in all directions. The system was first 
subjected to energy minimization using the steepest descent algorithm 
for 50,000 steps, followed by the conjugate gradient algorithm, with a 
force constant of 100 kJ/mol/nm2 applied to the protein backbone 
atoms to ensure the reasonability of overall protein conformation. Af
terward, the system was gradually heated to 323 K or 303 K over 100 ps 
under canonical ensemble (NVT) using the Nosé-Hoover thermostat, 
followed by pressure equilibration at 1 bar under the isothermal-isobaric 
(NPT) ensemble using the Parrinello-Rahman barostat for 1 ns. After 
equilibrium, a 200 ns position-free MD simulation was performed, with 
snapshots taken every 10 ps for subsequent analysis.

2.9. H2O2-containing wastewater treatment

To evaluate the industrial application potential of catalase, three 
distinct systems were investigated. The medical wastewater system 
contained 3 % H2O2 supplemented with 100 mg L-1 glucose, 700 mg L-1 

NaCl, 10 mg L-1 bovine serum albumin (BSA), 10 mg L-1 FeCl3, and 
0.002 g L-1 enzyme. The textile bleaching effluent system comprised 1 % 
H2O2 with 200 mg L-1 lignin, 0.25 % (w/v) EDTA, 1 % (w/v) NaOH, 100 
mg L-1 MgSO4, 100 mg L-1 CaCl2, and 0.001 g L-1 enzyme. The dairy 
system consisted of skim milk containing 14.7 mM hydrogen peroxide 
combined with 0.0001 g L-1 enzyme. In medical wastewater and textile 
bleaching treatments, enzymatic supplementation (0.001 g L-1 and 
0.0005 g L-1) was administered at 10-minute intervals when the residual 
H2O2 concentration exceeded 100 mM.

2.10. Cascade reaction

D-glycerate was synthesized in 10 mL of 100 mM KPi buffer (pH 7.0) 
containing glycerol, 2.0 g L-1 TfAldOV256L/P257I, and 0.0005 g L-1 cata
lase. The reaction was conducted at 40 ◦C, and samples were collected at 
various time points to monitor the reaction.

2.11. Analytical methods

The concentration of glyceraldehyde and D-glycerate was determined 
by HPLC equipped with an Organic Acid Analysis Column (300 × 7.8 
mm, Aminex HPX-87H). The column temperature was set to 65 ◦C, with 
an injection volume of 20 μL and a detection wavelength of 214 nm. The 
mobile phase was 5 mM sulfuric acid at a flow rate of 0.6 mL/min.

All experiments were conducted in triplicate, and the results are 
presented as mean ± standard deviation. Statistical analysis was 
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performed using t-test to compare mean values between groups. Dif
ferences were considered statistically significant at P < 0.05, P < 0.01, 
and P < 0.001.

3. Results and discussion

3.1. Computer–Aided discovery of novel catalases

To identify catalases exhibiting both high catalytic activity and 

Fig. 1. Deep learning-guided discovery of novel catalases and functional characterization. (A) A phylogenetic tree of 70 catalases with bar charts. The blue and 
orange bars represent the predicted activity by the DLkcat and TurNup models, respectively. A higher bar indicates a greater predicted kcat value. (B) Sequence 
similarity of the candidate catalases. (C) Enzyme activity of the candidate catalases across a temperature spanning 20–70 ◦C. (D) Determination of optimum reaction 
pH of the candidate catalases. (E) Thermal stability analysis showing the half-life of the candidate catalase measured at 40 ◦C. Error bars represent standard deviation 
of at least three replicates. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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thermal stability, a homology search was conducted in the UniProt 
database. The monofunctional catalase from Ureibacillus thermosphaer
icus, which is characterized by exceptional catalytic efficiency and 
thermostability, was employed as the query sequence (Jia et al., 2017). 
70 catalases derived from different species were retrieved from the 
database and employed to construct a phylogenetic tree, elucidating 
their evolutionary relationships and functional divergence (Fig. 1A). 
The melting temperatures (Tm) of the candidate proteins were predicted 
using the deep learning model DeepSTABp, revealing narrowly distrib
uted Tm values across all candidates (see supplementary material). 
Therefore, screening candidate enzymes based on predicted stability 
became unfeasible, leading to a shift toward selection based on catalytic 
efficiency. To identify catalases with high catalytic potential, enzyme 
turnover numbers (kcat) of candidate proteins were predicted using two 
deep learning models, DLKcat and TurNuP. Integrating predictions from 

both models allowed for mutual compensation of individual model 
limitations, thereby improving the overall reliability of the screening 
process. Given the discrepancies in kcat predictions between the two 
models, the top three candidates with the highest predicted kcat values 
from each model were selected for further analysis (DLKcat: 
A0A7V7V1L2, A0A1S2QUR9, A0A161YUK6; TurNuP: A0A0M2PHR8, 
A0A090ZD23, A0A0V8J8H6). These candidates occupy distinct evolu
tionary branches and share < 90 % sequence similarity (Fig. 1B), 
ensuring that subsequent experiments would capture the functional di
versity of catalases.

Six candidates were successfully heterologously expressed in E
scherichia coli, and purified enzymes were subsequently employed to 
assess their catalytic activity, temperature property, and pH optima. The 
enzymes A0A0M2PHR8, A0A7V7V1L2, and A0A1S2QUR9 exhibited 
maximal catalytic activity at 30 ◦C, while A0A1S2QUR9, A0A161YUK6, 

Fig. 2. Deep learning-guided protein engineering workflow for thermostable enzyme design. (A) Overview of the computational workflow integrating Pro
teinMPNN, AlphaFold3, and stability prediction tools (FoldX and Rosetta ddg_monomer) for thermostable enzyme design. (B) Structural alignment of 10 
ProteinMPNN-designed variants with the AlphaFold3-predicted structure of the target enzyme A0A0V8J8H6. (C) Identification of 35 candidate mutation sites based 
on sequence alignment of the refined variant library. (D) Evolutionary conservation analysis of candidate mutation sites using ConSurf, with conservation scores 
represented by a color gradient (red: conserved, green: variable). (E) ΔΔG predictions of the 32 variable sites using FoldX and Rosetta ddg_monomer. (F) Final 
selection of 21 high-confidence thermostabilizing mutations retained for experimental validation. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)
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and A0A0V8J8H6 indicated optimal reaction temperatures of 40 ◦C 
(Fig. 1C). All enzymes retained over 50 % of their activity across a broad 
pH range of 6.0–9.0 (Fig. 1D). Among the candidates, A0A0V8J8H6 
demonstrated the highest catalytic performance under optimal condi
tions, showing a specific activity of 79727.9 U/mg. Notably, this enzyme 
retained significant residual activity at elevated temperatures (50 ◦C) 
and alkaline pH conditions.

Time-dependent activity loss presents a common challenge for in
dustrial enzyme applications. To evaluate the industrial potential of 
these catalases, their thermal stability was assessed at 40 ◦C (Fig. 1E). 
While the remaining five enzymes exhibited comparable half-lives (t1/2), 
A0A0V8J8H6 demonstrated a substantially prolonged t1/2 of 29.8 h. 
However, industrial processes in the food and textile sectors that employ 
catalase for hydrogen peroxide decomposition are typically conducted 
under elevated temperatures (50 ◦C or 60 ◦C). The t1/2 of A0A0V8J8H6 
at 50 ◦C decreased significantly to 2.2 h, highlighting the necessity for 
further protein engineering to enhance its thermostability for practical 
industrial deployment.

3.2. ProteinMPNN–Guided selection of mutational residue sites

The deep learning-based protein sequence design method, Pro
teinMPNN, has been employed to generate variants of native proteins. 
Sequences generated by ProteinMPNN reliably fold into the native 
backbone structure with high accuracy. Furthermore, these designed 
variants exhibit superior performance in enhancing expression levels 
and thermostability compared to the wildtype counterparts. Therefore, 
we developed a workflow that integrates ProteinMPNN to guide the 
rational design of enzyme, specifically targeting enhanced thermosta
bility for industrial biocatalytic applications (Fig. 2A). The backbone 
structure of the target enzyme was initially input into the ProteinMPNN 
framework. To preserve catalytic function, residues within the active 
site were constrained during sequence generation, while temperature 
sampling parameters were systematically modulated to balance 
sequence diversity with structural plausibility. The generated sequence 
was subjected to structural prediction using AlphaFold3, followed by 
structural alignment with the target protein. Sequence demonstrating 
reliable folding into the native backbone conformation were retained, 
thereby constructing a refined library that preserves native-like struc
tural integrity while exploring mutational diversity at non-conserved 
regions. Subsequently, sequence alignment was performed between 
the refined variant library and the target protein to identify candidate 
mutation sites at non-conserved regions. The ΔΔG of these variants were 
computationally predicted using FoldX and Rosetta ddg_monomer, 
enabling the elimination of mutation sites that destabilized the protein 
structure. Finally, the remaining high-confidence mutation sites were 
experimentally validated through site-directed mutagenesis. Overall, 
the workflow we have established integrates deep learning-driven 
sequence diversification with physics-based stability screening, 
ensuring that variants retain catalytic functionality while acquiring the 
thermostability required for industrial applications. Notably, the entire 
computational process can be completed within a few hours.

Based on the aforementioned strategy, the three-dimensional struc
ture of A0A0V8J8H6 was first determined using AlphaFold3. The 
structural was used as the design template for ProteinMPNN, with res
idues within 6 Å of the heme cofactor was fixed to preserve heme- 
binding integrity and catalytic function. Following structural align
ment of the variant structures with the A0A0V8J8H6 template, 10 
variants meeting thresholds (Cα-RMSD < 1.2 Å and plDDT > 87.0) were 
retained (Fig. 2B). Sequence alignment identified 35 candidate mutation 
sites, defined as residues exhibiting amino acid substitutions distinct 
from A0A0V8J8H6 while maintaining sequence identity > 90 % across 
the refined library (Fig. 2C). To further safeguard functionally essential 
residues, the evolutionary conservation profile of the 35 candidate sites 
was assessed using ConSurf. Analysis revealed that 3 of the 35 residues 
were evolutionarily invariant (Conservation score = 9; Fig. 2D). The 

ΔΔG for the remaining 32 sites were calculated, resulting in the exclu
sion of 11 mutations predicted to destabilize the protein structure 
(Fig. 2E). The elimination of these physics-based predictions refined the 
candidate pool to 21 high-confidence mutations for experimental vali
dation (Fig. 2F).

3.3. Verification of variant activity and thermostability

To evaluate the catalytic activity and thermal stability, 21 variants 
were overexpressed in E. coli and subsequently purified. Specific activity 
analyses of these purified enzymes revealed that two variants, D78P and 
E384Y showed significant enhanced enzymatic activity, achieving 
relative activities of 174 % and 156 %, respectively, in comparison to the 
wildtype (Fig. 3A). Furthermore, thermal stability assessments were 
conducted by determining enzyme half-life at 50 ◦C (Fig. 3B). Seven 
variants, namely, D78P, K201R, E384Y, E393P, E396S, T430S, and 
T435A were identified with enhanced thermal stability. However, while 
the E393P, E396S, and T430S mutants exhibited longer half-life, their 
catalytic activities were markedly reduced to 64 %, 58 %, and 70 % of 
the wildtype, respectively. In contrast, the D78P, E384Y, K201R, and 
T435A variants demonstrated enhanced thermostability while main
taining unaltered or even elevated catalytic activity. Based on these 
findings, combinatorial mutants were engineered by combining D78P, 
K201R, E384Y, and T435A mutations to synergistically enhance both 
catalytic efficiency and thermal stability. This rational design strategy 
generated six double mutants, four triple mutants, and one quadruple 
mutant. These 11 combinatorial mutants were subsequently purified 
and systematically evaluated using the same methodology. As illustrated 
in Fig. 3C, all 11 combinatorial mutants exhibited further improvements 
in thermostability compared to single-mutation, with the K201R/ 
E384Y/T435A triple mutant suggesting the most pronounced enhance
ment. This variant achieved a 4.1-fold increase in half-life relative to the 
wildtype, reaching 9.1 h at 50 ◦C. However, the K201R/E384Y/T435A 
variant retained only 78 % of the catalytic activity relative to the 
optimal single mutant D78P. Fortunately, the D78P/K201R/E384Y/ 
T435A variant demonstrated a 102 % increase in specific activity 
compared to the wildtype and a 15 % enhancement over D78P, while 
simultaneously achieving exceptional thermostability with a half-life of 
8.6 h at 50 ◦C. Under optimal temperature conditions at 40 ◦C, this 
quadruple variant exhibited a remarkable 4.9-fold extension in half-life 
compared to the wildtype, achieving an exceptional stability duration of 
145.0 h (see supplementary material). Moreover, the Tm value of the 
quadruple variant was elevated from 45.9 ◦C for the wildtype to 54.0 ◦C. 
Therefore, the D78P/K201R/E384Y/T435A variant suggested a more 
favorable trade-off between catalytic activity and thermostability 
(Fig. 3D).

We systematically characterized the kinetic parameters of the wild
type and the optimal variants across single-, double-, triple-, and 
quadruple-mutation. As summarized in Table 1, all engineered variants 
exhibited significantly enhanced the catalytic efficiency. The D78P 
variant showed a significantly reduced Michaelis constant (Km) along
side a 1.5-fold higher turnover number (kcat), compared to the wildtype, 
collectively driving its superior enzymatic performance. Compared to 
the D78P variant, the combinatorial mutants D78P/K201R, D78P/ 
K201R/E384Y, and D78P/K201R/E384Y/T435A displayed elevated Km 
values. However, introduction of the E384Y and T435A mutations 
further optimized catalytic activity by demonstrating enhanced Kcat 
values. Ultimately, the D78P/K201R/E384Y/T435A variant displayed 
the Km value comparable to the wildtype while achieving a 1.8-fold 
enhancement in catalytic efficiency (kcat/Km). The D78P/K201R/ 
E384Y/T435A variant exhibited synergistic improvements in both 
thermostability and catalytic efficiency, demonstrating that the 
computational framework not only accelerates the identification of 
beneficial mutation sites, but also effectively addresses the classical 
trade-off between stability and activity. This strategy facilitates the 
rational design of enzymes with dual high activity and enhanced 

S. Xu et al.                                                                                                                                                                                                                                       Bioresource Technology 437 (2025) 133081 

6 



stability, thereby laying a solid foundation for potential industrial 
applications.

3.4. Molecular dynamics simulation and structural analysis

After evaluating the trade-offs between stability and catalytic ac
tivity, the D78P/K201R/E384Y/T435A variant was strategically 
selected for comprehensive investigation of its thermostability 
enhancement mechanisms through integrated molecular dynamics (MD) 
simulation and structural analysis. The variant structure was likewise 
modeled using AlphaFold3, and 200 ns MD simulations were carried out 
for both the wildtype and the variant. Under the simulation condition of 

323 K, the RMSD of the wildtype gradually stabilized after approxi
mately 60 ns, converging to approximately 0.90 Å (Fig. 4A). While the 
variant achieved conformational equilibrium within a shorter time (35 
ns), demonstrating a notably lower stabilized RMSD of 0.65 Å. This 
marked reduction in RMSD and accelerated convergence kinetics sug
gested enhanced global conformational rigidity in the variant. It was 
also evidenced by the less displacement of residues 370–420 in the 
variant during the simulation (Fig. 4B). The mutation diminished the 
unstructured regions in the variant, compared to the wildtype, resulting 
in a lower number of random coils and a decrease in flexibility (Fig. 4C). 
SASA serves as a critical parameter in studies of protein folding and 
structural stability. The average SASA of the variant was lower than that 
of the wildtype, revealing a more compact and stable conformational 
state in the variant (Fig. 4D). In addition, MD simulations at the lower 
temperature of 303 K similarly revealed that the variant exhibited 
reduced conformational fluctuations, indicative of enhanced overall 
structural rigidity. Consequently, the attenuation of localized confor
mational dynamics and reduction in flexible regions collectively 
enhance global structural rigidity, thereby facilitating improved ther
mostability of the variant.

Subsequently, principal component analysis (PCA) was applied to 
MD simulation trajectories to construct the free energy landscape, from 
which fully energy-minimized conformations were extracted. The 
energy-minimized structure was employed to investigate alterations in 
inter-residue interactions proximal to the mutation site. Comparative 
analysis of hydrogen bonding patterns revealed that both residues 78 
and 201 maintained consistent numbers of hydrogen bonds with 
neighboring residues before and after mutation (Fig. 4E and F). 

Fig. 3. Characterization of the A0A0V8J8H6 variants activity and thermostability. (A) Enzymatic activity of A0A0V8J8H6 single-point mutants at 40 ◦C. (B) The 
half-life of A0A0V8J8H6 single-point mutants at 50 ◦C. (C) Activity and thermal stability of A0A0V8J8H6 combinatorial mutants. (D) Evolutionary trajectory of 
activity and thermostability of the A0A0V8J8H6 variants. P < 0.05 (*), P < 0.01 (**), and P < 0.001 (***) indicate the significance levels between wildtype 
and variants.

Table 1 
Kinetic Parameters of A0A0V8J8H6 and Variants.a

Enzyme Km (mM) kcat (s− 1) kcat/ 
Km (μM− 1 s− 1)

A0A0V8J8H6 14.81 ±
2.87

107168.43 ±
6470.75

7.24

D78P 12.11 ±
2.27

166767.48 ±
9118.38

13.77

D78P/K201R 15.63 ±
2.78

164790.00 ±
9228.24

10.54

D78P/K201R/E384Y 13.97 ±
1.57

172919.64 ±
6591.60

12.38

D78P/K201R/E384Y/ 
T435A

14.66 ±
2.00

196759.26 ±
8239.50

13.42

a Values represent the mean ± standard deviation (SD) of three independent 
replicate experiments.
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However, alterations were observed in bond lengths following amino 
acid substitutions. Specifically, the D78P mutation resulted in a signif
icant reduction of the average hydrogen bond distance between P78 and 
residue K85, decreasing from 4.2 Å–3.3 Å (see supplementary material). 
The K201R mutation also induced a subtle but consistent shortening of 
the two hydrogen bonds, with their average length decreasing from 2.0 
Å–1.9 Å. Notably, the E483Y and T435A mutations induced the forma
tion of novel hydrogen bonds in the variant, which significantly 
enhanced structural rigidity (Fig. 4G and Fig. 4H). Analysis of MD 
simulation trajectories found that when E384 was replaced by tyrosine, 
Y384 formed a hydrogen bond interaction an average length of 3.0 Å 
with the Y382 residue in the random coil region. This interaction 
significantly reduced local dynamics within residues 350–410 of the 
random coil domain, a finding corroborated by RMSF analysis. The 
T435A substitution caused an additional hydrogen-bonding interaction 
to form between residues A435 and V438, with an average bond length 
of 3.1 Å. These mutations generated novel hydrogen-bond interactions 
absent in the wildtype structure, thereby stabilizing the variant 
conformation through reinforced intermolecular forces.

The mutations in the D78P/K201R/E384Y/T435A variant were 
distant from the catalytic site, exhibiting no direct impact on the 
conformation of the active center or substrate binding modes. The 
tunnel connecting the catalytic core to the protein surface, a structural 
feature known to modulate catalytic efficiency, was hypothesized to 
mediate the observed activity enhancement. Tunnel analysis based on 
the static structure revealed that the variant exhibited a shortened 
tunnel length of 9.4 Å, accompanied by an expansion of the bottleneck 
diameter from 1.9 Å to 2.1 Å (see supplementary material). Analysis of 
protein conformations sampled during MD simulations revealed that the 
wildtype exhibited an average tunnel bottleneck radius of 2.0 Å and an 
average tunnel length of 13.8 Å. In contrast, the D78P/K201R/E384Y/ 
T435A variant showed a wider average bottleneck radius of 2.4 Å and a 
shorter tunnel length of 9.7 Å. The presence of a shorter and wider 

tunnel in the variant facilitated enhanced substrate accessibility to the 
catalytic center and promoted product release. Moreover, the variant 
exhibited enhanced hydrophilicity at the tunnel entrance compared to 
the wildtype, thereby enabling efficient binding of the polar substrate 
(H2O2). These findings collectively provide a molecular basis for pro
moting substrate and product translocation through the tunnel in the 
variant, thereby enhancing enzyme-substrate turnover efficiency.

3.5. Validation of industrial application potential

To assess the practical industrial potential, the H2O2 removal capa
bilities of the wildtype and the engineered variant were systematically 
evaluated across three distinct industrial matrices, including medical 
wastewater, textile bleaching effluent, and dairy processing sample. 
Following sequential additions of enzymes to medical wastewater, the 
engineered variant demonstrated rapid decomposition efficiency by 
achieving H2O2 elimination within 50 min, compared to 60 min 
required by the wildtype (Fig. 5A). Notably, the variant’s enhanced 
tolerance to H2O2 enabled a reduction in enzyme loading requirements, 
thereby effectively lowering treatment costs. Similarly, in bleaching 
wastewater treatment applications, the variant-catalyzed system ach
ieved complete H2O2 degradation within 40 min, whereas the wildtype- 
mediated process required a prolonged duration of 60 min to reach 
equivalent decomposition levels (Fig. 5B). We then systematically 
investigated the efficacy of catalase in eliminating residual low- 
concentration H2O2 during dairy processing. The wildtype achieved 
complete H2O2 removal within 30 min, whereas the variant enabled 
undetectable H2O2 levels in dairy matrices within 15 min (Fig. 5C). The 
variant’s superior catalytic efficacy substantially reduced processing 
duration, thereby not only improving the efficiency of dairy production 
but also minimizing H2O2-induced oxidative degradation of lipid frac
tions, proteins, and vitamins.

Although real industrial wastewater was not available during this 

Fig. 4. Analysis of the thermal stability mechanism of the D78P/K201R/E384Y/T435A variant by molecular dynamics simulations. (A) Root Mean Square Deviation 
(RMSD) of the backbone atoms of A0A0V8J8H6 and the D78P/K201R/E384Y/T435A variant during MD simulations conducted at 323 K. (B) Root Mean Square 
Fluctuation (RMSF) of the residues in A0A0V8J8H6 and the D78P/K201R/E384Y/T435A variant. (C) Number of random coils in A0A0V8J8H6 and the D78P/ 
K201R/E384Y/T435A variant over the course of MD simulations. (D) The alterations in solvent-accessible surface area (SASA) of A0A0V8J8H6 and the D78P/ 
K201R/E384Y/T435A variant through MD simulations. (E-H) Structural comparisons between the wildtype and the D78P/K201R/E384Y/T435A variant near 
the mutations.
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study, the simulated systems were carefully designed to reflect realistic 
industrial conditions. The above results demonstrated that the D78P/ 
K201R/E384Y/T435A variant exhibited exceptional application poten
tial. Its ability to decompose H2O2 in complex aqueous matrices is not 
impeded by the presence of Mg2+, Ca2+, or Fe3+ ions, nor by organic 

constituents such as lignin, glucose, or lactose. Moreover, the variant 
displayed enhanced tolerance toward H2O2, underscoring its unparal
leled robustness and catalytic efficiency for industrial biocatalytic 
applications.

Fig. 5. H2O2 degradation performance of the D78P/K201R/E384Y/T435A variant in diverse industrial wastewater matrices. (A) Time-course analysis of H2O2 
removal in simulated medical wastewater (3% H2O2). (B) H2O2 decomposition in bleaching effluent (1% H2O2) from textile industry. (C) Enzymatic removal of 
residual low-concentration H2O2 in dairy processing.

Fig. 6. Enhanced biocatalytic glycerol valorization by thermostable catalase. (A) Schematic representation of the one-pot enzymatic cascade system employed for D- 
glycerate biosynthesis from glycerol. (B) Time-course analysis of D-glycerate production catalyzed by the wildtype and the D78P/K201R/E384Y/T435A variant under 
different glycerol concentrations (50 mM and 100 mM). (C) D-glycerate and glyceraldehyde accumulation profiles in high-substrate (200 mM glycerol) systems 
catalyzed by the D78P/K201R/E384Y/T435A variant. P < 0.05 (*), P < 0.01 (**), and P < 0.001 (***) indicate the significance levels between the wildtype system 
and the D78P/K201R/E384Y/T435A variant.
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3.6. Application of the optimal variant in glycerol value-added conversion

As a major byproduct of biodiesel production, the excessive accu
mulation of glycerol has been recognized as a critical challenge in the 
biofuel industry (Pirzadi and Meshkani, 2022). The utilization of glyc
erol as a key feedstock for biocatalytic production high-value chemical 
synthesis has emerged as a promising strategy (Fig. 6A) (Kumawat et al., 
2024; Liu et al., 2024; Cai et al., 2014). The enzymatic conversion of 
glycerol to D-glycerate constitutes a rate-limiting step in its biotrans
formation pathway, while prolonged reaction durations impose signifi
cant challenges to the thermostability of catalase. In order to assess the 
impact of the D78P/K201R/E384Y/T435A variant on D-glycerate 
biosynthesis, a one-pot enzymatic cascade system coupling the variant 
with TfAldOV256L/P257I was established and assessed under varying 
glycerol concentrations (Fig. 6B). In a 50 mM glycerol system, both the 
variant and the wildtype catalyzed complete conversion of glycerol to D- 
glycerate within 36 h. Under 100 mM glycerol conditions, the variant- 
catalyzed reaction exhibited superior conversion efficiency, yielding 
85.1 mM D-glycerate at 60 h, whereas the wildtype required 72 h to 
attain a maximum conversion rate of merely 73 %. The variant consis
tently evidenced superior conversion rates across all tested systems and 
time points. The result could be ascribed to its improved catalytic effi
ciency and thermostability, which facilitates accelerated oxygen 
regeneration throughout the reaction duration. Notably, the variant 
exhibited more pronounced advantages under elevated substrate con
centrations. When employing 200 mM glycerol as substrate, the reaction 
system accumulated 116.6 mM D-glycerate and 6.9 mM glyceraldehyde 
at 84 h, without requiring supplemental catalase addition during the 
process (Fig. 6C). At higher glycerol concentrations, although conver
sion efficiency remained constrained by the inherent limitations in 
TfAldOV256L/P257I, the D78P/K201R/E384Y/T435A variant has 
demonstrated sufficient performance to meet the industrial requirement 
for high-concentration glycerol valorization.

4. Conclusions

This study presents an integrated biocatalyst development strategy 
combining deep learning-driven enzyme screening with computational 
protein engineering. A high-activity catalase was identified using deep 
learning models, and subsequent ProteinMPNN-guided design with 
Gibbs free energy calculation yielded variants with enhanced activity 
and stability. The D78P/K201R/E384Y/T435A variant achieved a spe
cific activity of 160,842 U/mg, alongside a preserved thermal half-life of 
145.0 h at 40 ◦C. The variant was used for implementation in H2O2- 
containing wastewater treatment and glycerol valorization processes, 
highlighting its potential for practical industrial deployment. E-supple
mentary data for this work can be found in e-version of this paper online.
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