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A B S T R A C T

Computational methods and AI technology have had a profound impact on protein design, significantly 
enhancing the ability to predict protein structures and create proteins with custom-tailored functions. With the 
help of computational methods, traditional protein design strategies such as directed evolution, fusion protein, 
and key subunit interface redesign show unprecedented progress in the design of various protein biomaterials 
such as nanocages, nanocarriers, antibodies, biocatalytic enzymes and inhibitory peptides. Strategies include 
physics-mediated design, which leverages the physical principles underlying protein structure and dynamics, and 
AI-mediated design, which employs machine learning techniques to generate and optimize protein configura
tions. Together, these approaches represent the cutting-edge methodologies in the rational design of novel 
proteins with desired functions. By using these approaches, novel protein molecules, assemblies, antibodies and 
responsive nanofibrils were constructed, which can be further applied in the field of nutrition and health.

1. Introduction

Proteins play essential roles in the fundamental processes of living 
organisms and carry out a variety of functions such as immune defense, 
neurotransmitter transmission, and signal transduction. These functions 
are often related to the structure of the proteins. The composition of 
their multidimensional structures has a crucial impact on their func
tionality. Due to the development of protein science, computational 
protein design is increasingly applied to address a number of key chal
lenges in nutrition, biomedicine and biological engineering.

Herein, we summarize the principles of protein design and the main 
forces driving protein folding. More importantly, we review key stra
tegies in computational protein design along with their emerging ap
plications in the fields of nutrition and health, which aim to provide 
intuitive insights for researchers engaged in protein engineering.

2. Basic principles of protein design

An ideal protein backbone generally involves a combination of 

constituent α-helix and β-strand. To idealize this type of backbone, the 
lengths, folding arrangement, and the order of the backbone component 
are first to be specified. Then, low-energy amino acid sequence of each 
backbone is identified by combinatorial rotamer optimization. Lastly, 
protein structure prediction system is used to test whether the sequence 
is corresponded to the initial ideal backbone (King et al., 2015; Koga 
et al., 2012; Lin et al., 2015). In most cases, backbone design involves 
several rules that describe tertiary motifs of adjacent secondary struc
ture components.

For an instance of RosettaDesign methodology, the orientation of βα- 
and αβ-unite, parallel (P) or antiparallel (A), and the chirality of 
ββ-unite, left handed (L) or right handed (R), required to be defined 
(Fig. 1). The vector of Cα-to-Cβ, CαCβ

̅̅̅→, is defined as the vector of the 
strand residue which is preceding or following the linking loop. u→ is 
defined as the vector along the first strand and v→ as the vector from the 
kernel of the first strand to the kernel of the second strand. The chirality 
of ββ-unite follows the basic rules: if the value of ( u→× v→) • CαCβ

̅̅̅→ is 

positive, the chirality of ββ-unite is R; if the value of ( u→× v→) • CαCβ
̅̅̅→ is 
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negative, the unite is L. The orientation of βα- and αβ-unite generally 

follows such rules: one βα unite is P/A if the strand to helix
̅̅̅̅̅̅̅̅̅̅→

is parallel/ 
antiparallel to the CαCβ

̅̅̅→ of the last residue in strand; one αβ-unite is P/A 

if the CαCβ
̅̅̅→ of the first residue in strand is parallel/antiparallel to the 

vector helix to strand
̅̅̅̅̅̅̅̅̅̅→

. Moreover, the loop length of one strand also has 
effect on βα- and αβ-unite orientation. For βα-unite, the loop length af
fects its backbone bendability which decides the angle between adjacent 
secondary structure elements, and the angle is about ≤60◦ between the 
helix and strand. For αβ-unite, despite its loop length is from 2 to 4 
residues, the preferred orientation is P as hydrogen-bonded helix 
capping provides longer loop length, which can stabilize the helix. 
Generally, these simulations with difference in loop length strongly 
consistent with the structure distribution of the native proteins. It should 
be noted that these rules not rely on the amino acid sequence of the 
secondary structure elements or connecting loops, but on their intrinsic 
characteristics (Koga et al., 2012).

3. Main forces for protein folding

It is widely accepted that native structures of proteins have the 
lowest free energy (Anfinsen, 1973; Fändrich et al., 2001). Actually, 
whatever proteins will be designed, the first factor we should take into 
account is their stability.

Globular proteins always contain hydrophobic core constituted by 
non-polar amino acids, while those polar amino acids are situated on the 
surface of the sphere protein (Fig. 2). It is such a structure that segre
gates non-polar residues from solvent to achieve the most stable state of 
energy. Moreover, the hydrophobic effect mainly stems from the en
tropy reduction effect induced by disruption of hydrogen bond network 
between water molecules (Kauzmann, 1959).

Besides hydrophobic effect, hydrogen bonding also plays a critical 
role in protein folding, particularly in stabilizing protein structures 
(Fig. 2). When hydrophobic residues are packaged into the core, N–H 
and C––O polar groups from hydrophobic residues backbone that ought 
to have formed hydrogen bonds with solution molecules are away from 
solution, triggering the disruption of the hydrogen bonds and thus 
causing the increase of free energy. To shape more stable protein ar
chitectures, the backbone polar groups from protein interior must 
interact with each other to form new hydrogen bonds to compensate, 
otherwise stripping water induces the large energy cost will disfavor 
folding (Huang et al., 2016a).

When the residues with opposite charges contact with each other 
(the distance <5 Å), electrostatic interaction and salt bridge will be 
formed (Fig. 2). For globular protein in water solution, the residues with 

charges tend to the exterior polar environment. However, the residues 
with charges can as well enter the interior hydrophobic environment 
during protein folding. To stabilize protein structure, these charged 
residues in protein core will interact with other charged residues to form 
salt bridge (Kumar and Nussinov, 2002). Therefore, if the decreased free 
energy is able to compensate the desolvation cost, the protein archi
tecture will be more stable.

Additionally, when atoms of protein contact extremely close to each 
other, the van der Waals force contributes to protein stability signifi
cantly (Fig. 2). Nevertheless, van der Waals couple hydrogen bonds in 
most cases. On one hand, van der Waals force causes N–H and C––O 
group more close that enhance hydrogen bonds; on the other hand, 
hydrogen bonds shorten the distance between atoms so that form and 
thus increase van der Waals force (Chen et al., 2000; Nelson et al., 2005). 
Hence, the rationale of protein folding is the guidance for computational 
protein custom-design.

4. Computational protein design strategy

Proteins can be designed with specific topology and functional fea
tures. Protein design, which follows the process of specifying a desired 
function, designing a structure, executing this function, and finding a 
sequence that folds into this structure (Chu et al., 2024), has tremen
dously increased the number of available viable nanomaterials by 
exploring virtually the totality of the possible sequence and structural 
space, beyond that populated by natural proteins (Hamley, 2019). 
Traditional methods of protein design have largely relied on laborious 
and costly trial-and-error processes in the laboratory, constrained by 
experimental conditions and technological limitations. In recent years, 
advancements in computational technologies and algorithms have led to 
the emergence of computational protein design as a powerful approach 
in protein engineering. Computational protein design leverages sophis
ticated computational models and techniques to predict and generate 
protein sequences and structures with desired properties. This approach 
not only accelerates the design process but also expands the possibilities 
for creating novel proteins that might be challenging or impossible to 
develop through conventional methods.

Computational protein design approaches can be broadly catego
rized into physics and geometry mediated methods, and AI-mediated 
strategies. The former relies on fundamental physical principles and 
structural constraints to model protein folding and stability, while the 
latter leverages data-driven algorithms and machine learning to 
generate and optimize novel protein sequences and structures. In this 
part, all the strategies were illustrated and the possible applications 
were highlighted. Normally, the methods will be combined to overcome 

Fig. 1. RosettaDesign methodology. Reprinted with permission from Ref. (Koga et al., 2012). Copyright © 2012, Nature Publishing Group.
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the challenges and to advance the design of functional protein.

4.1. Definition and challenges of computational protein design

Computational protein design is most fundamentally formulated as 
an optimization problem. Within this framework, the design of a desired 
structure (or function) can be achieved by identifying the optimal 
arrangement of amino acids to ensure the protein fold reaches its best 
possible state in terms of functionality and stability.

A key challenge in protein design is the immense complexity of the 
sequence and structure space. For 20 naturally occurring amino acids, 
each residue in a protein sequence has 20 possible choices. For a protein 
consisting of 100 residues, the number of possible sequences is 20^100, 
an astronomically large number that far exceeds the total number of 
atoms in the universe.

Due to the vast search space of proteins, where functional proteins 
occupy only a small fraction, scoring functions are necessary to evaluate 
whether the designed protein sequences are successful or not. Common 
scoring functions include energy-based functions (Gordon et al., 1999) 
typically used in physics and geometry mediated design, and 
knowledge-based functions (Reynolds et al., 2013) typically used in AI- 
mediated design. Energy-based functions estimate protein stability by 
considering detailed molecular mechanics and simulating physical in
teractions at the atomic level, such as atomic packing interactions, 
hydrogen bonding, electrostatic interactions, and solvation terms. 
Knowledge-based functions utilize AI techniques and statistical infor
mation derived from known protein structures to evaluate the likelihood 
and stability of designed proteins. Scoring functions quantify various 
physical and chemical properties of proteins, providing comparisons and 
rankings of different protein sequences and conformations.

The extensive search space inherent to proteins presents a substantial 
challenge for scoring functions, necessitating a delicate balance between 
computational efficiency and accuracy. As for energy-based function, 
achieving this balance often involves approximations on certain terms. 
However, this approximation has proven difficult, as fast and highly 
approximate functions tend to have poor correlation with the true free 
energy of proteins (Kortemme, 2024). On the other hand, knowledge- 
based functions, which leverage machine learning approaches, do not 
rely on these approximations, and thus show promising prospects for 
handling large-scale sequence evaluations more effectively.

4.2. Physics and geometry mediated protein design strategy

4.2.1. Strategies and essential procedures
Based on the above difficulties and challenges, most physics-based 

protein design approaches simplify the process into two steps: 

structure generation and sequence optimization. This two-step method 
effectively addresses the complexities involved in designing functional 
proteins by breaking down the problem into manageable parts. The 
procedures of physics and geometry mediated protein design are shown 
in Fig. 3. 

(1) Structure generation

The first step involves designing the protein backbone, which in
cludes determining the overall 3D structure of the protein at the atomic 
level. This step focuses on the spatial arrangement of the main chain 
atoms and the secondary structure elements (alpha-helices, beta-sheets, 
etc.). It is imperative that the designed backbone is feasible, meaning it 
must be capable of being realized by at least one amino acid sequence 
that can stably fold into the intended structure. The most straightfor
ward approach to ensure the feasibility of the design is to utilize natural 
protein backbones. This method centers on redesigning or optimizing 
existing sequences based on the framework of existing protein structures 
to enhance current functionalities. For example, researchers have uti
lized current backbones to redesign enzyme substrate specificity 
(Ollikainen et al., 2015), enhance protein thermostability (Wijma et al., 
2014), and optimize enzyme catalytic efficiency (Risso et al., 2013).

As for de novo design of backbone structure, helical bundles were 
firstly solved by utilizing Crick’s parameterization due to their inherent 
regularity (Crick, 1953; Hill et al., 2000). This systematic sampling 
method and the high stability of helical bundles make them excellent 
models for designing a variety of functions, including ligand binding 
(Polizzi and DeGrado, 2020), ion transport (Joh et al., 2014), and 
switches (Langan et al., 2019). Extensive efforts in design and experi
mental validation have culminated in the development of a compre
hensive “periodic table” of coiled-coil architectures (Moutevelis and 
Woolfson, 2009). The applicability of Crick’s parameterization extends 
beyond coiled-coils, encompassing a wide range of helical bundle ar
chitectures that exhibit exceptional thermostability when subjected to 
laboratory testing (Grigoryan and DeGrado, 2011; Huang et al., 2014). 
Moreover, the inherent regularity in the geometry of helices permits the 
precise alignment and fusion of helices from distinct proteins, thereby 
enabling the generation of structurally diverse and larger helical as
semblies (Huang et al., 2016a; Jacobs et al., 2016; Sahtoe et al., 2022). 
The wide array of designable all-helical structures continues to form the 
foundation for numerous successful applications in de novo protein 
design (Kortemme, 2024). Despite the substantial progress in designing 
α-helical proteins, achieving more complex functions may necessitate 
the incorporation of structures that diverge from canonical helical ge
ometries. For further insights into the progress of coiled-coil designs, 
Woolfson’s review provides additional details (Woolfson, 2017).

Fig. 2. Main forces for protein folding.
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For more general proteins containing both α-helices and β-strands, 
the design process typically begins with the creation of a blueprint. At 
this stage, designers specify the arrangement and interconnections of 
secondary structure elements, essentially creating a roadmap for protein 
architectures. The next phase is achieved through the strategic assembly 
of peptide fragments, which are extracted from the vast repository of the 
Protein Data Bank (PDB). A prime example is the creation of Top7 
(Kuhlman et al., 2003), a pioneering protein designed using fragment 
assembly techniques, featuring a fold topology previously unseen in 
nature. In certain scenarios, the design process necessitates the appli
cation of specific rules derived from natural protein structures. A notable 
example is the creation of symmetrical TIM-barrel proteins (Huang 
et al., 2016b), where precise hydrogen bonding between side chains and 
the backbone is crucial for maintaining the proper alignment of barrel 
segments. Alternative assembly strategies for backbone design without 
defining a blueprint have also emerged. One such method involves the 
use of modular leucine-rich repeat units to create proteins with 
controllable curvatures (Park et al., 2015). Another innovative approach 
is the Structure Extension with Native-substructure Graphs (SEWING) 
technique. This method combines helical building blocks, either 
continuous or discontinuous, sourced from existing proteins (Jacobs 
et al., 2016). 

(2) Sequence optimization

The second step focuses on designing the amino acid sequence that 
will fold into the predetermined backbone structure. This step involves 
selecting specific amino acids that will form stable interactions and 
ensure the desired functionality of the protein. The sequence design 
must consider various factors such as hydrophobicity, charge distribu
tion, and potential interaction sites.

In the sequence optimization process, considering backbone flexi
bility has become a crucial factor. Early side-chain design methods 
typically assumed a fixed protein backbone, but this assumption has 
limitations. Due to the Lennard-Jones potential term in scoring functions 
being highly sensitive to distance changes (usually inversely propor
tional to the 12th power of distance), even minor adjustments to the 
backbone structure can lead to significant energy changes. To address 
this issue, modern side-chain design methods simultaneously consider 
sampling of side-chain rotamers and local backbone conformations 
(Ollikainen et al., 2015; Georgiev et al., 2008; Keedy et al., 2012; 
Georgiev and Donald, 2007). The importance of considering backbone 
flexibility has been demonstrated in practical protein design cases. For 
example, the designing process of Top7 (Kuhlman et al., 2003) used the 
Rosetta (Das and Baker, 2008) program to first generate a new protein 
backbone, followed by iterative cycles of (1) selecting amino acid se
quences that best fit a given fixed backbone conformation, and (2) 
slightly adjusting the backbone geometry to better accommodate the 
newly selected sequence. This example highlights a key concept: protein 

backbones are not fixed but change, albeit often slightly, with sequence 
changes during design or as proteins perform their functions. To account 
for this backbone flexibility in the design process, researchers have 
developed various methods: (1) inserting backbone minimization steps 
between fixed backbone designs, as in the Top7 (Kuhlman et al., 2003) 
example; (2) sampling small backbone adjustments during the design 
process (Georgiev et al., 2008; Ollikainen et al., 2013); or (3) pre- 
generating backbone conformation ensembles on which sequences are 
then designed and scored (Davey and Chica, 2012; Friedland and Kor
temme, 2010). The development of these methods has greatly improved 
the accuracy and reliability of protein design, making it possible to 
design more complex and functional proteins.

4.2.2. Applications in artificial protein design

(1) Design of amyloidogenic peptide-binding proteins.

Amyloidogenic peptides, such as amyloid-β (Aβ), play a significant 
role in the formation of amyloid fibrils, which are associated with dis
eases like Alzheimer’s. Designing protein binders that can specifically 
capture and inhibit these peptides is a promising approach to preventing 
fibril formation (Sahtoe et al., 2024).

Based on the physics and geometry mediated protein design strate
gies, researchers employed Rosetta software for blueprint-based back
bone building, a computational design approach used to generate a 
scaffold with a β-sheet structure and a deep peptide-binding cleft. The 
scaffold was specifically designed to capture amyloidogenic peptides 
that form β-strands. The design process involved starting from a pre- 
existing scaffold topology (designed by FoldIt (Koepnick et al., 2019) 
players) and extending the β-sheet using Rosetta to create a binding 
interface capable of stabilizing the β-strand conformation of the peptide 
through hydrogen bonding. To further reinforce the structure, addi
tional α-helices were introduced to support the β-sheet. After generating 
the backbone, the scaffold and peptide sequences were optimized by 
Rosetta to ensure high-affinity binding, while minimizing unsatisfied 
polar atoms in the buried interface. The scaffold was further refined by 
introducing hydrophobic interaction pairs in the solvent-exposed areas 
of the interface to enhance stability and specificity. These designed 
amyloid-β (Aβ) peptides can prevent their aggregation into toxic fibrils, 
which are key contributors to Alzheimer’s disease. These protein binders 
offer potential therapeutic and research applications by inhibiting fibril 
formation and serving as tools for studying amyloid-related diseases. 

(2) Computational design of pH-responsive protein assemblies.

Recent advances in computational protein design have enabled the 
construction of synthetic protein assemblies that respond sharply and 
reversibly to environmental pH changes. Two representative studies 
demonstrate distinct but convergent strategies for designing pH- 

Fig. 3. Procedures of physics and geometry mediated protein design.
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responsive protein nanomaterials with precise control over assembly- 
disassembly dynamics.

In one study, researchers (Shen et al., 2024) designed helical protein 
filaments by transforming pH-sensitive trimeric coiled-coils containing 
buried histidine-mediated hydrogen bond networks into monomeric 
units via loop fusion (Fig. 4). These monomers were computationally 
docked into a wide range of helical filament arrangements using rigid- 
body sampling, followed by interface redesign to stabilize specific fila
ment architectures. The resulting filaments exhibited highly cooperative 
and reversible pH-dependent disassembly over narrow pH ranges (as 
small as 0.3 pH units), tunable by adjusting the number and location of 
buried histidines. RosettaDesign was used to optimize inter-subunit 
interface sequences and tune histidine protonation thresholds, 
achieving sharp responsiveness and structural stability. Cryo-EM 
confirmed the fidelity of the designed architecture, supporting appli
cations in controlled release and smart biomaterials.

In a parallel study, researchers (Yang et al., 2024) developed pH- 
responsive, non-porous antibody nanoparticles through modular 
design. An octahedral nanoparticle framework was constructed from 
independently expressed tetramers (C4 axis) and Fc domains (C2 axis), 
while the unoccupied C3 symmetry axes were sealed with engineered 
trimeric “plug” subunits (Fig. 4). To achieve pH sensitivity, the trimeric 
plugs were designed to include multiple histidine residues at the inter
face, enabling protonation-dependent weakening of hydrogen bond and 
packing interactions. These plugs were computationally docked using 
RPXDock (Sheffler et al., 2023) and extended via WORMS helical fusion 
(Hsia et al., 2021), and Rosetta was used to optimize the sequences at the 
plug–core interface. By varying the number and positioning of histidine 
residues, the researchers fine-tuned the disassembly pH thresholds, 
achieving plug release across a tunable pH range. Cryo-EM re
constructions validated the structural assembly, and functional assays 
confirmed effective encapsulation and pH-triggered release of protein or 
RNA cargo.

Despite their architectural differences, both systems leverage 
histidine-mediated hydrogen bond interactions to encode pH sensitivity 
into protein assemblies. Sequence optimization via Rosetta allows tuning 
of disassembly thresholds and structural integrity. These studies 

exemplify how computational design can program environmentally 
responsive behavior into synthetic protein assemblies, opening avenues 
for precision drug delivery, cargo protection, and dynamic biomaterials.

4.2.3. Applications in key interface protein redesign
Proteins interact with each other through protein interfaces, which 

greatly enhance our understanding of biological functions (Keskin et al., 
2008). By analyzing the three-dimensional structures, information on 
protein interfaces will be obtained. It is well known that protein-protein 
interactions at protein interfaces are the chief contributors to construct 
the diversified protein nanostructures (Jones and Thornton, 1996; 
Kortemme and Baker, 2004; Schreiber and Fleishman, 2013). Redesign 
of these interfaces will benefit the development of protein design. 
Among all of the interfaces, key interface of protein controls the size, 
shape and function of protein or protein assemblies. A variety of in
teractions including non-covalent interactions such as hydrogen 
bonding, electrostatic interactions and hydrophobic interactions, and 
covalent interactions including disulfide bonds and metal coordination 
bonds contribute to the key inter-subunit interfaces. In 2016, our group 
has described an engineering strategy termed key subunit interface 
redesign (KSIR), which has been widely used for fabrication of non- 
native multisubunit protein architectures (Zhang et al., 2016). This 
strategy includes three steps: determining key subunit interfaces of a 
target symmetric protein architecture; identifying amino acid residues 
that not involved in interfacial interactions but located at the key sub
unit interface; deleting the amino acid residues not involved in inter
facial interaction and redesign protein (Fig. 5). Although this strategy 
was firstly used to redesign protein nanocage according to our experi
ences in ferritin, computational aided method has been combined with 
key interface redesign strategy, and tried in symmetrical or non- 
symmetrical multisubunit proteins (Liu et al., 2022; Zhang et al., 2021).

By using this strategy, our group was able to facilitate the conversion 
of dimeric ferritin to 24-meric ferritin (Liu et al., 2022). Similarly, our 
research group (2019) presented an efficient disulfide-mediated 
approach to construct 3 protein variants based on an 8-mer bowl-like 
protein architecture (NF-8). This NF-8 protein was converted into a 
24-mer ferritin-like nanocage or a 16-mer lenticular nanocage by 

Fig. 4. Design of two representative pH-responsive protein assemblies. (a) Computational design of pH-responsive helical protein filaments. Coiled-coil bundles 
containing buried histidine residues are fused into monomers, forming hydrogen bond networks that drive disassembly upon protonation. (b) Design of pH- 
responsive antibody nanoparticles. Tetramers, Fc domains, and histidine-rich trimeric plugs are modularly assembled along symmetry axes. Protonation of inter
facial histidines under acidic conditions enables controlled disassembly and cargo release. Reprinted with permission from Ref. (Shen et al., 2024) and Ref. (Yang 
et al., 2024). Copyright © 2024, Nature Publishing Group.
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selective deletion of an inherent intra-subunit disulfide bond or selective 
insertion of an inter-subunit disulfide bond respectively. Assembly of 48- 
mer protein nanocage happened when the above-mentioned 2 modifi
cation scenarios were combined onto NF-8 (Zang et al., 2019).

4.2.4. Applications in hierarchical protein design
Hierarchical protein design involves engineering proteins in a 

manner that imitates natural protein architecture to ensure each level of 
the hierarchy (primary, secondary, tertiary, and quaternary) is designed 
to achieve a desired shape or function. In hierarchical protein design, the 
theories behind are mainly based on the principles of (i) protein 
structure-function relationship; (ii) protein folding thermodynamics; 
(iii) molecular Interactions. The protein structure and function dedicate 
to explore the influences of each protein structural level (primary to 
quaternary) to its functionality, serving as the foundation for discov
ering potential applications. This hierarchy often involves designing or 
modifying the interface between proteins or protein subunits to achieve 
a desired architecture or function, for example designing the bioreactor 
or nanocage for drug delivery.

In recent years, the typical methods for hierarchical design of syn
thetic proteins or protein complex are various, such as functional pep
tides, alpha-helical coiled coils, self-assembling fusion proteins, and 
metal-mediated protein architectures. Zaccai et al. (2011) designed 
and characterized the first stand-alone coiled-coil hexamer (CC-Hex) 
based on the principles of sequence-to-structure relationship of coiled- 
coil domains stems and knobs-into-holes (KIH) packing (Fig. 6). 
Coiled-coil sadomains are structural motifs generally found in proteins 
which are characterized by more than two alpha helixes interacting with 
each other to form a supercoil (e.g., coiled-coil dimer, coiled-coil trimer 
and coiled-coil tetramer). These alpha helixes are typically featured as a 
repeating pattern of seven amino acids called heptad repeat (HPPHPPP) 
n, and denoted as adcdefg. The H and P in the pattern represent hy
drophobic and polar amino acid residues respectively. The knobs-into- 
holes (KIH) packing is the typical interaction between side chains of 
these amphiphilic α helixes, where knobs are large hydrophobic residues 
like leucine and isoleucine fit into holes (smaller residues such as glycine 
and alanine) between the neighboring helix. In this study, the 

researchers started from a fully de novo designed coiled-coil tetramer 
(CC-Tet), where position abcdefg were leucine (L), alanine (A), alanine 
(A), isoleucine (I), lysine (K), Glutamine (Q), and glutamic acid (E). 
Then, they attempted to expand the hydrophobic interfaces between the 
adjacent helices of coiled-coil tetramer (CC-Tet) to make higher-order 
coiled-coil oligomer (e.g., CC-Hex) by altering the peripheral KIH in
teractions provided by amino acids at position e.g., b and c. With this 
principle in mind, they exchanged all of the lysine (K) at position e into 
alanine (A), and successfully built a CC-Hex with an inner channel 
diameter around 6 Å which is permeable to water. Their findings of CC- 
Hex provide a foundation of the de novo design based on the α-helical 
coiled coils for a wide range of biological, therapeutic and material 
science applications (Zaccai et al., 2011).

Inspired by the former study, Thomas et al. (2016) posted modularity 
assembly strategies of peptide nanotubes by using hexameric α-helical 
barrels as building blocks (Fig. 7). They started with a well-developed 
hexameric α-helical barrels, and premutated them at the N-termini to 
expose hydrophobic residues, leaving complementary positive and 
negative charged residues at N-termini and C- termini. These mutants 
(CC-Hex-T) were further proved to be associated longitudinally and 
laterally, giving a broadened multilayer peptide nanotubes assembly at 
neutral pH. Besides, these assemblies were pH-sensitive where they can 
be reversed into identical single hexameric peptide nanotubes (3–4 nm) 
at acidic pH below 5.6. For further making a single longitudinally 
extended peptide nanotubes without lateral association at neutral pH, 
they redesigned the CC-Hex-T by mutating the f position glutamine on 
the heptad sequence repeats into lysine, resulting an enhanced positive 
charge of +3 per peptide and + 18 per hexameric building block (CC- 
Hex-T+) at neutral pH. These CC-Hex-T+ were further proved to be 
assembled into fibrils with length around 1 mm and 3–4 nm diameters at 
neutral pH, meaning no lateral association was happened, only longi
tudinal extension.

In addition to alpha-helical coiled coils based assembly, the 
symmetry-based protein assembly concept is one of the most basic and 
widely used strategies for constructing artificial protein nanocages or 
modifying natural protein nanocages for the desired application since a 
symmetric structure can lead to energetically favorable interactions 

Fig. 5. Schematic illustration of the key subunit interface redesign strategy (KSIR) for engineering protein nanocages. Left: Key interface selection, based on 
structural analysis of subunit–subunit interactions (C₂, C₃, and C₄ interfaces) and spatial features such as internal cavities and interfacial regions. Middle: Identifi
cation and removal of non-contributory amino acid residues at the selected interface regions, followed by rational point mutation of silent residues that do not 
participate in interfacial stabilization. Right: Controlled self-assembly of the redesigned protein building blocks leads to the formation of discrete nanocage archi
tectures with distinct oligomeric states (e.g., 8-mer, 16-mer, and 48-mer), as well as higher-order 2D and 3D arrays. Reprinted with permission from Ref. (Zhang et al., 
2016). Copyright © 2016, American Chemical Society.
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under evolutionary stress (Chen et al., 2021). Padilla and co-workers 
constructed protein nanocages following the principle of symmetry 
(Fig. 8). They conducted 2 oligomer proteins (a dimer and a trimer) 
connected each other into a single larger molecule called a fusion pro
tein by genetic manipulation. This fusion protein hence brings the 
characteristic of the selected dimer and trimer, where each dimer and 
trimer on this fusion protein has a strong tendency to interact with the 
other copies of itself. Through this process, many protein nanocages self- 
assembled by these fusion proteins were produced (Padilla et al., 2001).

Biswas et al. (2009) designed a metal-ion-induced tubular bio- 
container by using the mutant chaperonin GroEL. GroEL is a large, 
oligomeric complex composed of 14 identical subunits, arranged in two 
stacked heptameric rings. In their study, the K311 and L314 amino acid 
residues in GroEL were mutated to cystine, and the mutant GroEL which 

bears 14 cystine residues in each entrance region was used to react with 
spirobenzopyran-appended maleimide (SPMI) to produce the GroELSP/ 
MC. These genetically and chemically modified GroELSP/MC can 
simultaneously assemble into micro-level nanotubes with the presence 
of MgCl2, and can be cut into short-chain nanotubes by adding EDTA. 
The mutation sites and the supramolecular assembly interfaces were 
rationally selected based on prior structural modeling, and the photo
chromic conjugation units were designed using computational simula
tions to ensure predictable responsiveness and structural compatibility. 
Moreover, this nanocage system was proven to successfully trap dena
tured R-lactalbumin, indicating its potential for serving as a novel pro
tein nanocage for bio-therapy (Biswas et al., 2009). As a continuation of 
the above research, Shuvendu and coworkers functionalized the surface 
of the protein nanocage by using boronic acid derivative, providing 

Fig. 6. Schematic representation of coiled-coil helical wheel and possible assemblies based the alpha helices as building block. (a) Helical wheel consisted of a heptad 
repeat residues abcdefg; (b) Structure of a four-helix coiled coil (CC-Tet); (c) Structure of a parallel coiled-coil hexamer (CC-Hex). Reprinted with permission from 
Ref. (Zaccai et al., 2011). Copyright © 2011, Nature Publishing Group.
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them the ability to penetrate the cells. Besides, they developed an 
approach where the intracelluar adenosine-5′-triphosphate (ATP) was 
induced as the key to disassemble the protein nanocage. The hydrolysis 
of the intracellular ATP into ADP generates a mechanical force leading 
to the conformational changes of the chaperonin units, which subse
quently release the guest molecules trapped in the protein nanocages. 
Moreover, the release kinetics are sigmoidal depending on ATP con
centration, where a dramatic disassembly of the protein nanocage oc
curs at around 45 μM ATP concentration, meaning these protein 
nanocages can selectively release the cargo based on the intracellular 
ATP concentration. Such ATP-triggered behavior was further validated 
and optimized through in silico simulations of intracellular ATP distri
butions and nanocage dynamics. These are promising results for tumor 
therapy since the concentration of the extracelluar ATP in tumors is 
around 700 μM compared with a normal tissue (< 5 μM) (Biswas et al., 
2013). From theory to practice, researchers (Ashley et al., 2011) pro
posed a way to modify MS2 virus-like particles (VLPs) by peptide (S94) 
to achieve the purpose of selectively delivering cargos such as chemo
therapeutic drugs, siRNA cocktails and protein toxins to human tumor 
cells. The peptide SP94 (SFSIIHTPILPL) is a specific sequence designed 

computationally to target hepatocellular carcinoma which is a type of 
liver cancer. In this study, the modified MS2 VLPs exhibit a 104-fold 
higher avidity for HCC compared to normal cells (e.g., endothelial cells, 
monocytes, lymphocytes and hepatocytes). Moreover, when ricin toxin 
A-chain (RTA) loaded MS2 VLPs were simultaneously modified by SP94 
targeting peptide and a histidine-rich fusogenic peptide (H5WYG), they 
kill the entire population of Hep3B without altering the activity of 
control cells.

In a physics-based rational design framework, researchers (Yang 
et al., 2025) engineered high-affinity binders for several immunomod
ulatory receptors using concave helical scaffolds. These scaffolds were 
manually modeled to complement the convex binding surfaces of targets 
such as PD-L1, CTLA-4, and TGFβRII. The interface regions were opti
mized via Rosetta FastDesign and iterative mutational scanning, guided 
by energy-based scoring functions. The designed binders demonstrated 
sub-nanomolar affinities and high functional activity, as confirmed by 
co-crystal structures and cell-based immune assays. These binders 
function as immune checkpoint modulators, offering potential thera
peutic applications in cancer immunotherapy.

Meanwhile, the designed hierarchical protein or protein assemblies 

Fig. 7. Schematic representation of Peptide nanotubes assembly. (a) Longitudinally and laterally assembly of CC-Hex-T; (b) Single longitudinally assembled CC-Hex- 
T+; (c) Chemical ligation stabilized peptide nanotube fibrils assembled by CC-Hex-T + co; Red: positively charged N-terminus; Blue: negatively charged C-terminus. 
Reprinted with permission from Ref. (Thomas et al., 2016). Copyright © 2016, Royal Society of Chemistry. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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can be applied in cargo delivery. Our research group developed a dual- 
compartment system using 3D ferritin-based nanocage arrays, of which 
can precisely realize spatiotemporal control over its self-assembly based 
on two designed switches (pH switch and metal switch) (Fig. 9). 
Through mutating the leu160 which protrudes into the C4 channels on 
the previously designed T158HMjFer to histidine, they were able to 
achieve disassembly of ferritin (H158/H160MjFer) at a higher acidic pH 
(pH 3.5 versus pH 2.0 in conventional protocols), and reassembly of 
ferritin at mildly basic conditions (pH 8.0). This modification prevents 
acidic denaturation of ferritin, resulting in a significantly higher protein 
recovery rate (81.4 % versus 40 % from the previous studies) during the 
drug encapsulation process. Moreover, the introduced His motifs can 
function as ligands, coordinating with metal ions such as Ni2+ to connect 
four subunits through the C4 rotational channels, which subsequently 
allows ferritin nanocages to assemble into 3D protein lattices where the 
interstitial spaces of the lattice can act as an additional cavity to 
encapsulate drugs alongside the individual ferritin cavities. Conse
quently, this system demonstrated the potential hierarchical encapsu
lation and release of two distinct cargo molecules (R6G and BHQ-2) 
through stepwise pH and metal switch, offering promising applications 
in hierarchical protein design for medical therapies (Zhang et al., 2022).

4.3. AI-mediated protein design

In recent years, artificial intelligence (AI) has emerged as a trans
formative force across various scientific domains, and protein design is 
no exception. The ability of deep learning to process vast amounts of 
data and identify complex patterns has opened a new pathway for 
designing proteins with high precision and efficiency. AI-mediated 
protein design leverages machine learning and deep learning algo
rithms to tackle challenges that were previously difficult to overcome. 

From generating protein backbones with defined topologies to designing 
amino acid sequences that encode desired functionalities, AI has 
reshaped the landscape of protein engineering.

Following the design process, structural validation is typically con
ducted to assess the folding stability and plausibility of the designed 
constructs. The latest versions of RosettaFold (All-Atom) and AlphaFold 
(version 3) have become essential tools in this stage. RosettaFold All- 
Atom (Krishna et al., 2024) is suitable for backbone refinement and 
symmetric assemblies, whereas AlphaFold 3 (Abramson et al., 2024) 
enables high-resolution modeling of complex systems involving ligands, 
nucleic acids, and protein–protein interfaces. These tools are commonly 
incorporated into post-design workflows to support structural verifica
tion prior to experimental validation.

4.3.1. Strategies and essential procedures
AI-based protein design methods, similar to physics-based ap

proaches, are primarily divided into two key steps: structure generation 
and sequence optimization. It is noteworthy that AI methods capable of 
efficiently performing both structure generation and sequence optimi
zation simultaneously are still relatively rare, representing a significant 
challenge and research direction in this field (Kortemme, 2024). 

(1) Structure generation

AI-based approaches to protein structure generation represent a 
significant departure from traditional parametric or blueprint-based 
methods. A key distinguishing feature is that these AI methods do not 
necessarily require a priori definition of the desired protein structure or 
fold class. This flexibility opens up new possibilities for exploring the 
vast space of potential protein structures. Recent advancements in AI- 
based protein design have introduced diffusion models (Anand and 

Fig. 8. Schematic representation of a general strategy for fusion protein design. (a) A green dimeric domain with C2 symmetry and a red trimeric domain with C3 
symmetry. (b) Construction of fusion proteins by genetically connecting dimeric and trimeric domains through rigid α-helical linkers (blue), enabling specific 
geometric orientation. (c) Two-dimensional layer formed by self-assembly of the fusion protein when dimeric and trimeric symmetry axes are parallel and non- 
intersecting, yielding hexagonal symmetry. (d) Three-dimensional protein cage formed by fusion proteins assembling into a tetrahedral nanostructure, following 
the design rules for dimer-trimer-based architectures. Reprinted with permission from Ref. (Padilla et al., 2001). Copyright © 2001, National Academy of Sciences, U. 
S.A. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Achim, 2022; Watson et al., 2023; Ingraham et al., 2023), inspired by 
techniques used in image generation. These models start with protein 
structures, progressively add noise to the protein coordinates, and then 
train a network to recover the original structures from the noised sam
ples. For design purposes, the process begins with random noise, and the 
denoising process generates protein structures with properties resem
bling typical proteins. Notable examples of this approach include 
RFdiffusion (Watson et al., 2023) and Chroma (Ingraham et al., 2023), 
which have been used to generate experimentally validated protein 
monomers, symmetrical assemblies, and protein binders.

A particularly promising aspect of diffusion models is their ability to 
be conditioned in various ways. This flexibility allows for generating 
specific fold topologies or preserving designated functional sites, open
ing up exciting possibilities for the de novo design of proteins with tar
geted molecular functions. 

(2) Sequence optimization

AI has revolutionized protein sequence optimization by leveraging 
the vast amount of information available in protein sequence databases. 
Unlike traditional methods that rely heavily on structural information, 
AI-based approaches can extract valuable insights from sequence data 
alone, including sequences without known structures. Several machine 
learning models have been developed for protein sequence design, with 
large language models (LLMs) emerging as a particularly promising 
approach. These models, such as ProtGPT2 (Ferruz et al., 2022), ESM-2 
(Lin et al., 2023), and ProGen (Madani et al., 2023), are trained to 
predict missing amino acids in protein sequences, similar to how lan
guage models predict missing words in sentences. Once trained, these 
models can generate entirely new protein sequences.

For example, ESM-2 (Lin et al., 2023), a language model trained 
solely on sequence data, has successfully designed new proteins that 
exhibit stability and monomeric behavior when tested experimentally. 
Notably, these designed proteins are predicted to have diverse struc
tures, including some that differ significantly from naturally occurring 
proteins. This suggests that the model has learned fundamental princi
ples of protein sequence-structure relationships that extend beyond its 
training examples. Another LLM, ProGen (Madani et al., 2023), was 
trained on sequences from over 19,000 protein families, including 
functional property labels. When fine-tuned on specific enzyme families, 
ProGen generated designed variants with catalytic parameters compa
rable to natural proteins, even for sequences with low similarity to those 
in the training set.

In addition to LLMs, structure-conditioned models such as Pro
teinMPNN (Dauparas et al., 2022) have shown strong performance in 
sequence design tasks by leveraging backbone geometry as input. Pro
teinMPNN employs a graph neural network (GNN) to generate se
quences with high native recovery from backbone structures. By 
modeling amino acid residues and their spatial relationships as graph 
nodes and edges, GNNs can effectively capture the geometric and 
chemical context required for accurate sequence prediction. This allows 
the model to generalize across diverse topologies and structural motifs. 
Researchers (Sumida et al., 2024) enhanced this approach by fine-tuning 
the model with experimental data on expression and stability, leading to 
better success rates for complex targets such as membrane proteins. This 
refined model has been successfully applied in automated protein en
gineering pipelines, facilitating rapid screening and selection of func
tional variants at scale. More recently, LigandMPNN (Dauparas et al., 
2025) extended this framework to include atomic-level context of li
gands and cofactors, enabling accurate interface design and significantly 

Fig. 9. Schematic representation of the dual-compartment system 3D ferritin-based nanocage arrays for stepwise encapsulation and release of two distinct cargo 
molecules (R6G and BHQ-2), where R6G was a synthetic dyes and BHQ-2 served as the quencher of R6G. Reprinted with permission from Ref. (Zhang et al., 2022). 
Copyright © 2022, Royal Society of Chemistry.
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improved binding affinity in redesigned complexes.
These AI-based methods offer several advantages over traditional 

approaches. They can design functional sequences without relying on 
sequence alignments, which is particularly useful for highly diverse 
protein families like nanobodies. Additionally, they have shown promise 
in model-guided affinity maturation of antibodies. However, it is 
important to note that experimental validation remains crucial in 
determining the true success of these AI-designed sequences. While 
metrics like native sequence recovery are commonly used to evaluate 
model performance, they don’t always correlate perfectly with experi
mental success. Even a single incorrectly predicted amino acid in a 
critical position can lead to experimental failure, despite only causing a 
small decrease in native sequence recovery.

4.3.2. Applications in protein design based on deep-learning neural 
networks

Deep-learning neural networks have recently revolutionized protein 
design by enabling the generation of novel protein structures and 
functional sequences beyond those found in nature. Unlike traditional 
structure prediction tools like AlphaFold and trRosetta—which focus on 
inferring structure from known sequences—deep learning models such 
as hallucination networks and transformer-based generators are actively 
used to design new proteins with defined folds, binding interfaces, and 
catalytic sites. These approaches leverage large-scale protein databases 
and structural patterns to learn complex sequence–function relation
ships, thereby facilitating the creation of synthetic proteins for thera
peutic, diagnostic, and industrial applications.

A notable example demonstrating the integration of deep learning in 
protein design involves a multi-stage pipeline combining several neural 
network models (Lauko et al., 2025). Starting from random residue 
distributions and minimal active-site geometries, RFdiffusion generated 
protein backbones that scaffold complex catalytic triads with atomic 
precision, while LigandMPNN was used to assign functional sequences. 
To evaluate catalytic preorganization throughout the reaction cycle, the 
authors developed PLACER, a neural network that generates structural 
ensembles for each reaction intermediate and assesses key geometric 
features such as Ser-His hydrogen bonds and oxyanion hole formation. 
The resulting designs not only displayed catalytic efficiencies up to 2.2 
× 105 M− 1 s− 1 but also adopted novel folds not found in nature. Crystal 
structures of selected designs revealed root mean square deviations 

(RMSDs) of <1 Å from the computational models, underscoring the 
atomic accuracy achievable with AI-guided workflows. The study il
lustrates how deep learning frameworks can be integrated throughout 
the entire design cycle—from backbone generation to functional vali
dation—to create enzymes with both novel structures and catalytic 
activity.

To validate and refine the structural fidelity of designed proteins, 
structure prediction tools such as RoseTTAFold have been widely 
employed. RoseTTAFold was first introduced in 2021 by David Baker 
and his research group (Fig. 10). This network was designed specifically 
to predict protein structures by deep learning, which is a subset of ma
chine learning based on a three-track neural network (1D sequence 
alignment track, 2D distance matrix track, and 3D coordinate track). To 
be specific, the 1D sequence track dealt with protein amino acid 
sequence to predict protein structural properties; the 2D distance track 
process the pairwise distance between two amino acid residues to reveal 
spatial relation in different part of protein; the 3D-coordinate track re
fines the 3D protein structure prediction by integrating the information 
from the 1D and 2D tracks iteratively. This integration enhances the 
accuracy of the protein structure prediction, allowing the model to treat 
types of information simultaneously.

To test the prediction accuracy of RoseTTAFold from different as
pects, four crystallographic datasets (a bacterial surface layer protein, a 
secreted protein Lrbp, a glycine N-acyltransferase, and a bacterial 
oxidoreductase), which were difficult to identify by molecular- 
replacement based models in the protein data bank, were reanalyzed 
by the constructed model. All cases showed high structural similarity to 
the real protein structures which can be estimated by molecular 
replacement. Besides, the modeling of G protein-coupled receptors 
(GPCRs) with unknown structure by RoseTTAFold provided high model 
accuracy where the prediction of their active and inactive state was 
quite resemble to their corresponding native GPCRs and the closest 
homolog of known structure. Lastly, accurate protein-protein complex 
models were directly generated from sequence information, where the 
template modeling score (TM-score) of predicting proteins of known 
structures was greater than 80 (e.g., NADH-quinone oxidoreductase =
97, tryptophan synthase = 92, and tRNA-dependent amidotransferase =
89), meaning the predicted protein models were very resembling to the 
actual structures. This development of RoseTTAFold was a vital 
advancement in aspect of accurate protein structure prediction, 

Fig. 10. Architecture of RoseTTAFold with 1D, 2D and 3D attention tracks, in which the tracks are iteratively connected together to check and balance the re
lationships between sequences, distances, and coordinates. Reprinted with permission from Ref. (Baek et al., 2021). Copyright © 2021, American Association for the 
Advancement of Science.
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providing assistance of solving arduous x-ray crystallography and cryo- 
EM modeling problems as well as insights into protein function without 
experimentally determined structures. These insights are crucial for a 
protein complex or protein binder design for therapeutic usage (Baek 
et al., 2021).

In addition, Baker’ group generates large numbers of protein scaf
folds containing diverse pockets with ideal shape to hold the synthetic 
luciferin (e.g., diphenylterazine, DTZ and 2-deoxycoelenterazine, CTZ) 
based on the deep learning-based hallucination approach. They started 
from designing a shape-complementary active site which stabilize the 
substrates (e.g., anionic state of DTZ). Then, the remaining sequence of 
the protein scaffolds was designed using RosettaDesign or ProteinMPNN 
to predict and optimize protein sequences that can fold into desired 
three-dimensional structures, where 7648 and 46 designs were selected 
for further experimental screening of luciferases specific to DTZ and h- 
CTZ, respectively. After a colony-based screening method on the 7648 
designs and an expression of the 46 designs, they got 3 active designs 
within the 7648 and 2 active designs within the 46. The most active 
luciferase is a small (13.9KDa) and thermostable (melting temperature 
> 95 ◦C) enzyme which has a higher substrate specify to DTZ and 
comparable catalytic efficiency (Kcat/Km = 106 M− 1 s− 1) to native lu
ciferases. Their results facilitate the development of computational 
enzyme design, where the lack of available scaffolds of desired enzy
matic function can be eliminated with the help of deep learning neural 
network (Yeh et al., 2023).

One representative study highlights the AI-driven design of orally 
active miniproteins targeting Th17-related cytokines (Berger et al., 
2024). The authors employed a deep generative model to construct 
initial protein scaffolds capable of binding IL-17 A and IL-23R. These 
scaffolds were then structurally refined and validated using AlphaFold2 
to ensure the formation of stable folds and correct binding topologies. 
Subsequent interface redesign using Rosetta enabled the enhancement 
of binding affinity, protease resistance, and oral bioavailability. The 
resulting candidates showed picomolar binding to targets and out
performed therapeutic antibodies in murine models of colitis, estab
lishing a proof-of-concept for deep learning-guided functional binder 
development. These designed proteins act as Th17 antagonists and hold 
promise for treating autoimmune inflammatory diseases such as in
flammatory bowel disease.

In addition, Researchers generated signal peptides (SPs) using an 
attention based neural network called the transformer encoder-decoder 
model (Wu et al., 2020). The generated signal peptide displayed 
competitive secreted enzyme activities compared with the natural signal 
peptides. Furthermore, the identity of these generated signal peptides 
was various, sharing as little as 58 % sequence identity (73 % on 
average) to the closest signal peptides in Swiss-prot. Their success of 
applying attention-based neural network to generate synthetic signal 
peptides with desired function as the natural SPs stands for a significant 
progress in the field of computational biology. Despite the enormous 
progress of deep-learning methods, a general deep-learning framework 
for de novo binder design and design of higher-order symmetric archi
tectures, has yet to be described.

4.3.3. Applications in protein design based on de novo strategy
De novo protein design removes the dependence on naturally evolved 

scaffolds, and has the potential for a deeper understanding of the 
contribution that every side chain makes toward the structure, stability 
and function of de novo proteins. In this part, the de novo designed 
protein was truly de novo proteins rather than those achieved through 
protein engineering or redesign. De novo protein design is an interdis
ciplinary field which combines principles from biology, chemistry, 
physics and computer science to create new proteins with desired 
functions and structures. With the help of computational design, massive 
research progress has been achieved in terms of de novo protein design, 
ligand design, and protein modification for therapeutic usage in recent 
decades.

In the last century, Bogan and coworkers (1998) proposed the 
concept of hot spots which refer to specific regions on the protein 
interface that prominently contribute to the binding energy. They found 
certain amino acid residues contribute the bulk of the binding energy 
and an irregular distribution of energetic contributions of individual 
amino acid residues across each interface. Besides, hot spots were found 
near the center of the interfaces and were surrounded by a shell of less 
energetic important residues, which isolated them from the bulk solvent. 
Moreover, they concluded three typical amino acids (tryptophan, argi
nine and tyrosine) with the highest frequency appeared in hot spots, 
since these amino acids are capable of providing multiple types of in
teractions for binding such as hydrophobic interaction, aromatic π-π 
interaction and hydrogen bonding. These important findings provided 
insightful guidance for the further development of computational pro
tein design (Bogan and Thorn, 1998).

With these concepts in mind, Kuhlman and coworkers designed the 
first de novo design protein called Top7 which is a 93-residue alpha/beta 
protein. Top 7 was found to be folded and structurally stable, as well as 
the x-ray structure of Top 7 is similar to the design model (Kuhlman 
et al., 2003). Top7 stands for a milestone in the field of protein design, 
demonstrating the feasibility of creating new protein from scratch using 
computational methods. This breakthrough has laid the foundation for 
ongoing advances in protein engineering with applications across 
biotechnology, medicine, and materials science. Progressively, Fletcher 
and coworkers constructed unilamellar sphere cages with a diameter of 
around 100 nm by using their designed coiled-coil bundle peptides. 
These peptides were joined back-to-back to form 2 types of comple
mentary peptide complexes hub A and hub B, which can render hex
agonal networks and subsequently turn into cages (Fig. 11) (Fletcher 
et al., 2013).

Kaltofen et al. (2015) developed a de novo design protocol based on 
the crystal structure of the seven-residue amyloid-like peptide 
(GNNQQNY) from the yeast protein sup35. This peptide sequence can 
form a β-strand and was decorated to connect with a loop-helix-loop 
segment as the primary building block. These protein building blocks 
were simultaneously assembled into fibers with a most frequent width of 
5 nm at the rational condition, which was almost the same as the pre
diction in the structural model fibril. These results proved the feasibility 
of precise engineering of new biomolecules by computational design 
(Kaltofen et al., 2015).

Besides, Park et al. (2015) proposed a strategy for controlling of the 
curvature of repeat-protein scaffolds using RosettaRemodel. By intro
ducing a diverse set of leucine-rich repeat protein modules as building- 
blocks and junction modules (Fig. 12), they built 12 new proteins with 
different curvatures, which shows the feasibility of controlling the 
repeat-protein curvature with atomic-level accuracy (Park et al., 2015). 
Moreover, Shane Gonen and coworkers (2016) successfully designed 
two-dimensional protein arrays mediated by zipper-like hydrophobic 
packing.

In addition to the de novo protein design, progress has also been 
made in terms of customizing antibody and protein nanocarriers for 
encapsulation and controllable drug release. Poosarla et al. (2017)
generated 5 types of de novo designed single-chain antibody (scFv) with 
reference to antibody 2D10. These 5 de novo designed single-chain an
tibodies shared less than 75 % sequence identity compared to all existing 
natural antibody sequences, and 3 of them show nano-molar binding 
affinities to the dodecapeptide. Their results demonstrate the de novo 
designed antibody can exhibit thermally and conformationally stable 
characteristics as well as high binding affinity to antigens, providing an 
insightful reference for the development of synthetic antibodies 
(Poosarla et al., 2017).

Similarly, miniproteins were designed that antagonize cytokine 
storm inducers by de novo strategies (Huang et al., 2024). Specifically, 
RosettaDesign was used to successfully create miniproteins that can 
efficiently bind and block the IL-6 receptor, GP130 co-receptor, and IL-1 
receptor. These designed proteins demonstrated high binding affinity in 
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the picomolar to nanomolar range, with their structures closely 
matching the design models, as confirmed by X-ray crystallography. In 
human heart organoid disease models, these IL-1 receptor antagonists 
showed protective effects against inflammation and heart damage. The 
significant potential of computational protein design in developing 
novel biologics was highlighted, particularly in addressing acute and 
localized inflammatory responses.

5. Outlook and challenges

The field of computational protein design is poised for a 

transformative phase, driven by rapid advancements in AI and big data 
technologies. These developments are making it increasingly feasible to 
design proteins with high precision and specific functions, marking a 
significant leap forward from traditional approaches. AI-mediated 
design, in particular, has enabled the creation of versatile protein 
structures and large assemblies with applications in areas such as vac
cine development, where structural accuracy is paramount. The ability 
to design de novo proteins that tightly bind to target surfaces has broad 
implications, ranging from basic cell biology research to the develop
ment of novel therapeutics. While challenges remain in achieving more 
complex design goals, such as engineering proteins with advanced 

Fig. 11. Schematics for the design and self-assembly of peptide-based cages. Reprinted with permission from Ref. (Fletcher et al., 2013). Copyright © 2013, As
sociation for the Advancement of Science.

Fig. 12. leucine-rich repeat protein modules for building Custom-specified protein curvature. Reprinted with permission from Ref. (Park et al., 2015). Copyright © 
2015, Nature Publishing Group.
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functions like conformational changes and allosteric regulation, these 
objectives are gradually becoming attainable. The ongoing integration 
of computational strategies with biological systems also opens up new 
possibilities for controlling cellular processes in ways that were previ
ously unimaginable.

Despite progress, key challenges remain. Predicting protein behav
ior—including binding affinities and dynamics—requires deep learning 
advances and high-quality datasets. Designing proteins with composite 
functions demands a deeper understanding of behavioral principles. 
There is also potential in de novo design of tunable, controllable, 
modular proteins, which could interact with biological systems in novel 
ways. Such innovations are particularly promising in the field of nutri
tion and health, where computationally designed proteins with 
controllable activity and site-specific targeting capabilities could enable 
precise modulation of physiological processes. Potential applications 
include targeted nutrient delivery, programmable enzyme supplemen
tation, and the development of bioactive compounds that interact 
selectively with gut microbiota or metabolic pathways. These advances 
may drive a paradigm shift toward personalized, proactive, and 
precision-based nutritional interventions.
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