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A B S T R A C T

Enzymes are indispensable for biological processes and diverse applications across industries. While top-down 
modification strategies, such as directed evolution, have achieved remarkable success in optimizing existing 
enzymes, bottom-up de novo enzyme design has emerged as a transformative approach for engineering novel 
enzymes with customized catalytic functions, independent of natural templates. Recent advancements in arti
ficial intelligence (AI) and computational power have significantly accelerated this field, enabling breakthroughs 
in enzyme engineering. These technologies facilitate the rapid generation of enzyme structures and amino acid 
sequences optimized for specific functions, thereby enhancing design efficiency. They also support functional 
validation and activity optimization, improving the catalytic performance, stability, and robustness of de novo 
designed enzymes. This review highlights recent advancements in AI-driven de novo enzyme design, discusses 
strategies for validation and optimization, and examines the challenges and future prospects of integrating these 
technologies into enzyme development.

1. Introduction

Enzyme design is a transformative approach for addressing a wide 
array of scientific, industrial, and medical challenges by engineering 
enzymes to perform specific functions, through which the limitations of 
natural enzymes, such as the lack of stability, specificity, or activity 
required for novel applications or non-native conditions, can be 
addressed. However, the vast space for enzyme design, comprising 
countless possible amino acid combinations, renders exhaustive explo
ration, even making it infeasible (Cobb et al., 2013).

Traditional enzyme engineering methods predominantly rely on top- 
down strategies, including rational design, semi-rational design, and 
directed evolution (Chen and Arnold, 1993; Lerner et al., 1964; Tian 
et al., 2024). These approaches have achieved significant milestones, 
such as improving the efficiency of enzymes like P450 and alcohol de
hydrogenase and engineering enzymes to catalyze new reactions 
(Brandenberg et al., 2019; Jensen et al., 2021; Kim et al., 2019; Li et al., 
2024; Liu et al., 2019; Xu et al., 2024).

Theoretically, every specific reaction has an optimal enzyme 
sequence that yields maximal activity. While natural evolution could 
eventually reach this sequence given infinite time, directed evolution 

accelerates the process by artificially enhancing the rate of sequence 
variation and selection. Whether there is a fundamentally different 
strategy that can achieve comparable or superior results within a much 
shorter timescale by efficiently sampling a broad design space from 
scratch rather than gradually modifying existing sequences is worth 
exploring.

De novo enzyme design is the computational creation of novel protein 
sequences and structures from first principles or learned models, rather 
than modifying natural enzymes. Unlike traditional rational design or 
directed evolution, which explore sequence space locally around exist
ing scaffolds, de novo design enables access to novel folds and functions 
absent in nature. By starting from a desired function or structure and 
leveraging generative models and physics-based simulations, it can 
efficiently search vast regions of sequence–structure space. This global 
exploration allows it to bypass local optima and more directly identify 
high-performance solutions, accelerating the discovery of enzymes with 
enhanced activity, specificity, and stability.

Early de novo designs relied on physicochemical principles (Hodges 
et al., 1981). For instance, DeGrado et al. (1987) laid the foundation for 
de novo design of enzymes by using geometric parameters of their ter
tiary and quaternary structures, and Kuhlman et al. (2003) advanced the 
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field with fragment-based methods that enabled backbone generation 
and sequence optimization. Despite some successes in physicochemical 
principle-based methods, including high thermodynamically stable he
lical bundles and water-soluble α-helical barrels (Huang et al., 2014; 
Thomson et al., 2014), they require extensive knowledge of target 
enzyme structures and face challenges in parameterizing diverse enzyme 
families.

Recent advances in machine learning (ML) have revolutionized the 
landscape of de novo enzyme design, providing powerful tools to address 
the limitations of those traditional approaches. ML-driven strategies can 
design enzymes by targeting known functional sites or directly 
addressing specific design requirements (Ingraham et al., 2023; Muns
amy et al., 2024; Watson et al., 2023), which often serve as starting 
points, enabling rapid in silico design and functional validation there
after. Moreover, ML plays a pivotal role in subsequent refining, experi
mental validation, and optimization, which are essential for achieving 
enhanced enzyme performance. Fig. 1 highlights the chronological 
milestones for this transformative approach.

In this review, we highlight recent advances in AI-driven bottom-up 
de novo enzyme design, focusing on three key areas: 1) the application of 
ML techniques for de novo enzyme design, 2) the use of ML for rapid in 
silico functional and interaction validation, and 3) leveraging ML for 
efficient enzyme modification and optimization. We conclude by dis
cussing the challenges and future directions of AI-driven de novo enzyme 
design, emphasizing its transformative potential in advancing the field.

2. AI/ML data curation and algorithm architectures

2.1. Data curation

The foundation of reliable AI/ML-driven enzyme design lies in access 
to high-quality, well-curated datasets that reflect the complexity of 
biological systems. Collaborative efforts have resulted in specialized 
databases that catalog amino acid sequences (Bateman et al., 2023), 
protein structures (Berman et al., 2000; Sillitoe et al., 2021), enzymatic 
functions (Chang et al., 2021), biochemical reactions (Bansal et al., 
2022), and metabolic pathways (Caspi et al., 2016; Ogata and Goto, 
2000), which are crucial inputs for model training and validation. As the 
saying goes, “garbage in, garbage out”, underscoring the importance of 
rigorous data quality control in building accurate and trustworthy 

models.
Sequence dataset curation requires a careful balance between di

versity and quality. Current methods often rely on clustering algorithms, 
such as MMseqs2 (Steinegger and Söding, 2017), to select representative 
sequences while minimizing redundancy that could bias learning. This 
process involves a trade-off: stricter clustering reduces redundancy but 
limits dataset coverage, whereas looser thresholds preserve diversity but 
risk overrepresentation of homologous sequences. Hierarchical ap
proaches like UniRef (UniRef50/90/100) optimize this balance through 
empirical evaluation of model performance across clustering levels 
(Bateman et al., 2023). Later, ESM3 employs an optimized multi-stage 
reclustering workflow. It begins with stringent clustering to remove 
redundant sequences, followed by progressively relaxed reclustering 
steps that reintroduce sequence diversity in a controlled and systematic 
manner (Hayes et al., 2025).

Structural biology databases, such as the Protein Data Bank (PDB) 
and CATH database (Berman et al., 2000; Sillitoe et al., 2021), contain a 
heterogeneous collection of protein structures by experimental deter
mination, like cryo-electron microscopy (cryo-EM), X-ray crystallog
raphy (XRC), Nuclear magnetic resonance (NMR), X-ray free-electron 
lasers (XFELs), and Hydrogen‑deuterium exchange (HDX), which vary 
widely in both resolution and overall quality. Resolution has tradition
ally served as a primary criterion for data curation, though its optimal 
threshold often depends on the specific modeling objective.

Similar to the trade-offs observed in sequence clustering, structural 
filtering faces the challenge of balancing fidelity with dataset breadth, 
particularly important given the limited number of experimentally 
resolved structures (~233,000 as of 2024). Moreover, structural data
bases exhibit inherent biases, particularly the overrepresentation of 
thermostable or easily crystallizable proteins. Such biases can skew 
model generalizability, posing a significant challenge for AI-driven 
enzyme design, which depends critically on diverse, high-quality 
training data. This scarcity and bias underscore the growing need for 
effective structural augmentation strategies to expand and diversify 
training datasets.

To address these limitations, computationally generated structural 
datasets have become an essential complement. Recent advances in 
protein structure prediction, such as AlphaFold and ESMFold, have 
enabled large-scale dataset expansion with atomic-level accuracy across 
many protein families (Abramson et al., 2024; Lin et al., 2023). 

Fig. 1. Evolution of de novo enzyme design. Key studies are shown in chronological order, highlighting the transformation of enzyme design from physics-based 
methods reliant on expert knowledge to statistics-based approaches. Modern methodologies can autonomously infer design constraints, reducing dependence on 
prior experience or detailed mechanistic understanding of target enzymes.
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Resources like AlphaFoldDB and ESM Atlas offer high-throughput 
structural predictions, typically validated using the predicted Local 
Distance Difference Test (pLDDT) score, a per-residue confidence mea
sure where higher values correspond to increased structural reliability 
(Munsamy et al., 2024; Varadi et al., 2023). Standard curation pipelines 
apply pLDDT thresholds to extract topologically trustworthy regions, 
facilitating the integration of predicted and experimental structures 
under consistent quality standards (Jumper et al., 2021).

In parallel, these expanded structural datasets can also be leveraged 
to diversify protein sequence space through inverse folding. When nat
ural sequences are insufficient for large-scale training, structure-guided 
sequence generation provides an effective means of synthetic augmen
tation. This process typically involves generating sequences from PDB- 
derived structural templates, followed by validation via 3D prediction 
tools such as AlphaFold3. TM-score metrics are then used to quantify 

topological congruence between predicted and template structures, 
ensuring that only structurally faithful sequences are included in the 
final dataset (Krishna et al., 2024; Varadi et al., 2023).

In summary, rigorous data curation is the cornerstone of de novo 
enzyme design, encompassing high-quality sequence, structure, and 
functional annotations. Careful selection and validation of these datasets 
are essential to avoid the pitfalls of poor input, ensuring model accuracy 
and enabling the successful development of innovative and application- 
ready enzymes.

2.2. Algorithm architectures

Designing efficient model architectures is a critical step in ML-based 
de novo enzyme design. Once high-quality datasets have been curated, 
attention shifts to developing models capable of accurately capturing the 

Fig. 2. Overview of algorithm architectures. Key algorithms are categorized into four types, with a comparative summary of their inputs, outputs, typical appli
cations, and representative methods.
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complex and multiscale relationships underlying enzymatic function 
(Fig. 2).

2.2.1. Transformer-based model
A range of specialized architectures has been developed to handle the 

demands of enzyme modeling from both sequence and structural angles. 
Among these, transformer-based models have emerged as one of the 
most influential approaches. Their self-attention mechanism enables the 
modeling of long-range dependencies and co-evolutionary patterns in 
amino acid sequences, which are critical for capturing the global prop
erties of enzymes (Vaswani et al., 2017). Furthermore, self-supervised 
training paradigms, including masked language modeling tasks like 
BERT and autoregressive objectives like GPT, enable models to acquire 
knowledge from extensive unannotated datasets while substantially 
improving data utilization efficiency (Devlin et al., 2019).

Transformer has demonstrated outstanding performance in sequence 
prediction, structural inference, and de novo enzyme generation (Ferruz 
et al., 2022; Lin et al., 2023; Yu et al., 2023). However, transformers also 
face inherent limitations when applied directly to structural data, where 
spatial and geometric information must be encoded in a fundamentally 
different way than in one-dimensional sequences.

To overcome these challenges, architectural innovations have 
adapted transformer frameworks for 3D protein modeling. For instance, 
axial attention in the ESM framework enables independent aggregation 
along the dimensions of multiple sequence alignments (MSAs), preser
ving both evolutionary and positional context (Lin et al., 2023). 
AlphaFold2’s Evoformer module introduces triangular attention mech
anisms to model spatial relationships among residues, embedding geo
metric constraints such as distance complementarity and contact 
patterns directly into the learning process (Jumper et al., 2021). These 
adaptations allow transformer-based models to transition effectively 
from sequence to structure prediction, bridging the gap between linear 
sequence data and the multidimensional geometry of enzyme function.

Another key consideration in structural modeling is the enforcement 
of SE(3) symmetry, which is invariance to rotation and translation in 
three-dimensional space. This is particularly important in protein 
modeling, where absolute orientation should not affect prediction out
comes. Architectures such as SE(3)-Transformer and AlphaFold2 
implement strategies to ensure symmetry preservation, using spherical 
harmonics, reference frame anchoring, and invariant point attention to 
embed geometric constraints directly into their computation (Fuchs 
et al., 2020; Jumper et al., 2021). The ESM3 framework further refines 
this approach by constructing local residue-centric reference frames, 
ensuring SE(3)-equivariant spatial descriptors that are independent of 
global orientation (Hayes et al., 2025).

2.2.2. Diffusion model
In parallel with transformer-based advances, diffusion models have 

emerged as a powerful generative paradigm for structure-based enzyme 
design. These models learn to generate complex 3D conformations by 
iteratively denoising random inputs, guided by learned protein struc
tural priors (Ho et al., 2020). Diffusion models implicitly enforce critical 
biophysical constraints such as backbone geometry, secondary structure 
motifs, and hydrophobic core packing. When combined with SE(3)- 
equivariant neural networks, they can generate physically realistic and 
chemically meaningful protein structures with atomic precision, making 
them particularly well-suited for de novo enzyme design under structural 
constraints (Watson et al., 2023).

2.2.3. Convolutional Neural Networks (CNNs) and Graph Neural Networks 
(GNNs)

Beyond these dominant paradigms, convolutional neural networks 
(CNNs) continue to contribute, particularly in detecting local structural 
motifs and functional sites. While their limited receptive fields constrain 
their ability to model long-range interactions, CNNs are effective for 
analyzing spatially local features such as catalytic residues or short- 

range sequence motifs (McNutt et al., 2021). In contrast, graph neural 
networks (GNNs) excel at modeling the complex topologies of proteins 
by explicitly representing amino acids as nodes and their interactions as 
edges. This framework captures detailed geometric relationships and 
has driven progress in inverse folding, although scalability remains a 
bottleneck for modeling large proteins (Dauparas et al., 2022).

2.2.4. Other generative models
Finally, several other generative models also play roles in enzyme 

design. Autoencoders, particularly variational forms (VAEs), provide 
compact representations of protein sequences or structures for efficient 
sampling and reconstruction (Sevgen et al., 2023; Yuan et al., 2023). 
Extensions such as vector quantized VAEs (VQ-VAEs) enable discrete 
latent modeling that aligns well with categorical biological data (Hayes 
et al., 2025). Generative adversarial networks (GANs), once popular for 
molecular generation, have seen reduced usage due to issues like mode 
collapse, with many recent efforts shifting toward more stable diffusion- 
based frameworks (Gui et al., 2023; Maziarka et al., 2020).

Together, these architectural innovations reflect a broader trend 
toward multimodal and hybrid modeling strategies. By integrating 
transformers for global sequence modeling, diffusion models for struc
ture generation, CNNs for local feature extraction, GNNs for geometric 
encoding, and autoencoders for latent representation and sampling, 
researchers are building comprehensive systems that capture the hier
archical nature of enzymes, from primary sequence to tertiary structure 
and functional dynamics. These advances lay the groundwork for 
rational enzyme design driven by AI.

2.3. Method evaluation

Following the construction of a model, the next crucial step is the 
rapid evaluation of its effectiveness. In silico metrics enable fast 
computational assessments and facilitate fair comparisons between 
different models, making them integral to evaluating de novo enzyme 
design outcomes. However, while traditional NLP metrics such as 
bilingual evaluation understudy (BLEU) and perplexity are often 
adapted, they lack clear physical relevance, limiting their correlation 
with actual enzyme functions or experimental results (Blagec et al., 
2022; Papineni et al., 2002).

To address this issue, current efforts focus on developing metrics that 
are more practically relevant to de novo enzyme design. These include 
the following three key considerations: 1) Novelty of design: Since the 
primary goal of de novo enzyme design is to create enzymes with novel 
functions not found in nature, evaluation of sequence and structural 
uniqueness is critical. Tools such as BLAST can be used to perform 
sequence or structural alignment and confirm divergence from existing 
natural enzymes (Altschul et al., 1990). 2) Structural validity and fold
ability: Designed enzymes must exhibit realistic folding and catalytic 
potential. Prediction software can compare key features of the generated 
datasets, including sequence lengths, secondary structures, and other 
attributes, to those of natural datasets, ensuring the rationality of the 
design (Munsamy et al., 2024). High-precision structural prediction 
tools, such as AlphaFold3 and RoseTTAFold All-Atom, provide confi
dence scores like pLDDT values to assess foldability (Abramson et al., 
2024; Krishna et al., 2024; Tunyasuvunakool et al., 2021). Higher con
fidence values generally indicate more promising and stable structures. 
3) Functional site integrity: The accuracy of functional regions is critical 
for enzyme activity. Metrics such as the root-mean-square deviation 
(RMSD) of functional or catalytic sites ensure that predicted structures 
remain within acceptable thresholds of precision (Watson et al., 2023).

While these in silico metrics offer rapid and cost-effective evaluation, 
it is important to recognize their limitations. These metrics do not al
ways correlate perfectly with experimental results, as computational 
predictions may fail to capture the full complexity of enzymatic func
tions under real conditions. Therefore, experimental validation remains 
a gold standard for confirming the accuracy, activity, and stability of 
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designed enzymes (Bennett et al., 2023). By combining in silico assess
ments with experimental testing, researchers can ensure robust and 
reliable outcomes for de novo enzyme design.

3. De novo enzyme design

De novo enzyme design enables the creation of novel enzymes with 
defined structures and functions through two primary approaches: 
structure-based strategies, which use physical energy functions and 
spatial pattern algorithms to derive stable conformations from 3D con
straints, and sequence-based strategies, which employ deep generative 
models to learn co-evolutionary patterns from protein datasets and 
generate functional sequences from data-driven principles. Unlike 
template-dependent methods such as directed evolution, which are 
limited to local exploration around natural proteins, de novo design al
lows access to vast and previously unexplored regions of sequence space. 
This capability facilitates the discovery of entirely new folds and cata
lytic mechanisms, as demonstrated by recent tools that have produced 
functional enzymes with minimal similarity to any known natural se
quences (Table 1 and Fig. 3).

3.1. Structure-based design

Protein function fundamentally arises from the precise spatial or
ganization of amino acid residues within an enzyme’s 3D structure. 
Early physics-based studies demonstrated the feasibility of designing 
functional proteins from structural principles. As the field has advanced, 
structural modeling has become a powerful tool in de novo enzyme 
design, enabling the rational construction of proteins with tailored 
conformations and functional properties. Design strategies typically 
focus on engineering the scaffold and active site either independently or 
in an integrated manner.

3.1.1. Scaffold design
Scaffolds maintain the structural framework necessary to support the 

enzymatic active sites. Natural scaffolds are evolutionarily optimized to 
stabilize catalytic residues and reaction environments. For example, in 
cytochrome P450 systems, the organization of α-helical bundles is crit
ical for heme coordination and substrate accessibility (Shaik et al., 
2009). Initial scaffold design methods included parametric approaches 
and fragment assembly strategies. Parametric approaches, such as 
coiled-coil design, produced successful constructs like the α-helical 
tetramer 1RH4 using predefined geometric parameters, though 

structural diversity was limited (Harbury et al., 1998). The computa
tional phase, beginning with zinc finger redesign in 1997, saw Rosetta- 
based methods apply backbone-sequence co-optimization and fragment 
assembly (e.g., ERMS, SEWING), culminating in milestone designs like 
Top7 (Kuhlman et al., 2003; Liu et al., 1997). These frameworks, how
ever, faced challenges in forcefield accuracy and conformational 
sampling.

Modern AI-driven approaches differ from traditional models by 
learning implicit sequence-structure-function relationships, expanding 
the designable protein space without requiring prior knowledge of 
active-site geometry. The Hallucination method pioneered the co-design 
of sequence and structure using trRosetta and Monte Carlo sampling. 
Though only 3 of 129 candidates were experimentally resolved by XRC/ 
NMR and lacked functional activity, this validated the translatability of 
AI-predicted designs (Anishchenko et al., 2021). Similarly, SCUBA, 
based on kernel density estimation, also demonstrated folding accuracy 
comparable to Hallucination, but without functional outcomes (Huang 
et al., 2022). Family-wide hallucination extended this by preserving 
conserved domains within enzyme families and sampling flexible re
gions (Yeh et al., 2023). It yielded a 13.9 kDa artificial luciferase with 
catalytic efficiency. However, the generalizability of this approach is 
limited by its heavy reliance on comprehensive high-quality datasets 
detailing the sequence–structure–function relationships of the target 
enzyme family, resources which are often unavailable for many enzyme 
classes.

A breakthrough came with RFdiffusion, a RoseTTAFold2-based 
diffusion model that incorporates structure evaluation metrics (e.g., 
backbone RMSD <1 Å, pAE < 5) for efficient enzyme design across EC 
1–5 classes (Watson et al., 2023). However, this study lacked experi
mental confirmation of enzymatic activity and is computationally 
intensive during training and inference as a diffusion model fine-tuned 
from extensive structure prediction architectures.

To address computational load, newer models eliminate pretraining 
phases. SMCdiff allows conditional generation for functional site inte
gration but is limited to 80-residue designs and lacks experimental 
validation (Trippe et al., 2023). FoldingDiff uses bond angle/dihedral 
parameterization with transformer architectures devoid of SE(3)- 
equivariance, achieving TM-scores of 0.83 ± 0.07 in unconditional 
generation tasks while improving scalability (Wu et al., 2024). However, 
the absence of experimental validation limits assessment of its real- 
world accuracy. RFam (Rosetta Flow Atomic Motif) enhances the 
RFdiffusion framework by implementing flow matching algorithms for 
scaffold generation that optimally position functional motifs, replacing 

Table 1 
Summary of recent studies in de novo enzyme design.

Computational tool Method Main architecture Experimental validation 
case

Similarity to 
natural enzyme

Structural 
validation

kcat/KM 

(M− 1⋅s− 1)
Ref

Family-wide 
hallucination

Structure-based 
scaffold design

Markov chain Monte 
Carlo sampling

Luciferase N.A. 1.35 Å (AF2) 1.0 × 106 (Yeh et al., 2023)

RFam Structure-based 
scaffold design

Flow Metallohydrolase N.A. 0.46 Å (AF2) 2.3 × 104 (Kim et al., 2024)

ChemNet Structure-based active 
site design

Diffusion Retroaldolase N.A. 0.53 Å (XRC) 1.9 × 102 (Anishchenko 
et al., 2024)

PLACER Structure-based active 
site design

Diffusion Serine hydrolase N.A. 0.83 Å (XRC) 2.2 × 105 (Lauko et al., 
2025)

ZymCTRL Sequence-based 
protein-trained models 
design

Transformer Carbonic anhydrase / 
Lactate dehydrogenase

39.2 % / no hits 
found

N.A. N.A. (Munsamy et al., 
2024)

ESM3 Sequence-based 
protein-trained models 
design

Transformer Luciferase 51.4 % N.A. N.A. (Hayes et al., 
2025)

Evo Sequence-based DNA- 
trained models design

StripedHyena Cas9 79.9 % N.A. N.A. (Nguyen et al., 
2024)

N.A.: not available.
Structural validation: root-mean-square deviation of design structures and validated structures.
AF2: structure is validated by AlphaFold2.
XRC: structure is validated by X-ray crystallography.
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Fig. 3. Workflow and rubric of de novo enzyme design approaches. (A) Schematic overview of the de novo enzyme design process. The process begins with defining 
functional requirements, which guide two main design strategies: structure-based and sequence-based. In the structure-based approach, one route involves designing 
active sites or thozymes and embedding them into compatible protein scaffolds, followed by structural refinement using docking or matching algorithms. Alter
natively, enzyme structures can be generated directly through de novo structure design. In both cases, the resulting 3D structures require inverse folding to derive 
compatible amino acid sequences. In contrast, sequence-based approaches generate functional protein sequences directly from the design objectives, without relying 
on explicit structural templates. (B) Rubric summarizing representative enzyme design tools and their objectives. Methods are grouped by design paradigm, including 
structure-based and sequence-based approaches. Each row represents a specific method, evaluated across up to five key steps in the enzyme design process: active site 
design, scaffold design, structure design, sequence design, and experimental validation. Filled green circles indicate which design steps are supported by each 
method. Computational cost is represented by a blue circle, with its size reflecting the relative computational demand. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)
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conventional diffusion approaches (Kim et al., 2024). This architecture 
implicitly samples sequence space and rotamer configurations during 
inference through transition-state complex modeling and catalytic 
group optimization. When applied to metallohydrolase design, experi
mental characterization of 96 constructs demonstrated catalytic effi
ciencies up to kcat/KM = 23,000 M− 1⋅s− 1 in top-performing variants.

While parametric and fragment-based methods have enabled robust 
scaffold engineering, AI-based scaffold design offers greater conforma
tional diversity and novel fold exploration. Nonetheless, the predictive 
success of these ML methods requires rigorous experimental validation 
across diverse systems to establish reliability comparable to physics- 
based paradigms.

3.1.2. Active site design and matching
Active site design and matching constitute a core element of de novo 

enzyme engineering, aiming to recapitulate or enhance catalytic activity 
by integrating theoretical chemistry with structural biology. This pro
cess typically begins with the construction of quantum chemistry- 
derived theoretical enzyme models (“thozymes”) that identify 
transition-state stabilizing motifs for a given chemical reaction. These 
motifs are then computationally embedded into structurally compatible 
natural or artificial scaffolds using platforms like RosettaMatch, fol
lowed by local microenvironment optimization via RosettaDesign or 
similar tools (Lovelock et al., 2022).

Notable successes include Kemp elimination and retro-aldolase de
signs. For example, a TIM-barrel scaffold derived from HisF protein 
achieved over 200-fold catalytic enhancement after seven rounds of 
directed evolution in the Kemp elimination system (Röthlisberger et al., 
2008). Similarly, the integration of hashing algorithms into Rosetta 
enabled rapid screening and yielded 44.4 % functional activity across 72 
theoretical models targeting retro-aldol reactions (Jiang et al., 2008). 
Additional applications of this strategy include the de novo design of FPP 
biosensors, digoxiginin and COMBS/heme binders, Diels-Alderases, 
formolases, serine hydrolases, zinc metalloenzymes, and heme en
zymes, among others (Glasgow et al., 2019; Kalvet et al., 2023; Khare 
et al., 2012; Polizzi and DeGrado, 2020; Rajagopalan et al., 2014; Siegel 
et al., 2015; Siegel et al., 2010; Tinberg et al., 2013).

Although these methods remain foundational for their systematic 
treatment of transition-state stabilization and active-site optimization, 
current computational designs often exhibit notable performance gaps 
compared to natural enzymes. Key challenges persist, including the 
combinatorial explosion of hotspot configurations and binding poses, 
the complexity of concurrently designing active sites and selecting 
compatible scaffolds, and the reliance on limited structural databases for 
scaffold sourcing.

Recent efforts leveraging deep learning and geometric complemen
tarity have begun to address these limitations. Lucas and Kortemme 
(2020) introduced a Rosetta-based side-chain reconstruction method for 
generating stable complex interfaces across thousands of targets, but 
systematic experimental validation remains lacking. Cao et al. (2022)
employed the RIF (Rotamer Interaction Fields) framework to explore 
diverse binding modalities across targeted surface regions, implement
ing focused sampling around energetically favorable interactions, ulti
mately enabling the successful design of 14 high-affinity binders, 
although its application is still constrained by computational cost. 
Gainza et al. (2023) developed a geometric deep learning framework 
capable of mapping molecular surfaces and producing interaction fin
gerprints that capture spatial and chemical complementarity. While 
both studies represent major methodological progress, experimental 
success rate during validation remains modest.

Unlike small-molecule binding, enzymatic catalysis involves dy
namic transition states and conformational changes that challenge 
geometric complementarity approaches. Addressing this, EnzymeFlow 
employs flow matching and co-evolution strategies to generate active 
pockets with dynamic properties, demonstrating computational advan
tages over conventional algorithms (Hua et al., 2024). However, 

limitations persist, including the untested reliability of its CLEAN clas
sifier and the lack of experimental validation. In contrast, ChemNet 
achieves in vitro validation using diffusion model-driven binding site 
inverse design (Anishchenko et al., 2024). The best-performing variant 
reached a catalytic efficiency of 11,249.4 M− 1 min− 1, surpassing early- 
stage directed evolution outputs by several orders of magnitude. Still, 
both ChemNet and EnzymeFlow do not explicitly model dynamic in
teractions or provide mechanistic insight into transition-state 
coordination.

In the realm of conformational engineering, two distinct methodol
ogies have advanced dynamic enzyme design through specialized stra
tegies. Meta-multistate design employs polymorphic landscape 
prediction to identify sequences capable of spontaneous transitioning 
between predefined states. This approach was exemplified by DANCER, 
which validated conformational exchange between two novel global 
folding states in the β1 domain of streptococcal protein G (Davey et al., 
2017). However, the broader applicability of this method remains to be 
fully established. In contrast, PLACER adopts a statistically driven 
approach that achieves catalytic precision through stepwise simulation, 
integrating active-site modeling, scaffold generation, and conforma
tional screening (Lauko et al., 2025). This framework successfully 
enabled the design of a serine hydrolase, with its four-step enzymatic 
process confirmed by XRC. Although the engineered enzyme exhibits 
lower catalytic efficiency compared to its natural counterpart, it pro
vides valuable insights into conformation-aware design paradigms.

ML approaches offer promising avenues to overcome the computa
tional inefficiencies, energy function limitations, and vast search space 
inherent in conventional computational chemistry methods. However, 
successful integration requires rigorous validation within robust bio
physical and mechanistic frameworks. A persistent challenge lies in 
achieving precise quantum chemical characterization of reaction dy
namics, particularly in accurately modeling electronic interactions and 
transition states that govern catalytic efficiency.

3.1.3. Inverse folding
Inverse folding is a computational protein design approach that 

systematically generates amino acid sequences capable of adopting 
predetermined 3D protein structures. This is fundamentally challenged 
by the vast conformational space that must be explored. This bottleneck 
was partially addressed by the Dead-End Elimination (DEE) algorithm, 
which systematically prunes suboptimal rotamer combinations using 
mathematical criteria, thereby reducing the dimensional complexity of 
the design space (Georgiev et al., 2008). By incorporating energy 
minimization through force field optimization, DEE formed the 
computational foundation for early sequence design tools such as Orbit, 
which implemented the DREIDING force field and remains a reference in 
benchmarking efforts (Bolon and Mayo, 2001; Mayo et al., 1990).

Subsequent innovations, including Rosetta, have advanced de novo 
protein design by integrating sequence optimization with structural 
prediction (Leaver-Fay et al., 2011). However, practical applications 
reveal ongoing limitations: despite success in selected cases, the overall 
sequence recovery rates remain low, indicating insufficient predictive 
power for robust and generalizable protein design.

To address these shortcomings, hybrid frameworks integrating sta
tistical principles into physics-based models have emerged. For example, 
Xiong et al. (2014) introduced statistically-derived energy functions 
(SEFs) using an SSNAC-based framework, successfully validating the 
structural foldability of four designed sequences within the TEM1- 
β-lactamase system. Nevertheless, this approach lacks atomic-level 
refinement precision and has limited applicability to short-chain 
proteins.

Recent advances in sequence design predominantly rely on data- 
driven methods. ProteinMPNN, which leverages backbone geometry 
and Gaussian noise augmentation, achieved a 52.4 % sequence recovery 
rate, significantly outperforming Rosetta (Dauparas et al., 2022). 
However, its accuracy is sensitive to structural resolution, limiting its 
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robustness. In contrast, Frame2Seq employs invariant point attention to 
integrate multilevel representations derived from 1D dihedral embed
dings, 2D inter-residue distances, and 3D Cartesian coordinates 
(Akpinaroglu et al., 2023). It achieves enhanced sequence recovery and 
sixfold acceleration on the CATH4.2 benchmark, with experimental 
validation demonstrating the generation of 22 soluble de novo proteins, 
including zero-homology monomeric scaffolds. However, these valida
tions rely on native crystal backbones, leaving the performance of syn
thetic novel scaffold designs untested.

Both ProteinMPNN and Frame2Seq depend heavily on high- 
resolution structural datasets. To mitigate this data scarcity, ESM-IF 
incorporates AlphaFold2-predicted pseudo-structures, filtered using 
pLDDT confidence metrics and enhanced through noise injection (Chloe 
et al., 2022). While this improves model generalizability, its design 
outputs remain unvalidated experimentally. In contrast, CarbonDesign 
inverts AlphaFold’s Evoformer information flow to extract backbone 
features using an Inverseformer module, followed by sequence decoding 
via an amortized Markov random field (Ren et al., 2024). This archi
tecture outperforms existing mainstream models in CASP15 benchmarks 
but also lacks wet-lab corroboration.

Although ML-based inverse folding has significantly improved 
sequence recovery and design specificity, three persistent challenges 
remain: (1) Limited availability of high-quality structural data con
straining model generalizability; (2) Evaluation frameworks focused on 
native crystal structures, which do not reflect algorithmic capacity for 
novel scaffold generation; and (3) Lack of closed-loop experimental 
verification, hindering validation and refinement of designed sequences. 
To overcome these limitations, future research could prioritize: (1) 
Generation of diverse high-resolution datasets; (2) Development of 
multi-scale assessment metrics from atomic to functional levels; and (3) 
Integration of computational design with experimental pipelines, 
enabling iterative refinement and validation. These directions are 
essential for bridging the gap between in silico design and biologically 
viable proteins.

3.1.4. Hybrid approaches
Hybrid design strategies enable simultaneous optimization of protein 

scaffolds and functional sites. One notable approach is the TERM (Ter
tiary Motif) methodology, which defines designable units as unions of 
local backbone fragments and structural motifs derived from known 
interaction interfaces (Zhang and Grigoryan, 2013). By constraining the 
search space to evolutionarily validated geometries, TERM-based ap
proaches allow effective exploration of secondary, tertiary, and qua
ternary contexts, facilitating both structural and functional design via 
fragment libraries.

Frappier et al. (2019) applied TERM-derived statistical potentials to 
predict peptide binding affinities within the Bcl-2 protein family, suc
cessfully designing high-affinity binders for Bfl-1 and Mcl-1. However, 
the effectiveness of such template-dependent approaches is contingent 
on the availability and diversity of structural databases used for motif 
extraction.

In contrast, recent ML-based methods offer template-independent, 
full-atom design capabilities. A breakthrough example is RFDiffusion 
All-Atom, which extends RosettaFold All-Atom to support simultaneous 
modeling of protein-ligand interactions during generation (Krishna 
et al., 2024). Despite this advancement, it depends on external tools to 
design the corresponding sequence and incurs high computational costs.

Subsequent innovations attempt to address these challenges. Pro
teinGenerator utilizes discrete diffusion processes to co-optimize back
bone conformations and residue identities, demonstrating validated 
applications in stability and activity engineering (Lisanza et al., 2024). 
However, scalability remains a limitation. Chroma, leveraging graph 
neural networks and quasilinear algorithms, extends design to complex 
protein assemblies, with initial validation via split-GFP systems 
(Ingraham et al., 2023). Nonetheless, catalytic enzyme design within 
this framework remains largely unexplored. Protpardelle introduces a 

continuous-space diffusion model with hyper-conformation mecha
nisms, enabling backbone-sidechain co-optimization and conditional 
generation (Chu et al., 2023). Despite strong theoretical performance, 
experimental validation of its predictions is still pending.

ML approaches have introduced innovative frameworks for guiding 
hybrid enzyme design toward specific functional objective. However, 
three persistent limitations remain across current implementations: (1) 
the high computational cost of full-atom modeling limits large-scale 
screening efficiency; (2) structural innovations from design algorithms 
often conflict with the evolutionary folding constraints of natural en
zymes; and (3) experimental validation systems lag behind the rapid 
iteration cycles of computational model development.

3.2. Sequence-based design

From a sequence-level perspective, amino acid chains can be 
conceptualized as a biological language, encoding structural and func
tional information in a hierarchical manner. Analogous to human lan
guage, where letters form words and words form sentences, amino acids 
act as “letters,” motifs resemble “words,” and domains represent “sen
tences” that convey specific biochemical functions (Ferruz et al., 2022). 
This linguistic analogy has paved the way for applying natural language 
processing (NLP) techniques to protein sequence analysis. Language 
models (LMs), originally developed for textual data, have become 
foundational in this field by learning the statistical relationships be
tween amino acids. These models can capture grammatical, syntactic, 
and semantic features of protein sequences, thereby enabling the pre
diction, generation, and optimization of functional sequences for 
enzyme design (Cambria and White, 2014).

3.2.1. Bioinformatics-based methods
Bioinformatics-based strategies for enzyme amino acid sequence 

design primarily include consensus design and co-evolution-based 
design. The consensus design approach is based on the premise that 
evolutionarily conserved residues play a central role in maintaining 
protein stability (Porebski and Buckle, 2016). This strategy involves 
replacing variable positions with consensus residues to generate stabi
lized variants. It has been effectively applied in antibody engineering 
and later adapted for LM-guided optimization. However, practical 
implementation remains limited by the labor-intensive identification of 
consensus sequences and reliance on expert-driven heuristics, often 
resulting in suboptimal success rates.

By contrast, co-evolution-based design leverages patterns of evolu
tionary covariation, where residues or subunits that interact tend to co- 
mutate in a correlated fashion. These reciprocal mutational de
pendencies, observed across intra- and inter-molecular interfaces, 
enable prediction of structurally compensatory mutations (Juan et al., 
2013). Co-evolutionary data, extracted from multiple sequence align
ments, are commonly used as critical input features in modern predic
tive modeling pipelines and facilitate the evaluation of mutation- 
induced structural perturbations and long-range conformational effects.

3.2.2. Protein-trained models
Attention-based models have demonstrated strong capabilities in 

capturing co-evolutionary relationships within protein sequences. One 
notable example is ProteinGAN, a self-attention–based generative 
adversarial network validated through redesign of malate dehydroge
nase (MDH) (Repecka et al., 2021). Out of 16 generated candidates, 3 
exhibited catalytic activity as soluble enzymes. Despite this promising 
result, validation remains limited to the MDH family, and the method 
faces challenges such as unstable training convergence and mode 
collapse during adversarial optimization.

Inspired by breakthroughs in NLP, Transformer-based architectures 
have become dominant in protein modeling. ProtGPT2 adapted the GPT- 
2 model for unconditional generation of stable protein sequences, 
though it lacked functional specificity (Ferruz et al., 2022). Later models 
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introduced target-guided designs. For instance, ProGen, based on the 
CTRL architecture, achieved a 72 % expression success rate in lysozyme 
engineering by conditioning sequence generation on descriptive tags 
(Madani et al., 2023). ZymCTRL extended this approach by guiding 
sequence design with enzyme commission (EC) codes, yielding experi
mentally validated results in carbonic anhydrase and lactate dehydro
genase systems (Munsamy et al., 2024).

The most recent innovation, ESM3, introduces cross-modal modeling 
by jointly tokenizing sequence, structure, and function into a unified 
representation. It successfully designed novel luciferases with native- 
level efficiency despite sharing only 53 % sequence identity with their 
closest natural homologs (Hayes et al., 2025). However, its effectiveness 
in protease and other enzyme classes remains to be validated, and 
further studies are needed to assess its generalizability in functional 
enzyme engineering.

3.2.3. DNA-trained models
Recognizing that protein sequences are encoded in DNA sequences, 

recent efforts have explored generative frameworks trained directly on 
genomic data. These approaches aim to capture regulatory, evolu
tionary, and functional signals embedded in nucleotide sequences, 
thereby offering a novel route for enzyme design.

Outeiral and Deane (2022) demonstrated the potential of self- 
supervised pretraining on large-scale DNA datasets, showing competi
tive performance across diverse protein characterization tasks. Howev
er, this strategy currently lacks systematic experimental validation, and 

its direct applicability to enzyme design remains preliminary.
The Evo model introduced a more specialized architecture Stri

pedHyena, which combines rotary attention with Hyena operators to 
efficiently model long-range dependencies in DNA (Nguyen et al., 
2024). Trained on prokaryotic and phage genomes at single-nucleotide 
resolution and fine-tuned on CRISPR-Cas data, Evo successfully 
designed novel Cas9 variants with comparable activity to SpCas9 
(sharing 79.9 % sequence identity).

Building on this, Evo2 expanded the training scope to cross-species 
genomic datasets and adopted StripedHyena2 for megabase-scale 
modeling (Brixi et al., 2025). The incorporation of sparse autoen
coders (SAEs) further improved interpretability by highlighting latent 
regulatory patterns. Experimental validation of Evo2-designed protein 
variants is ongoing, demonstrating the promise of DNA-based generative 
models in bridging sequence-to-function relationships across biological 
scales.

4. Filtering designs and evaluating mutations

Modifying and optimizing de novo designed enzymes are crucial. It is 
popular to utilize well-established enzyme engineering strategies to 
enhance the stability, efficiency, and other fitnesses of de novo designed 
enzymes, which may lead the enzymes to achieve expected perfor
mances for industrial applications. For instance, after obtaining de novo 
designed enzymes, variations can be introduced and screened through 
techniques such as error-prone PCR, followed by iterative selection. This 

Fig. 4. Enzyme modification and optimization. (A) ML methods can be used to model the relationships between mutational scenarios and their effects, and optimize 
the enzyme fitness, beneficial modifications will assign higher scores. (B) ML-based variant prediction models can be trained from experimental data or public 
datasets without additional experimental data. (C) ML-based automation solutions can automatically update experimental strategies online based on experi
mental results.
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method not only boosts the catalytic activity of enzymes but can even 
endow them with entirely new catalytic functions (Basler et al., 2021; 
Crawshaw et al., 2022). However, for many enzymes, high-throughput 
experimental design remains a challenge, and multi-round iterative 
screening protocols result in excessively long experimental cycles, which 
pose a significant burden on researchers. In addressing these technical 
bottlenecks, ML methods demonstrate substantial advantages. After 
establishing complex functional relationships between input and output 
data, models can be leveraged to explore sequence spaces beyond the 
training set, facilitating the enrichment of beneficial mutations as 
highlighted in Fig. 4 and Table 2 (Mazurenko et al., 2020).

4.1. Variant predictions

Variant prediction is one of the major tasks of enzyme optimization. 
The most direct strategy is collecting data on mutational effects through 
experiments, and ML methods can be utilized to model the relationships 
between variants and their effects, thereby exploring novel and benefi
cial mutational sites. Early on, Fox et al. (2007) validated mutations 
using experimental techniques such as random or site-directed muta
genesis, and these mutated variants were screened and sequenced to 
collect data for fitting a linear model via Partial Least Squares (PLS) 
regression. Based on the magnitude and sign of each factor’s contribu
tion in the linear model, mutations were classified into beneficial, 
neutral, and deleterious categories, followed by fixing, re-testing, or 
removing them accordingly, which resulted in an approximately 4000- 
fold increase in volumetric productivity for a nitrile-catalyzing protein 
reaction over 18 rounds of evolution. Wu et al. (2019) employed ML to 
predict libraries enriched with functional enzymes and fixed seven 
mutations within two rounds of evolution, identifying selective catalytic 
variants with 93 % and 79 % enantiomer excess (ee). Huang et al. (2024)
evaluated the effect of the short-chain dehydrogenase/reductase BsSDR 
from Bacillus subtilis on promoting the kinetic resolution of (±)-tetra
phenazine to dihydrotetraphenazine using both traditional directed 
evolution and ML-assisted directed evolution methods, and both ap
proaches successfully identified variants with significantly enhanced 
diastereoselectivity for each isomer of dihydrotetraphenazine. In addi
tion, engineering methods were implemented, achieving an isolated 
yield of 40.7 % and a diastereoselectivity of 91.3 %.

Other strategies focus on providing a universal prediction scheme for 
mutational effects across all enzymes. Thanks to the rapid development 

of NLP, unsupervised learning has been comprehensively applied in the 
prediction of enzymatic mutational effects. It allows pre-training on 
unlabeled datasets and can directly perform mutant prediction tasks on 
specific proteins without additional training, which is known as zero- 
shot. The model primarily relies on whether the mutant conforms 
more closely to the rules learned by the model compared to the wild 
type. This set of rules assesses mutants more from an evolutionary 
perspective or the perspective of naturally occurring proteins, assigning 
higher scores to mutation models that adhere to evolutionary rules and 
resemble naturally occurring proteins.

Meier et al. (2024) developed ESM-1v based on the ESM, which can 
directly perform unsupervised learning on protein mutants, and the 
training method is random masking, enabling the model to predict the 
residue type of the masked part based on the unmasked part. This allows 
the model to assess the conservativeness of amino acids in proteins, 
assigning positive scores to mutants that conform more closely to 
“reasonable” types. Another strategy is supervised learning, which can 
more accurately predict the properties of protein mutants by learning 
mutation data for a specific protein compared to unsupervised strate
gies. Considering that high-quality labeled data is limited and unsu
pervised models have already learned the evolutionary rules of proteins 
through training, introducing unsupervised models as encoding modules 
into supervised models can ensure more accurate predictions of specific 
protein mutant properties. The ESM-1b model uses a 34-layer trans
former pre-trained on the UR50/S database and then fine-tuned using 
mutation data for specific proteins, achieving higher accuracy compared 
to previous methods (Rives et al., 2021).

ML exhibits a remarkable proficiency in efficiently recognizing pat
terns from extensive databases of existing proteins, thereby demon
strating substantial use in exploring protein fitness landscapes. 
Furthermore, refining the representations of protein variants, incorpo
rating predictive uncertainties, and developing specialized ML models 
with protein-specific inductive biases can significantly enhance the ac
curacy of sequence-to-fitness mappings. An intriguing future direction 
involves the integration of protein fitness information directly into 
generative models during the de novo design phase, potentially elimi
nating the need for a separate optimization step. However, challenges 
remain, including the scarcity of high-quality, diverse training datasets 
and the need for robust model interpretability. Addressing these gaps 
will involve constructing more comprehensive databases, improving 
uncertainty quantification, and exploring joint optimization 

Table 2 
Summary of recent studies on function prediction tools.

Computational 
tool

Method Main 
architecture

Accuracy Test dataset Ref

DEDAL Integrate ML with 
alignments

Transformer F1 score: 0.877 Pfam (Llinares-López et al., 2023)

DeepBLAST
Integrate ML with 
alignments Transformer TM-score prediction median error: 0.026 SWISS-MODEL (Hamamsy et al., 2024)

DeepEC Predict EC CNN
Precision: 0.920, Recall: 0.455, Prediction 
time: 13 s

Swiss-Prot (Ryu et al., 2019)

CLEAN Predict EC Transformer Precision: 0.597, Recall: 0.481, F1 score: 
0.499

Swiss-Prot (Yu et al., 2023)

DeepGOPlus Predict GO CNN Fmax: 0.544, Smin: 8.724, AUPR: 0.487 CAFA3 molecular 
function

(Kulmanov and Hoehndorf, 
2020)

DeepGO-SE Predict GO Transformer
Fmax: 0.554, Smin: 11.681, AUPR: 0.552, AUC: 
0.874 UniProtKB/Swiss-Prot (Kulmanov et al., 2024)

F1 score: harmonic mean of precision and recall, indicating overall classification performance.
TM-score: template modeling score, a measure of structural similarity between predicted and native protein structures; values closer to 1 indicate higher accuracy.
Precision: the proportion of true positives among all predicted positives.
Recall: the proportion of true positives identified among all actual positives.
Fmax: the maximum F1 score across all decision thresholds.
Smin: minimum semantic distance between predicted and true annotations in the Gene Ontology graph; lower values indicate better performance.
AUPR: area under precision–recall curve, summarizes the trade-off between precision and recall across thresholds.
AUC: area under the ROC curve, measures the ability of the model to distinguish between classes; higher values reflect better classification.
Prediction time: time required to generate a prediction per input.
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frameworks. Such efforts could greatly enhance the accuracy, efficiency, 
and scalability of ML-driven protein engineering, ultimately acceler
ating the discovery and development of novel proteins with desired 
functionalities.

4.2. Stability optimization

Stability is also pivotal for engineered enzymes and their biotech
nological applications. Although the prediction of enzyme variation 
effects can, to some extent, guide the stability improvement of enzymes, 
its unique importance in industrial production requires models specif
ically dedicated to improving their stability.

Traditional enzyme engineering strategies often rely on force field- 
based methods, such as FoldX, RosettaDDG, and PROSS, to assess the 
stability of designed protein variants (Leaver-Fay et al., 2011; Peleg 
et al., 2021; Schymkowitz et al., 2005). These tools have shown 
empirical success in improving protein stability through energy mini
mization (Floor et al., 2014; Luo et al., 2016; Wahab et al., 2012). 
However, their effectiveness is constrained by a strong dependence on 
accurate empirical energy functions and the high computational cost 
associated with exhaustive conformational sampling.

Recent advances have established machine learning frameworks as 
powerful computational pipelines for protein stability prediction 
through multi-feature integration. DeepDDG demonstrates this para
digm by combining geometric configurations (secondary structures, 
residue spatial relationships), evolutionary sequence features (position- 
specific scoring matrices), and physicochemical descriptors to predict 
mutational effects (Cao et al., 2019). Subsequent innovations like 
DDMut employ graph neural networks to model local 3D microenvi
ronments, enabling precise ΔΔG estimation through atomic interaction 
patterns and residue accessibility parameters (Zhou et al., 2023). The 
GeoStab suite further advances this field via geometric deep learning 
architectures that systematically quantify stability metrics, including 
fitness scores (GeoFitness), free energy changes (GeoDDG), and thermal 
denaturation thresholds (GeoDTm), through unified representations of 
structural geometry and sequence covariation (Xu et al., 2024a, 2024b). 
These approaches collectively enhance predictive accuracy while 
maintaining computational efficiency across diverse protein engineering 
applications. ThermoMPNN integrates pre-trained ProteinMPNN em
beddings as transfer-learning features with sequence recovery data and 
measured mutational stabilities, achieving optimal performance across 
benchmarking evaluations in silico (Dieckhaus et al., 2023).

More recent efforts have integrated machine learning frameworks to 
tackle the multidimensional challenge of balancing enzyme thermosta
bility with catalytic activity. For example, Cui et al. (2024) developed a 
hybrid approach that combines protein language models with physics- 
based algorithms, leading to the design of TurboPETase, a PET hydro
lase exhibiting enhanced operational stability under industrial substrate 
loads (200 g/kg). Despite its success, this integrative strategy still relies 
on resource-intensive computations for multi-objective optimization 
during sequence selection, limiting its scalability for large-scale design 
applications. Sumida et al. (2024) established a computationally effi
cient ProteinMPNN-based statistical framework integrating evolu
tionary and structural features to optimize protein stability and catalytic 
activity, achieving 26-fold functional enhancement in myoglobin de
signs with an elevated melting temperature of 84 ◦C.

4.3. Automation

The automation of enzyme engineering has increasingly become 
interesting. Since the design methods for mutation sites can be intricate, 
which often require multiple rounds of iterative optimization, long 
experimental cycles, and challenging data analysis, most current ap
proaches remain low-throughput and labor-intensive (Newton et al., 
2018). However, ML-based automation solutions can update experi
mental strategies online based on experimental results, thereby 
improving the efficiency of enzyme engineering.

Wang et al. (2023) developed EvoPlay based on the single-player 
version of the AlphaZero self-play reinforcement learning framework. 
They treated mutations of individual site residues as actions for opti
mizing amino acid sequences, analogous to moving pieces on a chess
board. The policy-value neural network collaborates with the lookahead 
Monte Carlo tree search to guide the optimization agent both broadly 
and deeply as well. EvoPlay was utilized to design luciferase and 
discover variants with 7.8-fold higher bioluminescence than the wild 
type. Orsi et al. (2024) employed ML to guide automated workflows, 
including library generation, implementation of hypermutation systems, 
adaptive laboratory evolution, and in vivo growth-coupled selection, 
thereby enabling rapid and automated selection and optimization of 
experimental conditions to accelerate the development of processes for 
directed enzyme evolution.

Recent developments by Singh et al. (2025) demonstrate an auton
omous protein engineering platform integrating machine learning ar
chitectures with large language models and automated instrumentation. 

Table 3 
Summary of recent studies on design filtering and evaluating.

Aim Computational tool Main architecture Accuracy Ref

Integrate ML with docking 
algorithms

GNINA CNN Top-1 accuracy: 73 % for redocking and 37 % for cross-docking when the 
binding pocket is predefined

(McNutt et al., 
2021)

KarmaDock GNN Ligand pose success rate: 89.1 %, Generation time: 0.017 s/complex
(Zhang et al., 
2023)

Predict enzyme function from 
sequence information

ESP Transformer Accuracy: 91.5 %, ROC-AUC: 0.956, MCC: 0.78 (Kroll et al., 2023)
ProSmith Transformer Accuracy: 94.2 %, ROC-AUC: 0.972, MCC: 0.85 (Kroll et al., 2024)

Predict enzyme function from 
structure information

Alphafold3 Diffusion, 
Transformer

Structural accuracy: 73.1 % structures achieved <2 Å RMSD and passed 
PB-Valid on the PoseBusters V2 benchmark

(Abramson et al., 
2024)

RoseTTAFold All- 
atom

Diffusion, 
Transformer

Blind docking evaluation: 77 % of high-confidence structures had <2 Å 
RMSD in the CAMEO ligand-docking benchmark

(Krishna et al., 
2024)

Top-1 accuracy: percentage of predictions where the top-ranked ligand pose matches the reference pose within a predefined RMSD threshold.
Ligand pose success rate: proportion of ligand poses generated within an acceptable RMSD of the native pose.
Generation time: time required to predict a ligand pose for one protein–ligand complex.
ROC-AUC: receiver operating characteristic – area under curve, measures the ability of a model to distinguish between classes; values closer to 1 indicate better 
classification performance.
MCC: Matthews correlation coefficient, a balanced metric for binary classification performance; values range from − 1 (total disagreement) to +1 (perfect prediction).
RMSD: root-mean-square deviation, measures the average atomic deviation between predicted and reference structures; <2 Å is commonly considered accurate.
PB-Valid: PoseBusters validity, a structural validation score from the PoseBusters benchmark that assesses chemical and geometric plausibility of predicted pro
tein–ligand complexes.
CAMEO: continuous automated model evaluation, a blind benchmarking platform that evaluates the accuracy of protein structure and docking predictions using 
unseen experimental data.
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This closed-loop system enabled the successful rational design of 
methyltransferase variants exhibiting 90-fold enhanced substrate spec
ificity and 16-fold increased activity, concurrent with computational 
optimization of phytase demonstrating 26-fold catalytic improvement 
under neutral pH conditions. The four-week engineering cycle employed 
combinatorial mutagenesis strategies across four iterative rounds, sys
tematically evaluating <500 enzyme variants per target through high- 
throughput characterization protocols.

The enhancement of enzyme fitness is anticipated to be transferred 
into a fully automated procedure, with ramifications spanning 
numerous industrial sectors. These iterative optimization cycles possess 
the potential to facilitate the continual refinement of enzymes, analo
gous to the success achieved in small molecule optimization. ML is 
poised to drive such automated systems, leveraging AI’s flexibility and 
adaptability to execute novel syntheses and screenings through 
dynamically generated robotic scripts. A key development direction lies 
in optimizing multiple desirable properties and activities simultaneously 
during enzyme engineering efforts. ML models capable of integrating 
multimodal representations such as sequence, structure, and functional 
data can facilitate this multi-objective optimization.

However, challenges remain in improving interpretability and 
addressing the trade-offs among competing objectives. Overcoming 
these challenges will enable the creation of efficient, scalable, and 
autonomous enzyme engineering workflows, fostering innovations 
across synthetic biology, industrial biotechnology, and beyond.

5. Prediction of function and functional sites

5.1. Molecule structure and interaction validation

The structure and interaction of the enzyme-substrate complex are 
crucial for validating the functions and catalytic efficiency of the 
designed enzyme. Although experimental determination remains the 
most reliable method currently for defining the complex of structures 
and interactions, this entails significant experimental costs. Despite the 
fact that even the most advanced structure prediction methods today 
cannot accurately predict structures for all enzyme-substrate complexes, 
nor guarantee complete accuracy in pocket localization, they can still 
serve as rapid structure assessment tools at low cost, which can be uti
lized in high-throughput analysis and screening (Table 3). Traditional 
computational prediction methods primarily rely on physical principles, 
such as docking methods. Docking employs predefined energy functions 
to evaluate the structures and interactions (Trott and Olson, 2010). 
However, this approach is sensitive to structure fluctuations, which 
struggle to adequately address protein flexibility. Besides, it is chal
lenging to assess the contributions of conformational entropy and sol
vents (Zheng et al., 2020).

5.1.1. Combining ML with docking algorithm
A strategy that integrates ML with docking methods has been 

explored. GNINA utilizes an ensemble of convolutional neural networks 
(CNN) for scoring function evaluation, which not only significantly ac
celerates the molecular docking process but also surpasses AutoDock 
Vina in terms of accuracy (McNutt et al., 2021). Zhang et al. (2023)
developed KarmaDock, which comprises three components. The first 
component is an encoder for proteins and ligands, which is designed to 
learn representations of intramolecular interactions. The second 
component is an equivariant graph neural network with self-attention, 
which updates ligand poses based on protein-ligand interactions and 
intramolecular interactions. The third component is a hybrid density 
network that scores binding affinity. However, like traditional molecu
lar docking methods, this strategy needs the user to provide the protein 
structure.

5.1.2. Predictions based on sequence and structure information
AI strategies can also focus on integrating information about small 

molecules, enzymes, and their interactions into a unified framework 
(Tsubaki et al., 2019). Small molecules typically contain fewer than 100 
heavy atoms and occupy a relatively small structural space. This allows 
current ML techniques to accurately predict structure properties from 
their linear representations (Jastrzębski et al., 2016). Similarly, the 
functions of enzymes can be predicted based on their linear represen
tations of amino acid sequences. Kroll et al. (2023) developed ESP, 
which employs ESM to encode amino acid sequences, and through su
pervised training of a binary classification task based on the ESM em
beddings, ESP outputs a score representing the possibilities of binding 
between the enzyme and substrate. Subsequently, the same group 
further developed a multi-modality transformer network to simulta
neously process both amino acid sequence and substrate string from the 
same input (Kroll et al., 2024). This approach enables a more efficient 
exchange of all relevant information between the two molecular types 
during the computation of their latent representations, thereby pre
dicting interactions.

However, the physical nature of the enzyme-substrate interaction is 
still based on their structures rather than sequences. Predicting the 
transition from one-dimensional (1D) sequences to 3D structures is 
challenging, as 1D amino acid sequence representations may not suffice 
to capture the structural features of 3D space that determine interaction 
predictions. Therefore, strategies are needed to predict the structures of 
enzyme-substrate complexes. Both AlphaFold3 and RoseTTAFold All- 
Atom employ diffusion models as one of their main frameworks, 
achieving atomic-level accuracy in predicting the structures of com
plexes (Abramson et al., 2024; Krishna et al., 2024). High-accuracy 
predictions have brought new tools and insights into enzyme research, 
which can be utilized to conduct preliminary analyses of interactions 
within functional sites instead of the costly experimental structural 
characterization. Their high performance has also become one of the 
important tools for constructing in silico metrics to be employed by many 
de novo design models. However, these models primarily rely on amino 
acid sequences and evolutionary information to infer structures, which 
limits their ability to address the heterogeneity of various molecular 
types.

Recent advances in AI techniques have significantly improved the 
prediction of structures and the interactions of enzyme-substrate com
plexes, enhancing the understanding of static binding configurations. 
However, the actual interactions are inherently dynamic, involving 
complicated conformational changes, transient states, and energy 
landscapes that unfold over time. Accurately modeling these processes is 
critical for understanding enzyme functionality, but remains a signifi
cant challenge for ML. Key hurdles include capturing time-dependent 
behaviors, adapting to large-scale conformational shifts, and inte
grating physicochemical constraints. Hybrid frameworks integrating 
physics-based simulations with scalable AI could overcome these ob
stacles, improving interpretability and accuracy. Addressing these 
challenges can advance AI-driven enzyme de novo design, offering 
deeper insights into dynamic mechanisms and paving the way for more 
precise and efficient protein engineering.

5.2. Function validation for enzymes

The function validation of the de novo designed enzyme is crucial to 
identify the effectiveness of the de novo design. Besides, it is also helpful 
to screen the most promising design results and enhance the success of 
the designs. Traditional enzyme function prediction primarily relies on 
sequence similarity or structural similarity (Lipman and Pearson, 1985). 
Sequence-based methods adopt an evolutionary perspective, where en
zymes with homologous sequences share similar functions. By con
structing phylogenetic trees from sequences to explore the evolutionary 
relationships, sequence homology and functional similarity can be 
inferred. However, these methods generally consider a similarity 
threshold of over 60 % between sequences to achieve a certain level of 
reliability (Camacho et al., 2009). Furthermore, there is no reliable 
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correlation between homology and protein function, as sequences with 
low similarity may still exhibit similar functions (Punta and Ofran, 
2008). Structure-based prediction methods mainly assume that enzymes 
with similar spatial structures often have identical functions. Yet, the 
precise structures of most proteins remain unknown, and most existing 
structural alignment tools are computationally intensive, requiring 
brute-force all-against-all comparisons to search for structurally similar 
proteins, which hinders large-scale applications (Hamamsy et al., 2024).

5.2.1. Combining ML with alignment algorithm
Recently, efforts have been dedicated to enhancing the accuracy of 

sequence alignment by integrating ML methods with traditional align
ment algorithms. These strategies build upon classic alignment algo
rithms, such as the Smith-Waterman (SW) algorithm, which rely on a 
predefined scoring function for dynamic programming to align se
quences (Smith and Waterman, 1981). However, these scoring functions 
face significant limitations as they are not adaptable to all alignment 
scenarios. Furthermore, in cases of low sequence similarity, scoring 
functions based solely on sequence similarity may fail to effectively 
predict function with low sequence similarity. ML strategies, on the 
other hand, employ data-driven approaches to dynamically predict 
scoring functions, rather than relying on fixed ones, which explore 
functional similarities in the functional space, rather than sequence or 
structural similarities.

Llinares-López et al. (2023) leveraged the transformer architecture 
to improve the efficiency and effectiveness of the traditional SW align
ment algorithm, and the transformer was first used to extract embed
dings of the sequences to be aligned, which was then used to determine 
critical parameters of the SW algorithm: gap open penalty (O), gap 
extend penalty (E), and substitution scores (S). To enable end-to-end 
training, the SW algorithm was also modified into a differentiable 
form to perform backpropagation. Hamamsy et al. (2024) developed the 
TM-Vec and DeepBLAST suite. Firstly, TM-Vec was utilized to search for 
structure similarities within large sequence databases, which was 
trained to directly predict TM scores from sequence pairs as a metric of 
structure similarity, without the need for intermediate calculations or 
resolved structures. Subsequently, once structurally similar proteins 
were identified, DeepBLAST can structurally align proteins using only 
sequence information, identifying structurally homologous regions be
tween proteins.

ML-based alignment algorithms have significantly enhanced pre
diction accuracy when dealing with sequences with low similarity. 
However, akin to traditional alignment algorithms, the prerequisite for 
employing this strategy to determine functionality is the presence of 
enzymes with the target function in the current database. This could 
potentially limit its capacity to predict entirely novel functions.

5.2.2. Predicting function annotations
Apart from improving traditional alignment methods, another 

strategy is to directly predict enzyme functional annotations. EC 
numbers and GO (Gene Ontology) annotations are currently prevalent 
methods for enzyme functional annotation. The EC number system, 
developed by the Enzyme Commission, classifies enzymes based on the 
chemical reactions they catalyze, with each EC number corresponding to 
a specific enzymatic reaction. On the other hand, GO annotations 
encompass thousands of terms, covering various functions and locations 
of proteins within cells and organisms. They categorize gene functions 
into three parts: cellular components, molecular functions, and biolog
ical processes, providing a systematic approach to represent and share 
knowledge about the functions and processes of genes within organisms.

Recently, due to the widespread popularity of transfer learning and 
pre-training-fine-tuning workflows, LMs can be utilized to perform self- 
supervised training methods and map amino acid sequences into em
beddings in functional space. By constructing shallow networks, or fine- 
tuning based on these pre-trained embeddings, efficient enzyme func
tion predictions can be made. Yu et al. (2023) developed CLEAN, which 

computed embeddings of enzyme amino acid sequences using ESM and 
added additional mapping layers. Subsequently, through contrastive 
learning, the Euclidean distances between embeddings of the same EC 
number are minimized, while those between different EC numbers are 
maximized. This results in different spatial distributions for amino acid 
sequences with different EC numbers. CLEAN could classify and predict 
EC numbers of enzymes by calculating the Euclidean distances between 
the target sequence embeddings and the cluster centers, which avoids 
the intra-class imbalance issue that may arise when predicting EC 
numbers as a multi-class classification task.

DeepGOPlus infers GO annotation information based on sequence 
similarity and homology relationships, combining CNNs with sequence 
similarity-based predictions (Kulmanov and Hoehndorf, 2020). The 
CNNs have multiple convolutional kernels of variable sizes, learning 
patterns similar to structural domain motifs. This method significantly 
improves upon the traditional BLAST method and performs well in 
protein subcellular localization. Furthermore, Kulmanov et al. (2024)
developed DeepGO-SE, a pre-trained large language model for predict
ing GO terms based on protein sequences. DeepGO-SE generates multi
ple approximate models for GO terms and predicts the truth values of 
protein function statements in these models using neural networks. The 
truth values from multiple models are then aggregated, improving the 
accuracy of protein function predictions.

ML has been extensively applied in the prediction of enzyme func
tions. However, the majority of the efforts still concentrate on natural 
enzymes, with limited exploration of function prediction for de novo 
designed enzymes. While current functional prediction methods can, to 
some extent, screen de novo designed enzymes, their accuracy and reli
ability are often unvalidated and require careful evaluation. Addressing 
this gap necessitates the development of function prediction frameworks 
tailored to de novo enzyme designs. Incorporating unsupervised learning 
techniques and generative models may offer potential solutions by 
uncovering latent functional patterns and exploring hypothetical 
enzyme designs. Additionally, creating benchmark datasets of de novo 
enzymes with experimentally validated functions is crucial for robust 
evaluation. These advancements would enhance the utility of ML in de 
novo enzyme design, paving the way for predicting novel enzymatic 
activities and expanding the scope of AI-driven enzyme design.

6. Conclusions and perspectives

De novo enzyme design has made notable advances. However, its 
applications for creating enzymes with specific catalytic functions have 
been less successful, with only a few examples, such as luciferase and 
triosephosphate isomerase. Challenges include low efficiency in design 
processes, as seen in the “Family Hallucination” strategy, which 
required extensive screening to yield a few active enzymes. These 
challenges highlight the inherent complexity of enzyme catalysis, which 
relies on precise substrate binding, transition state stabilization, and 
active site geometry to achieve high specificity and efficiency.

One of the major bottlenecks in enzyme design is the lack of standard 
and comprehensive catalytic data to develop models. High-throughput 
experimental platforms offer a promising solution by enabling rapid 
acquisition of large-scale, high-quality data under controlled conditions, 
which integrate automated reagent dispensing, precise environmental 
controls, and advanced detection systems, allowing for the measurement 
of key thermodynamic parameters such as kcat and Km with high ac
curacy and reproducibility (Faure et al., 2022; Hastings et al., 2023; 
Hekstra et al., 2016; Kim et al., 2022). Such data are critical for training 
robust ML models capable of predicting enzyme activity and guiding 
design processes.

The integration of structural characterization techniques, such as 
cryo-EM, XRC, NMR, XFELs, HDX, etc., further enhances our under
standing of the mechanism underlying enzymatic catalysis 
(Bhattacharya et al., 2022; Glasgow et al., 2023; Marco et al., 2025; 
Nakane et al., 2020; Pellegrini, 2020). These techniques, combined with 
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computational tools like molecular dynamics (MD) simulations and 
density functional theory (DFT), allow for high-resolution modeling of 
enzyme-substrate interactions, transition states, and active site dy
namics. Such insights not only improve the accuracy of de novo enzyme 
design but also deepen our understanding of fundamental enzymatic 
principles, offering a roadmap for future innovations, which are high
lighted in Fig. 5.

Practical applications of enzyme design also require careful consid
eration of the expression efficiency of genes, scalability of processes, and 
production costs, which are often overlooked in current models. Factors 
such as post-translational modifications, production time, and enzyme 
stability under different environments influence the feasibility of engi
neered enzymes in applications. Designing minimized enzymes that 
retain only essential functions can significantly improve expression 
levels of encoding genes and reduce production costs, making them 
more suitable for industrial production.

Another promising area for innovation lies in the design of enzymes 
for cascaded reaction pathways. Current models typically focus on single 
catalytic reactions, but industrial processes often involve interconnected 
steps with thermodynamic and kinetic dependencies. Designing multi
functional enzymes, such as fusion proteins, can optimize these path
ways and improve overall process efficiency. Future models should 
integrate these considerations to better address the complexities of 
enzyme applications.

Recent advances in AI-driven enzyme design have reshaped resource 
allocation across the design cycle. Traditional methods like rational 
design and directed evolution are experimentally intensive but compu
tationally light. In contrast, AI-based approaches, particularly those 
using deep generative or language models, accelerate early-stage design 
by prioritizing candidates in silico, reducing the experimental burden. 
This shift, however, introduces higher computational costs. Rather than 
lowering total costs outright, AI redistributes them, replacing labor- 
intensive screening with computational demands. As models become 
more efficient, AI is expected to further shorten design cycles and enable 
more targeted experimental validation.

The rapid advancements in computational power and the growing 
availability of high-precision data have significantly improved the po
tential of de novo enzyme design. By integrating these advancements 
with innovative experimental and computational approaches, re
searchers can design highly efficient enzymes with precise catalytic 
functions. As the field evolves, it not only expands the boundaries of 
green catalysis, industrial production, and therapeutic development but 
also provides deeper insights into the fundamental mechanisms of 
enzymatic action. These developments underscore the transformative 
potential of de novo enzyme design in addressing critical challenges 
across diverse fields.
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Laydon, A., Žídek, A., Tomlinson, H., Hariharan, D., Abrahamson, J., Green, T., 
Jumper, J., Birney, E., Steinegger, M., Hassabis, D., Velankar, S., 2023. AlphaFold 
Protein Structure Database in 2024: providing structure coverage for over 214 
million protein sequences. Nucleic Acids Res. 52 (D1), D368–D375.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., 
Polosukhin, I., 2017. Attention is all you need. In: Proceedings of the 31st 
International Conference on Neural Information Processing Systems, 6000–6010. 
https://doi.org/10.5555/3295222.3295349.

Wahab, R.A., Basri, M., Rahman, R.N.Z.R.A., Salleh, A.B., Rahman, M.B.A., Chor, L.T., 
2012. Manipulation of the conformation and enzymatic properties of T1 lipase by 
site-directed mutagenesis of the protein core. Appl. Biochem. Biotechnol. 167, 
612–620. https://doi.org/10.1007/s12010-012-9728-2.

Wang, Y., Tang, H., Huang, L., Pan, L., Yang, L., Yang, H., Mu, F., Yang, M., 2023. Self- 
play reinforcement learning guides protein engineering. Nat. Mach. Intell. 5 (8), 
845–860. https://doi.org/10.1038/s42256-023-00691-9.

Watson, J.L., Juergens, D., Bennett, N.R., Trippe, B.L., Yim, J., Eisenach, H.E., Ahern, W., 
Borst, A.J., Ragotte, R.J., Milles, L.F., Wicky, B.I.M., Hanikel, N., Pellock, S.J., 
Courbet, A., Sheffler, W., Wang, J., Venkatesh, P., Sappington, I., Torres, S.V., 
Lauko, A., Bortoli, V.D., Mathieu, E., Ovchinnikov, S., Barzilay, R., Jaakkola, T.S., 
DiMaio, F., Baek, M., Baker, D., 2023. De novo design of protein structure and 
function with RFdiffusion. Nature 620 (7976), 1089–1100. https://doi.org/ 
10.1038/s41586-023-06415-8.

Wu, Z., Kan, S.B.J., Lewis, R.D., Wittmann, B.J., Arnold, F.H., 2019. Machine learning- 
assisted directed protein evolution with combinatorial libraries. Proc. Natl. Acad. 
Sci. U. S. A. 116 (18), 8852–8858. https://doi.org/10.1073/pnas.1901979116.

Wu, K.E., Yang, K.K., Berg, R., v. d., Alamdari, S., Zou, J. Y., Lu, A. X., Amini, A. P., 2024. 
Protein structure generation via folding diffusion. Nat. Commun. 15 (1), 1059. 
https://doi.org/10.1038/s41467-024-45051-2.

Xiong, P., Wang, M., Zhou, X., Zhang, T., Zhang, J., Chen, Q., Liu, H., 2014. Protein 
design with a comprehensive statistical energy function and boosted by experimental 

X.-C. Cui et al.                                                                                                                                                                                                                                  Biotechnology Advances 82 (2025) 108603 

17 

https://doi.org/10.5555/3540261.3542504
https://doi.org/10.1101/2024.05.03.592223v1
https://doi.org/10.1101/2024.05.03.592223v1
https://doi.org/10.1038/s41586-020-2829-0
https://doi.org/10.1016/j.sbi.2017.11.007
https://doi.org/10.1126/science.ado9336
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1038/s41467-024-46574-4
https://doi.org/10.1101/2022.12.15.519894
http://refhub.elsevier.com/S0734-9750(25)00089-8/rf0495
http://refhub.elsevier.com/S0734-9750(25)00089-8/rf0495
http://refhub.elsevier.com/S0734-9750(25)00089-8/rf0495
https://doi.org/10.1016/j.jmb.2021.166964
https://doi.org/10.1016/j.jmb.2021.166964
https://doi.org/10.1038/s42254-020-0197-1
https://doi.org/10.1038/s42254-020-0197-1
https://doi.org/10.1126/science.abb8330
https://doi.org/10.1126/science.abb8330
https://doi.org/10.1093/protein/gzw015
https://doi.org/10.1371/journal.pcbi.1000160
https://doi.org/10.1038/nchembio.1498
https://doi.org/10.1038/s42256-024-00838-2
https://doi.org/10.1038/s42256-024-00838-2
https://doi.org/10.1038/s42256-021-00310-5
https://doi.org/10.1073/pnas.2016239118
https://doi.org/10.1038/nature06879
https://doi.org/10.1073/pnas.1821905116
https://doi.org/10.1093/nar/gki387
https://doi.org/10.1101/2023.01.23.525232
https://doi.org/10.1101/2023.01.23.525232
https://doi.org/10.1021/cr900121s
https://doi.org/10.1126/science.1190239
https://doi.org/10.1126/science.1190239
https://doi.org/10.1073/pnas.1500545112
https://doi.org/10.1093/nar/gkaa1079
https://doi.org/10.1101/2025.02.12.637932
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1038/nbt.3988
https://doi.org/10.1038/nbt.3988
https://doi.org/10.1021/jacs.3c10941
https://doi.org/10.1126/science.1257452
https://doi.org/10.1126/science.adk1281
https://doi.org/10.1038/nature12443
https://doi.org/10.48550/arXiv.2206.04119
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1093/bioinformatics/bty535
https://doi.org/10.1038/s41586-021-03828-1
https://doi.org/10.1038/s41586-021-03828-1
http://refhub.elsevier.com/S0734-9750(25)00089-8/rf0635
http://refhub.elsevier.com/S0734-9750(25)00089-8/rf0635
http://refhub.elsevier.com/S0734-9750(25)00089-8/rf0635
http://refhub.elsevier.com/S0734-9750(25)00089-8/rf0635
http://refhub.elsevier.com/S0734-9750(25)00089-8/rf0635
http://refhub.elsevier.com/S0734-9750(25)00089-8/rf0635
https://doi.org/10.5555/3295222.3295349
https://doi.org/10.1007/s12010-012-9728-2
https://doi.org/10.1038/s42256-023-00691-9
https://doi.org/10.1038/s41586-023-06415-8
https://doi.org/10.1038/s41586-023-06415-8
https://doi.org/10.1073/pnas.1901979116
https://doi.org/10.1038/s41467-024-45051-2


selection for foldability. Nat. Commun. 5, 5330. https://doi.org/10.1038/ 
ncomms6330.

Xu, Y., Liu, D., Gong, H., 2024a. Improving the prediction of protein stability changes 
upon mutations by geometric learning and a pre-training strategy. Nat. Comput. Sci. 
4 (11), 840–850. https://doi.org/10.1038/s43588-024-00716-2.

Xu, H., Yuan, Z., Yang, S., Su, Z., Hou, X.-D., Deng, Z., Zhang, Y., Rao, Y., 2024b. 
Discovery of a fungal P450 with an unusual two-step mechanism for constructing a 
Bicyclo[3.2.2] nonane skeleton. J. Am. Chem. Soc. 146 (12), 8716–8726. https:// 
doi.org/10.1021/jacs.4c01284.

Yeh, A.H.-W., Norn, C., Kipnis, Y., Tischer, D., Pellock, S.J., Evans, D., Ma, P., LeeJ, G.R., 
Zhang, A.Z., Anishchenko, I., Coventry, B., Cao, L., Dauparas, J., Halabiya, S., 
DeWitt, M., Carter, L., Houk, K.N., Baker, D., 2023. De novo design of luciferases 
using deep learning. Nature 614 (7949), 774–780. https://doi.org/10.1038/s41586- 
023-05696-3.

Yu, T., Cui, H., Li, J.C., Luo, Y., Jiang, G., Zhao, H., 2023. Enzyme function prediction 
using contrastive learning. Science 379 (6639), 1358–1363. https://doi.org/ 
10.1126/science.adf2465.

Yuan, M., Shen, A., Fu, K., Guan, J., Ma, Y., Qiao, Q., Wang, M., 2023. ProteinMAE: 
masked autoencoder for protein surface self-supervised learning. Bioinformatics 39 
(12), btad724. https://doi.org/10.1093/bioinformatics/btad724.

Zhang, J., Grigoryan, G., 2013. Chapter two - mining tertiary structural motifs for 
assessment of designability. Methods Enzymol. 523, 21–40. https://doi.org/ 
10.1016/B978-0-12-394292-0.00002-3.

Zhang, X., Zhang, O., Shen, C., Qu, W., Chen, S., Cao, H., Kang, Y., Wang, Z., Wang, E., 
Zhang, J., Deng, Y., Liu, F., Wang, T., Du, H., Wang, L., Pan, P., Chen, G., Hsieh, C.- 
Y., Hou, T., 2023. Efficient and accurate large library ligand docking with 
KarmaDock. Nat. Comput. Sci. 3 (9), 789–804. https://doi.org/10.1038/s43588- 
023-00511-5.

Zheng, S., Li, Y., Chen, S., Xu, J., Yang, Y., 2020. Predicting drug-protein interaction 
using quasi-visual question answering system. Nat. Mach. Intell. 2 (2), 134–140. 
https://doi.org/10.1038/s42256-020-0152-y.

Zhou, Y., Pan, Q., Pires, D.E.V., Rodrigues, C.H.M., Ascher, D.B., 2023. DDMut: 
predicting effects of mutations on protein stability using deep learning. Nucleic 
Acids Res. 51 (W1), W122–W128. https://doi.org/10.1093/nar/gkad472.

X.-C. Cui et al.                                                                                                                                                                                                                                  Biotechnology Advances 82 (2025) 108603 

18 

https://doi.org/10.1038/ncomms6330
https://doi.org/10.1038/ncomms6330
https://doi.org/10.1038/s43588-024-00716-2
https://doi.org/10.1021/jacs.4c01284
https://doi.org/10.1021/jacs.4c01284
https://doi.org/10.1038/s41586-023-05696-3
https://doi.org/10.1038/s41586-023-05696-3
https://doi.org/10.1126/science.adf2465
https://doi.org/10.1126/science.adf2465
https://doi.org/10.1093/bioinformatics/btad724
https://doi.org/10.1016/B978-0-12-394292-0.00002-3
https://doi.org/10.1016/B978-0-12-394292-0.00002-3
https://doi.org/10.1038/s43588-023-00511-5
https://doi.org/10.1038/s43588-023-00511-5
https://doi.org/10.1038/s42256-020-0152-y
https://doi.org/10.1093/nar/gkad472

	AI-driven de novo enzyme design: Strategies, applications, and future prospects
	1 Introduction
	2 AI/ML data curation and algorithm architectures
	2.1 Data curation
	2.2 Algorithm architectures
	2.2.1 Transformer-based model
	2.2.2 Diffusion model
	2.2.3 Convolutional Neural Networks (CNNs) and Graph Neural Networks (GNNs)
	2.2.4 Other generative models

	2.3 Method evaluation

	3 De novo enzyme design
	3.1 Structure-based design
	3.1.1 Scaffold design
	3.1.2 Active site design and matching
	3.1.3 Inverse folding
	3.1.4 Hybrid approaches

	3.2 Sequence-based design
	3.2.1 Bioinformatics-based methods
	3.2.2 Protein-trained models
	3.2.3 DNA-trained models


	4 Filtering designs and evaluating mutations
	4.1 Variant predictions
	4.2 Stability optimization
	4.3 Automation

	5 Prediction of function and functional sites
	5.1 Molecule structure and interaction validation
	5.1.1 Combining ML with docking algorithm
	5.1.2 Predictions based on sequence and structure information

	5.2 Function validation for enzymes
	5.2.1 Combining ML with alignment algorithm
	5.2.2 Predicting function annotations


	6 Conclusions and perspectives
	Declaration of competing interest
	Acknowledgments
	References


