Check for updates

# scientific data

DATA DESCRIPTOR

# **OPEN** Chromosome-level genome assembly of cultivated strawberry 'Seolhyang' (Fragaria × ananassa)

Hyeondae Han<sup>1</sup>, Yoon Jeong Jang<sup>1</sup>, Koeun Han<sup>1</sup>, Han-Na Park<sup>2</sup>, Do-Sun Kim<sup>1</sup>, Seonghee Lee<sup>®</sup> & Youngjae Oh<sup>4</sup> ⊠

Cultivated strawberry (Fragaria  $\times$  ananassa) belongs to the family Rosaceae and is an allo-octoploid species ( $2n = 8 \times = 56$ ). Using PacBio Revio long reads of 'Seolhyang', we completed telomereto-telomere phased genome assemblies with a size of 797 Mb with a contig N50 of 27.04 Mb. Benchmarking of the universal single-copy orthologs (BUSCO) analysis detected 99.1% conserved genes in the assembly. In addition, the average long terminal repeat assembly index (LAI) was 17.28, with high genome continuity. In this study, we identified 50 of the possible 56 telomeres across 28 chromosomes. The 'Seolhyang' genome was annotated using RNA-Seg data representing various F. × ananassa tissues from the NCBI sequence read archive, which resulted in 129,184 genes.

# **Background & Summary**

The cultivated strawberry (Fragaria × ananassa), a perennial plant belonging to the Rosaceae family, is an allo-octoploid species with a highly heterozygous genome that contributes to its genetic complexity and diverse phenotypic traits. This complexity poses a significant challenge for genetic research and breeding programs. Strawberries are a globally crucial crop, with the United Nations Food and Agricultural Organization (UN-FAO) reporting worldwide production of 9.57 million tons in 2022 (https://www.fao.org/faostat/). In South Korea, strawberries are a significant economic crop, with a cultivation area of 5,745 ha and a production volume of 158,807 tons in 2022<sup>1</sup>. The domestic production value of strawberries in South Korea is approximately USD 932 million, accounting for 14.7% of the total vegetable production value in the country<sup>2</sup>.

Among the various Korean strawberry cultivars, 'Seolhyang' ('Akihime'  $\times$  'Red Pearl'), developed in 2005<sup>3</sup>, dominates the South Korean market, occupying 82.1% of the total strawberry cultivation area in 2022<sup>4</sup>. 'Seolhyang' is favored for its ease of cultivation; large fruit size; high yields<sup>5-7</sup>; and resistance to diseases such as angular leaf spot, anthracnose, and powdery mildew<sup>3,8-10</sup>. In an analysis of 45 representative Korean cultivars and genetic resources, 'Seolhyang' was distinguished by having the highest overall concentration of volatile organic compounds (VOCs)<sup>11</sup>. Various breeding programs have been initiated to harness the desirable traits of the elite cultivar 'Seolhyang'. However, progress in precision breeding efforts has been hindered by limited genomic research on 'Seolhyang'.

The availability of reference genomes has substantially affected agricultural research and has driven significant advancements in the understanding of the genetic basis of plant traits. This genomic insight reveals how artificial selection shapes these traits over time. This has deepened the understanding of how genetic characteristics influence interactions within agricultural ecosystems, particularly with pathogens and insects<sup>12,13</sup>. Recently, the assembly of reference genomes in agriculture has undergone significant advancements, particularly owing to the integration of third-generation sequencing technology<sup>14</sup>. These developments have enhanced the quality and completeness of plant reference genomes. High-throughput sequencing methods, such as next-generation sequencing (NGS), have enabled the generation of extensive genomic data. However, to overcome the limitations associated with short-read sequences in contigs and scaffolds, long-read sequencing technologies, such as PacBio, BioNano, and Nanopore, have emerged as pivotal tools for third- and fourth-generation sequencing<sup>15,16</sup>.

<sup>1</sup>Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Korea. <sup>2</sup>Strawberry Research Institute, Chungcheongnam-do, ARES, Nonsan, 32914, Korea. <sup>3</sup>Department of Horticultural Science, University of Florida, IFAS Gulf Coast Research and Education Center, 14625 CR 672, Wimauma, FL, 33598, USA. <sup>4</sup>Department of Horticultural Science, Chungbuk National University, Cheongju, 28644, Korea. ⊠e-mail: yoh@cbnu.ac.kr



Fig. 1 Workflow implemented for 'Seolhyang' genome assembly and annotation.

.....

Pacific Biosciences (PacBio) High-Fidelity (HiFi) sequencing technology generates long reads with an average length ranging from 10 to 25 kb and an error rate of less than 0.5%. This level of accuracy and read length position of HiFi sequencing is the primary source of data for producing high-quality genome assemblies<sup>17,18</sup>. Advances have addressed some of these challenges, particularly regarding the assembly of telomere-to-telomere (T2T) gap-free reference genomes. Notably, for cultivated and diploid strawberries<sup>19–23</sup>, there has been the successful assembly of such high-quality genomes for the 'Hawaii 4', 'Benihoppe' and 'Florida Brilliance' cultivars, providing more reliable references in currently available genomic resources.

In this study, a high-quality genome assembly of the strawberry cultivar 'Seolhyang' was generated using approximately 100 Gb of HiFi sequencing data obtained from the PacBio Revio platform. Unlike previous assembly methods for octoploid strawberry genomes, this assembly was completed without incorporating data from additional sequencing platforms, resulting in a high-quality reference genome comparable to those of 'Royal

| Feature                 | Value             |  |  |  |
|-------------------------|-------------------|--|--|--|
| Mean read length (bp)   | 17,667.5          |  |  |  |
| Mean read quality       | 23.3              |  |  |  |
| Median read length (bp) | 16,767.0          |  |  |  |
| Median read quality     | 28.2              |  |  |  |
| Number of reads         | 5,846,048.0       |  |  |  |
| Read length N50 (bp)    | 17,769.0          |  |  |  |
| STDEV read length (bp)  | 4,376.9           |  |  |  |
| Total bases (bp)        | 103,284,908,461.0 |  |  |  |

#### Table 1. Summary statistics of PacBio Hifi reads used for genome assembly of 'Seolhyang'.

.....

| Assembly Metrics                  | Value |
|-----------------------------------|-------|
| Draft assembly                    |       |
| Number of contigs                 | 2,140 |
| Number of contigs ( $\geq$ 50 kb) | 739   |
| Length of largest contig (Mb)     | 36.27 |
| Contig size (Mb)                  | 917.4 |
| GC content (%)                    | 41.20 |
| Length of contig N50 (Mb)         | 27.04 |
| Length of contig N90 (Mb)         | 0.12  |
| L50                               | 22    |
| L90                               | 250   |
| BUSCO (%)                         | 99.1  |
| Single                            | 2.5   |
| Duplicated                        | 96.6  |
| Fragmented                        | 0.1   |
| Missing                           | 0.8   |
| Final assembly                    |       |
| Assembled genome size (Mb)        | 797.0 |
| Number of anchored contigs        | 30    |
| BUSCO (%)                         | 99.1  |
| Single                            | 2.3   |
| Duplicated                        | 96.8  |
| Fragmented                        | 0.1   |
| Missing                           | 0.8   |
| Quality value by Merqury          | 59.62 |
| LAI                               | 17.28 |

Table 2. Statistics of the 'Seolhyang' genome assembly.

Royce' and 'Florida Brilliance'. We completed a telomere-to-telomere genome assembly with a genome size of 797 Mb and a contig N50 of 27.04 Mb. Benchmarking of the universal single-copy orthologs (BUSCO) analysis detected 99.1% conserved genes in the assembly. In addition, the average of long terminal repeat assembly index (LAI) was 17.28, reflecting the overall high genome continuity based on analysis of intact and total LTR retrotransposons measured using Extensive de novo TE Annotator (EDTA) followed by LTR retriever. Notably, we identified 50 of the possible 56 telomeres across 28 chromosomes. The 'Seolhyang' genome was annotated using RNA-Seq data representing various  $F. \times$  ananassa tissues from the NCBI for Biotechnology Information sequence read archive, which resulted in 129,184 genes. Powdery mildew is a significant disease frequently observed in controlled cultivation environments, such as plastic greenhouses, posing substantial challenges to strawberry production. The strawberry cultivar 'Seolhyang' is well known for its resistance to powdery mildew. This study utilized the assembled genome of 'Seolhyang' to investigate the genetic basis of its resistance, focusing on the MLO (Mildew Locus O) genes, which have been reported to be associated with powdery mildew resistance. A total of 55 MLO genes were identified in the 'Seolhyang' genome. Their structures and domains were systematically compared with 20 MLO genes previously reported in diploid strawberries and 69 MLO genes identified in the octoploid strawberry 'Camarosa'. These comparisons provide valuable insights into the unique genetic characteristics underlying the powdery mildew resistance of 'Seolhyang', suggesting that the genome of 'Seolhyang' will be a promising genetic resource for the identification studies of powdery mildew resistance genes and development of resistant cultivars.



**Fig. 2** Dotplot of 'Seolhyang' genome to F. × *ananassa* cv. Florida Brilliance (**a**), F. × *ananassa* cv. Royal Royce (**b**), and diploid *F*. *vesca* ver 4.0 (**c**). Dot plots were produced using the DGENIE software and alignments with minimap2.

# **Methods**

**Materials and DNA sequencing.** The cultivated strawberry (F. × *ananassa*) cultivar 'Seolhyang' was used for genome sequencing. Young leaves were covered with black plastic bags and stored in a greenhouse for 14 d. The etiolated leaf tissue was harvested for DNA extraction. The leaves were frozen and subjected to genomic DNA extraction and library preparation by using DNA Link (Seoul, South Korea). The single-molecule realtime sequencing (SMRT) bell library for 'Seolhyang' was constructed using a PacBio DNA Template Prep Kit 3.0 (Pacific Biosciences, CA, USA). PacBio's standard protocol (Pacific Biosciences, CA, USA) was used to build the SMRTbell target-size libraries. The library was sequenced using the PacBio Revio System (DNA Link, Seoul, South Korea).

**De Novo genome assembly and validation.** Figure 1 illustrates the workflow for the genome assembly and annotation implemented in this study. HiFi reads were used to produce a draft assembly without sequencing the parents by using Hifiasm ver. 0.16.1<sup>24</sup>. Hifiasm was run with the following commands, according to the developer's recommendations for heterozygous polyploid crops. The contigs were scaffolded and oriented based on the reference genome of 'Florida Brilliance' (https://www.rosaceae.org/Analysis/14031408) by using RagTag<sup>25</sup>.

Genome assembly statistics were calculated using QUAST version 5.0.266<sup>26</sup>. Merqury version 1.3 was used to measure the assembly consensus quality value (QV) and to evaluate the assembly based on efficient K-mer set operations<sup>27</sup>. The completeness of the genome assembly and protein-coding gene annotations were assessed using the BUSCO database<sup>28</sup>. The long terminal repeat (LTR) assembly index (LAI)<sup>29</sup> for each sub-genome was calculated using LTR-retriever<sup>30</sup> along with whole-genome Transposable elements (TE)-annotations and intact LTR retrotransposons identified using EDTA<sup>31</sup>.

**Genome annotation.** The TEs were annotated using EDTA v1.9.6 with default parameters<sup>31</sup>. A TE annotation library was generated in separate runs by using EDTA. The TE regions of haploid assembly were masked using the ReapeatMasker v4.1.1 provided with the repeat library. Simple sequence repeats (SSRs) or microsatellites were mined using the SSR Finder on the Genome Sequence Annotation Server v6.0 (GenSAS; https://www. gensas.org)<sup>32</sup>. To increase the accuracy of gene annotation, we generated a transcriptome assembly containing possible sets of transcripts from 'Seolhyang' and publicly available *F*. × *ananassa* expression data. Read alignments were converted to the Binary alignment map (BAM) format by using SAMTools. Splice junctions for all merged RNA alignments were predicted and trimmed using Portcullis v1.2.2<sup>33</sup>. Genome assemblies were annotated using Braker2. Functions of the predicted transcripts were annotated based on alignment by using BlastP v2.2.28<sup>34</sup> in the UniProtKB database<sup>35</sup>.

**Collinearity and synteny.** Genomic synteny at the DNA level among *F. vesca*<sup>36</sup>, *F. × ananassa* cultivars 'Royal Royce'<sup>37</sup>, and 'Florida Brilliance' (https://www.rosaceae.org/Analysis/14031408), and 'Seolhyang' was visualized using D-GENIES<sup>38</sup> by applying default parameters after alignment with minimap2<sup>39</sup>. Candidate structural variations were explored using SYRI<sup>40</sup>.

# **Technical Validation**

Details of the sequencing data are shown in Table 1. With one single-molecule real-time cell on the PacBio Revio platform, 103.3 Gb of the sequence was generated in 9.1 M reads. The average read length was 17,668 bp with an N50 of 17,769 bp. The assembly contained 2,140 contigs with an N50 of 27.04 Mb. Fifteen contigs accounted for 50% of the total assembly (Table 2). The largest contig size was 36.27 Mb, which covered 99% of the chromosome



**Fig. 3** Collinearity analysis between 'Seolhyang' genome and other octoploid strawberry genomes, including 'Florida Brilliance' (FaFB1) and 'Royal Royce' (FaRR1).

.....

length. Before scaffolding, BUSCO was 99.1%, and LTR analysis showed that the LAI score was 17.28, indicating the gold standard of the reference genome. Scaffolded contigs resulted in 796.9 Mb of a final genome size. Notably, only 30 contigs were anchored to the final assembly for 'Seolhyang'.

| Chr <sup>z</sup> | Telomere (5', 3') | Chr | Telomere (5', 3') | Chr | Telomere (5', 3') | Chr | Telomere (5', 3') |
|------------------|-------------------|-----|-------------------|-----|-------------------|-----|-------------------|
| 1 A              | 5' and 3'         | 1B  | 5'                | 1C  | 5'                | 1D  | 5' and 3'         |
| 2 A              | 5'                | 2B  | 5' and 3'         | 2C  | 5' and 3'         | 2D  | 5' and 3'         |
| 3 A              | 5' and 3'         | 3B  | 5' and 3'         | 3C  | 5'                | 3D  | 5' and 3'         |
| 4 A              | 5' and 3'         | 4B  | 5' and 3'         | 4C  | 5' and 3'         | 4D  | 5' and 3'         |
| 5 A              | 5' and 3'         | 5B  | 5' and 3'         | 5C  | 5' and 3'         | 5D  | 5' and 3'         |
| 6 A              | 5' and 3'         | 6B  | 5' and 3'         | 6C  | 5' and 3'         | 6D  | 5' and 3'         |
| 7 A              | 5'                | 7B  | 5'                | 7C  | 5' and 3'         | 7D  | 5' and 3'         |

Table 3. Information on telomeric motif enriched in the assembly for 'Seolhyang'. <sup>z</sup>Chromosome.

-----

|        | Class    | Sub-Class     | Count   | Length of masked<br>sequence (bp) | Proportion of masked<br>sequence (%) |
|--------|----------|---------------|---------|-----------------------------------|--------------------------------------|
| LTR    | Class I  |               |         |                                   |                                      |
|        |          | Copia         | 55154   | 50,669,582                        | 6.36                                 |
|        |          | Gypsy         | 79904   | 106,799,776                       | 13.40                                |
|        |          | unknown       | 71525   | 46,056,914                        | 5.78                                 |
| TIR    | Class II |               |         |                                   |                                      |
|        |          | CACTA         | 62608   | 31,276,082                        | 3.92                                 |
|        |          | Mutator       | 81530   | 29,988,084                        | 3.76                                 |
|        |          | PIF_Harbinger | 28244   | 12,342,220                        | 1.55                                 |
|        |          | Tc1_Mariner   | 2507    | 845,802                           | 0.11                                 |
|        |          | hAT           | 37412   | 16,290,255                        | 2.04                                 |
| NonTIR | Class II |               |         |                                   |                                      |
|        |          | helitron      | 104369  | 52,082,013                        | 6.54                                 |
| Total  | -        | -             | 523,253 | 346,350,728                       | 43.46                                |

 Table 4.
 Classification and distribution of repetitive DNA elements identified in 'Seolhyang' genome by EDTA pipeline.

**Identification and characterization of pectin lyase sequence analysis.** The sequences with conserved MLO domains (cl03887) were retrieved on Pfam database<sup>41</sup>. The physical location of the MLO genes was retrieved from the genome annotation file. The conserved motifs were searched using the MEME<sup>42</sup> and visualized with gene structure using TBtools<sup>43</sup>.

Based on the multiple alignment of MLO proteins obtained by the MUSCLE<sup>44</sup>, a phylogenetic tree was constructed by using the maximum likelihood method in Geneious Prime. The collinear gene pairs were generated using MCScanX<sup>45</sup> software. The analysis was conducted using the default parameters of specific software according to the user instructions.

## **Data Records**

The PacBio HiFi sequencing reads used for genome assembly have been deposited in the NCBI Sequence Read Archive (SRA) under BioProject accession number [PRJNA1148756] (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1148756)<sup>45</sup>.

The chromosome-level genome assembly has been deposited in GenBank under the accession number [JBKFVU000000000] (https://identifiers.org/ncbi/insdc.gca:JBKFVU000000000.1)<sup>46</sup>.

In addition, the gene annotation files and supplementary materials are available on FigShare (https://doi.org/ 10.6084/m9.figshare.26866807)<sup>47,48</sup>.

Collinearity between 'Seolhyang' and other published  $F. \times ananassa$  genomes, namely 'Florida Brilliance' and 'Royal Royce', was confirmed. Translocations on 1D were apparent when the 'Seolhyang' genome was compared with the genomes of 'Florida Brilliance' (Fig. 2a) and 'Royal Royce' (Fig. 2b). Alignments of 'Seolhyang' assembly against FaRR1 ('Royal Royce') and FaFB1 ('Florida Brilliance') also displayed a high degree of collinearity (Figs. 2a and 2b). On the basis of this alignment, we applied the chromosome nomenclature for 'Seolhyang' and 'Royal Royce', reflecting the putative diploid origins of each respective subgenome (A, B, C, and D)<sup>37</sup>. Alignments of the 'Seolhyang' genome against the diploid *F. vesca* v4.0<sup>36</sup> showed a high degree of collinearity except for major translocations on 1 A (Fig. 2c). We confirmed the collinearity and consequently explored the candidate structural variations among 'Seolhyang', 'Florida Brilliance', and 'Royal Royce' by using SYRI<sup>41</sup> (Fig. 3). Only 'Seolhyang' subgenome A showed higher sequence similarity with diploid *F. vesca*. Telomeric motifs (5'-TTTAGGG-3') were explored at the end of each chromosome in the assembly of 'Seolhyang'. Telomeric motifs enriched in the termini of the pseudo-chromosomes allowed for the identification of 50 telomeres (Table 3). All pseudomolecules contained telomere-rich regions, at least at their ends. Overall, 22 pseudomolecules were potentially telomere-to-telomere, except for Chr 1B, 1C, 2A, 3C, 7A, and 7B.



**Fig. 4** Distribution of transposable elements and genes in 'Seolhyang' genome. (**a**) length of assembled chromosomes, (**b**) distribution of DNA transposable elements, and (**c**) distribution of genes.

|            | Subgenome |        |        |        |         |  |
|------------|-----------|--------|--------|--------|---------|--|
| Chromosome | A         | В      | С      | D      | Total   |  |
| Chr01      | 3,948     | 4,058  | 3,733  | 3,917  | 15,656  |  |
| Chr02      | 5,128     | 4,702  | 4,504  | 4,610  | 18,944  |  |
| Chr03      | 5,383     | 5,043  | 4,871  | 4,695  | 19,992  |  |
| Chr04      | 4,501     | 4,545  | 4,078  | 3,917  | 17,041  |  |
| Chr05      | 4,721     | 4,618  | 4,158  | 4,197  | 17,694  |  |
| Chr06      | 6,267     | 6,013  | 5,712  | 5,899  | 23,891  |  |
| Chr07      | 4,106     | 3,994  | 4,293  | 3,573  | 15,966  |  |
| Total      | 34,054    | 32,973 | 31,349 | 30,808 | 129,184 |  |

# Table 5. Genes predicted in 'Seolhyang' genome.

| Number | Locus ID      | Name      | Gene size<br>(bp) | Chromosome | Physical location (bp) | Protein size<br>(aa) |
|--------|---------------|-----------|-------------------|------------|------------------------|----------------------|
| 1      | Fxa1Ag011330  | FaMLO02A  | 5,409             | 1 A        | 5462433:5467842        | 583                  |
| 2      | Fxa1Ag012930  | FaMLO03A  | 3,172             | 1A         | 6231196:6234368        | 547                  |
| 3      | Fxa1Bg047310  | FaMLO02B  | 5,393             | 1B         | 4762087:4767480        | 579                  |
| 1      | Fxa1Bg048830  | FaMLO03B  | 3,152             | 1B         | 5540775:5543927        | 470                  |
| 5      | Fxa1Cg076150  | FaMLO01 C | 4,168             | 1C         | 56757:60925            | 536                  |
| 5      | Fxa1Cg085780  | FaMLO02C  | 6,619             | 1C         | 4841605:4848224        | 710                  |
| 7      | Fxa1Cg087280  | FaMLO03Ca | 1,423             | 1C         | 5658096:5659519        | 282                  |
| 8      | Fxa1Cg087290  | FaMLO03Cb | 1,692             | 1C         | 5659546:5661238        | 278                  |
| 9      | Fxa1Dg137440  | FaMLO03D  | 3,505             | 1D         | 20998747:21002252      | 565                  |
| 10     | Fxa1Dg139030  | FaMLO02D  | 6,268             | 1D         | 21844508:21850776      | 588                  |
| 11     | Fxa1Dg148370  | FaMLO01D  | 5,148             | 1D         | 26518145:26523293      | 536                  |
| 12     | Fxa2Ag165200  | FaMLO04A  | 1,544             | 2A         | 8408723:8410267        | 417                  |
| 13     | Fxa2Bg225130  | FaMLO04B  | 1,529             | 2B         | 19864264:19865793      | 412                  |
| 14     | Fxa2Cg243990  | FaMLO04C  | 1,787             | 2C         | 1801554:1803341        | 498                  |
| 15     | Fxa2Dg299790  | FaMLO04D  | 1,529             | 20<br>2D   | 8731405:8732934        | 412                  |
| 16     |               |           | 7,517             | 3A         |                        | 552                  |
|        | Fxa3Ag341020  | FaMLO11A  |                   |            | 8335997:8343514        |                      |
| 17     | Fxa3Ag341080  | FaMLO10A  | 5,609             | 3 A        | 8381527:8387136        | 611                  |
| 18     | Fxa3Ag355410  | FaMLO09A  | 7,117             | 3A         | 19152962:19160079      | 552                  |
| 19     | Fxa3Ag368890  | FaMLO05A  | 3,123             | 3A         | 26834986:26838109      | 535                  |
| 20     | Fxa3Bg386330  | FaMLO05B  | 3,007             | 3B         | 4352812:4355819        | 521                  |
| 21     | Fxa3Bg412260  | FaMLO11B  | 6,050             | 3B         | 23801141:23807191      | 554                  |
| 22     | Fxa3Cg433350  | FaMLO05C  | 3,037             | 3C         | 4409625:4412662        | 527                  |
| 23     | Fxa3Cg445160  | FaMLO09C  | 6,648             | 3C         | 11764722:11771370      | 552                  |
| 24     | Fxa3Cg458180  | FaMLO10Ca | 5,690             | 3C         | 22877734:22883424      | 516                  |
| 25     | Fxa3Cg458230  | FaMLO10Cb | 5,690             | 3C         | 22906679:22912369      | 516                  |
| 26     | Fxa3Cg458290  | FaMLO11C  | 4,899             | 3C         | 22984164:22989063      | 546                  |
| 27     | Fxa3Dg482880  | FaMLO11D  | 4,803             | 3D         | 7926294:7931097        | 560                  |
| 28     | Fxa3Dg482920  | FaMLO10D  | 5,761             | 3D         | 7955856:7961617        | 526                  |
| 29     | Fxa3Dg495270  | FaMLO09D  | 7,157             | 3D         | 19369898:19377055      | 552                  |
| 30     | Fxa5Ag700800  | FaMLO12A  | 3,794             | 5 A        | 15371884:15375678      | 452                  |
| 31     | Fxa5Ag700920  | FaMLO13A  | 3,890             | 5 A        | 15448805:15452695      | 507                  |
| 32     | Fxa5Ag702360  | FaMLO14A  | 6,840             | 5A         | 16547997:16554837      | 662                  |
| 33     | Fxa5Ag704640  | FaMLO15A  | 5,108             | 5A         | 18299966:18305074      | 388                  |
| 34     | Fxa5Bg729940  | FaMLO15B  | 2,511             | 5B         | 9245536:9248047        | 311                  |
| 35     | Fxa5Bg733050  | FaMLO13B  | 3,842             | 5B         | 12542632:12546474      | 507                  |
| 36     | Fxa5Bg733120  | FaMLO12B  | 4,031             | 5B         | 12594180:12598211      | 448                  |
| 37     | Fxa5Cg785210  | FaMLO12C  | 3,742             | 5C         | 15420230:15423972      | 452                  |
| 38     | Fxa5Cg785250  | FaMLO13C  | 3,401             | 5C         | 15480912:15484313      | 506                  |
| 39     | Fxa5Cg788500  | FaMLO15C  | 7,259             | 5C         | 18394778:18402037      | 592                  |
| 40     | Fxa5Dg825490  | FaMLO13D  | 3,910             | 5D         | 15817519:15821429      | 507                  |
| 41     |               | FaMLO17A  |                   |            |                        |                      |
|        | Fxa6Ag881910  |           | 3,580             | 6A         | 25632265:25635845      | 573                  |
| 42     | Fxa6Ag881950  | FaMLO16A  | 7,479             | 6A         | 25654007:25661486      | 934                  |
| 43     | Fxa6Bg930290  | FaMLO18B  | 4,378             | 6B         | 20652712:20657090      | 412                  |
| 44     | Fxa6Bg939370  | FaMLO16B  | 6,359             | 6B         | 27195838:27202197      | 809                  |
| 45     | Fxa6Cg993140  | FaMLO17C  | 3,619             | 6C         | 26301468:26305087      | 577                  |
| 46     | Fxa6Cg993190  | FaMLO16C  | 8,418             | 6C         | 26359795:26368213      | 813                  |
| 47     | Fxa6Dg1022720 | FaMLO16D  | 6,931             | 6D         | 8793993:8800924        | 814                  |
| 48     | Fxa6Dg1022770 | FaMLO17D  | 3,690             | 6D         | 8854377:8858067        | 588                  |
| 19     | Fxa6Dg1032060 | FaMLO18D  | 4,449             | 6D         | 15719393:15723842      | 600                  |
| 50     | Fxa7Ag1072700 | FaMLO19A  | 7,414             | 7 A        | 6884486:6891900        | 527                  |
| 51     | Fxa7Ag1086280 | FaMLO20A  | 3,297             | 7A         | 15463589:15466886      | 508                  |
| 52     | Fxa7Bg1115610 | FaMLO20B  | 3,294             | 7B         | 7040395:7043689        | 564                  |
| 53     | Fxa7Bg1128580 | FaMLO19B  | 650               | 7B         | 15628053:15628703      | 171                  |
| 54     | Fxa7Cg1168010 | FaMLO20C  | 3,334             | 7C         | 17595662:17598996      | 564                  |
| 55     | Fxa7Dg1194280 | FaMLO20D  | 3,297             | 7D         | 6956301:6959598        | 564                  |

# Table 6. The physical characteristics of *FaMLO* genes in 'Seolhyang' genome assembly.

\_\_\_\_\_



**Fig. 5** Chromosomal distribution and location of *FaMLOs* in 'Seolhyang' strawberry. Different colors indicate the chromosomes from different subgenomes of cultivated strawberry.

**Genome annotation.** In the 'Seolhyang' genome, 346.3 Mb of the repetitive sequence accounted for 43.46% of the genome. Most of this repeat sequence was composed of LTR TEs (25.4%; Table 4). For each chromosome, a genomic region with dense repetitive sequences and a low density of genes, thought to be the centromeres, was identified (Fig. 4). Genome sequences with a long TE (>1 kb) mask were used for gene prediction. De novo prediction of the number of gene-coding proteins in the genome assembly yielded 151,558 transcripts by aligning the RNA-Seq datasets with the assemblies. BUSCO analysis of the transcript assemblies revealed 2,275 complete core eudicot genes (97.8%, 3.5% single-copy, 94.3% duplicated), with 0.5% fragmented and 1.7% missing core eudicot genes. In total, 129,184 genes remained in the 'Seolhyang' genome (Table 5).

**Identification of** *FaMLOs* **in 'Seolhyang' genome assembly.** A total of 55 *FaMLO* genes with MLO domains (cl03887) were identified. According to their homology to *FveMLO* genes from *F. vesca*, all *FaMLO* genes were renamed as *FaMLO01C* to *FaMLO20D* (Fig. 5). A maximum of five *FaMLO* genes were located on chromosome 3 C, while there were no *FaMLO* genes on chromosome 4 A, 4B, 4 C, and 4D. The characteristics properties of the deduced 55 *FaMLO* is shown in Table 6. The number of amino acids varied from 171 to 934 aa, most of them (53) were concentrated from 400 to 600 aa. There were only one *FaMLO* proteins comprising amino acids below 200 aa.

According to phylogenetic analysis for *FaMLO* genes identified in the present study and previously reported, all the fifty-five *FaMLO* genes were classified into seven clusters (Fig. 6a). Among them, clade 1 is the largest clade containing 14 members, followed by group 7, which had 11 members of *FaMLO* genes. To better elucidate the structural characteristics of the *FaMLO* genes, CDS distributions were analyzed and visualized (Fig. 6b).

The collinearity analysis among woodland strawberry (*F. vesca*), and octoploid strawberry 'Seolhyang' was carried out to explore the evolutionary relationship of *FaMLOs*. According to the result, 55 *FaMLOs* and 17 *FveMLOs* were involved to form collinear pairs and were highlighted (Fig. 7).



**Fig. 6** Classification and characterization of FaMLO identified in the genome assembly of 'Seolhyang'. (a) Phylogenetic tree of *FaMLOs* from diploid and octoploid strawberries. Different branch colors represent the different groups. MLO family members from 'Seolhyang' strawberry identified in this study are marked with blue circles. The red stars and black rectangles indicate the previously reported FaMLOs in *Fragaria vesca* and *F.* × *ananassa* var. 'Camarosa'. (b) Gene structure and conserved domain analysis of FaMLOs. Left part indicated an unroot tree of strawberry FaMLOs, middle part showed the exon–intron distribution of FaMLOs, and the right part displays the distribution of conserved domain on each FaMLO protein.



**Fig. 7** Collinearity analysis of *MLO* genes among *Fragaria vesca*, and *Fragaria* × *ananassa* genomes. Grey lines indicate collinear blocks within the two genomes, while the red lines represent collinear *MLO* gene pairs. The orange and green columns indicate the chromosomes from *Fragaria vesca*, and *Fragaria* × *ananassa* genomes, respectively. Chromosome numbers are displayed at the side of chromosomes.

# Code availability

All software and pipelines were executed according to the guidelines and protocols outlined in the respective bioinformatics tools' manuals. No custom coding or programming was used.

Received: 4 September 2024; Accepted: 13 May 2025; Published online: 13 June 2025

## References

- 1. Production area and volume of vegetable in South Korea in 2022, https://kostat.go.kr/anse/ (2022).
- 2. Production amount and index of agriculture and forestry, http://www.mafra.go.kr (2022).
- Kim, D.-R., Gang, G.-h, Cho, H.-j, Yoon, H.-S. & Myoung, I. S. Disease Severity of Angular Leaf Spot Disease by Different Inoculation Method and Eco-Friendly Control Efficacy in Strawberry. *The Korean Journal of Pesticide Science* 20, 35–40 (2016).
- 4. Outlook of agriculture 2024 https://www.krei.re.kr/krei/index.do (2024).
- Kim, D.-Y. et al. Changes in growth and yield of strawberry (cv. Maehyang and Seolhyang) in response to defoliation during nursery period. *Journal of Bio-Environment Control* 20, 283–289 (2011).
- Jeong, H. J., Chol, H. G., Moon, B. Y., Cheong, J. W. & Kang, N. J. Comparative analysis of the fruit characteristics of four strawberry cultivars commonly grown in South Korea. *Horticultural Science & Technology* 34, 396–404 (2016).
- Choi, J.-M., Latigui, A. & Yoon, M.-K. Growth and nutrient uptake of 'Seolhyang' strawberry (Fragaria× ananassa Duch) responded to elevated nitrogen concentrations in nutrient solution. *Horticultural Science & Technology* 28, 777–782 (2010).
- Je, H.-J. et al. Development of cleaved amplified polymorphic sequence (CAPS) marker for selecting powdery mildew-resistance line in strawberry (Fragaria × ananassa Duchesne). Horticultural Science & Technology 33, 722–729 (2015).
- 9. Dae-Young, K. et al. Evaluation of Anthracnose and Fusarium wilt Reistance of Domestic and Foreign Strawberry Germplasms and Selected Lines. Journal of the Korean Society of International Agriculture **32**, 423–430 (2020).
- Kim, I. et al. Changes in volatile compounds in short-term high CO2-treated 'Seolhyang' strawberry (Fragaria × ananassa) fruit during cold storage. Molecules 27, 6599 (2022).
- 11. Jee, E. et al. Analysis of volatile organic compounds in Korean-bred strawberries: insights for improving fruit flavor. Frontiers in Plant Science 15, 1360050 (2024).
- 12. Saxena, R. K., Edwards, D. & Varshney, R. K. Structural variations in plant genomes. *Briefings in functional genomics* 13, 296–307 (2014).
- Chen, Y. H., Gols, R. & Benrey, B. Crop domestication and its impact on naturally selected trophic interactions. Annual Review of Entomology 60, 35–58 (2015).
- 14. Edwards, D. & Batley, J. Plant genome sequencing: applications for crop improvement. Plant biotechnology journal 8, 2–9 (2010).
- 15. Lang, D. et al. Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore. *Gigascience* 9, giaa123 (2020).
- Loit, K. *et al.* Relative performance of MinION (Oxford Nanopore Technologies) versus Sequel (Pacific Biosciences) thirdgeneration sequencing instruments in identification of agricultural and forest fungal pathogens. *Applied and Environmental Microbiology* 85, e01368–01319 (2019).
- 17. Hon, T. et al. Highly accurate long-read HiFi sequencing data for five complex genomes. Scientific data 7, 399 (2020).
- 18. Li, H. & Durbin, R. Genome assembly in the telomere-to-telomere era. Nature Reviews Genetics, 1-13 (2024).
- 19. Han, H. *et al.* Telomere-to-telomere and haplotype-phased genome assemblies of the heterozygous octoploid 'Florida Brilliance'strawberry (Fragaria× ananassa). *BioRxiv*, 2022.2010. 2005.509768 (2022).
- Song, Y. et al. Phased gap-free genome assembly of octoploid cultivated strawberry illustrates the genetic and epigenetic divergence among subgenomes. Horticulture research 11, uhad252 (2024).
- Zhou, Y. et al. The telomere-to-telomere genome of Fragaria vesca reveals the genomic evolution of Fragaria and the origin of cultivated octoploid strawberry. Horticulture Research 10, uhad027 (2023).
- Liu, T., Li, M., Liu, Z., Ai, X. & Li, Y. Reannotation of the cultivated strawberry genome and establishment of a strawberry genome database. *Horticulture research* 8 (2021).
- 23. Mao, J. et al. High-quality haplotype-resolved genome assembly of cultivated octoploid strawberry. Horticulture Research 10, uhad002 (2023).
- 24. Cheng, H. et al. Haplotype-resolved assembly of diploid genomes without parental data. Nature Biotechnology 40, 1332–1335 (2022).
- 25. Alonge, M. *et al.* RaGOO: fast and accurate reference-guided scaffolding of draft genomes. *Genome biology* **20**, 1–17 (2019).
- Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. *Bioinformatics* 29, 1072–1075 (2013).
- Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. *Genome biology* 21, 1–27 (2020).
- Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics* 31, 3210–3212 (2015).
- Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic acids research 46, e126–e126 (2018).
- 30. Ou, S. & Jiang, N. LTR\_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. *Plant physiology* **176**, 1410–1422 (2018).

- 31. Ou, S. *et al.* Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. *Genome biology* **20**, 1–18 (2019).
- Humann, J. L., Lee, T., Ficklin, S. & Main, D. Structural and functional annotation of eukaryotic genomes with GenSAS. Gene prediction: methods and protocols, 29-51 (2019).
- 33. Mapleson, D., Venturini, L., Kaithakottil, G. & Swarbreck, D. Efficient and accurate detection of splice junctions from RNA-seq with Portcullis. *GigaScience* 7, giy131 (2018).
- 34. Camacho, C. et al. BLAST+: architecture and applications. BMC bioinformatics 10, 1-9 (2009).
- 35. Boutet, E., Lieberherr, D., Tognolli, M., Schneider, M. & Bairoch, A. in *Plant bioinformatics: methods and protocols* 89-112 (Springer, 2007).
- 36. Shulaev, V. et al. The genome of woodland strawberry (Fragaria vesca). Nature genetics 43, 109-116 (2011).
- 37. Hardigan, M. A. *et al*. Blueprint for phasing and assembling the genomes of heterozygous polyploids: application to the octoploid genome of strawberry. *BioRxiv* (2021).
- 38. Cabanettes, F. & Klopp, C. D-GENIES: dot plot large genomes in an interactive, efficient and simple way. PeerJ 6, e4958 (2018).
- 39. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094-3100 (2018).
- Goel, M., Sun, H., Jiao, W.-B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from wholegenome assemblies. *Genome biology* 20, 1–13 (2019).
- 41. Bateman, A. et al. The Pfam protein families database. Nucleic acids research 32, D138-D141 (2004).
- 42. Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME suite. Nucleic acids research 43, W39-W49 (2015).
- Chen, C. et al. TBtools-II: A "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular plant 16, 1733–1742 (2023).
- 44. Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC bioinformatics* 5, 1–19 (2004).
- 45. Wang, Y. *et al.* MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. *Nucleic acids research* **40**, e49–e49 (2012).
- Han, H. D. PacBio HiFi reads for genome assembly of 'Seolhyang' strawberry. NCBI Sequence Read Archive. https://identifiers.org/ ncbi/insdc.sra:SRP527089 (2024).
- Han, H. D. Chromosome-level genome assembly of 'Seolhyang' strawberry. NCBI GenBank. https://identifiers.org/ncbi/insdc. gca:JBKFVU000000000.1 (2024).
- Han, H. D. Gene annotation and supplementary datasets for the genome assembly of cultivated strawberry 'Seolhyang' (Fragaria × ananassa). FigShare https://doi.org/10.6084/m9.figshare.26866807 (2024).

# Acknowledgements

This work was supported by the Rural Development Administration of Korea (RS-2023-00225421) and National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2024-00355164)

# **Author contributions**

Author Contributions Y.O. and H.H. conceived and designed the experiments. K.H., H.P., and Y.O. prepared the materials. H.H. performed the bioinformatics analysis and prepared the results. Y.O., H.H., Y.J., and S.L. wrote the manuscript. Y.O. and S.L. edited and improved the manuscript. All authors approved the final manuscript.

# **Competing interests**

The authors declare no competing interests.

# **Additional information**

Correspondence and requests for materials should be addressed to Y.O.

### Reprints and permissions information is available at www.nature.com/reprints.

**Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

**Open Access** This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025