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SUMMARY

The development of a multicellular organism is a highly intricate process tightly regulated by numerous genes 
and pathways in both spatial and temporal manners. Here, we present Flysta3D-v2, a comprehensive multi- 
omics atlas of the model organism Drosophila spanning its developmental lifespan from embryo to pupa. Our 
datasets encompass 3D single-cell spatial transcriptomic, single-cell transcriptomic, and single-cell chroma- 
tin accessibility information. Through the integration of multimodal data, we generated developmentally con- 
tinuous in silico 3D models of the entire organism. We further constructed tissue development trajectories 
that uncover the detailed profiles of cell-type differentiation. With a focus on the midgut, we identified tran- 
scription factors involved in midgut cell-type regulation and validated exex as a key regulator of copper cell 
development. This extensive atlas provides a rich resource and serves as a systematic platform for studying 
Drosophila development with integrated single-cell data at ultra-high spatiotemporal resolution.

INTRODUCTION

The development of a metazoan is an intricately regulated 

process that transforms a totipotent zygote into a fully formed 

organism with functional organs, necessitating the continuous 

coordinated regulation of molecular components within a 

three-dimensional space. The advances in single-cell multi- 

omics technologies have revolutionized our approaches to in- 

vestigating organism development and cell heterogeneities at

multiple dimensions. 1 The development of spatial multi-omics 

techniques further augments them with spatial contexts, 2 and 

progress has been made in integrating these multimodal data 

to construct panoramic profiles of context-specific functions of 

single cells and their communications with one another. 3 

Research into the model organism Drosophila has yielded in- 

valuable insights into the meticulous processes of embryogenesis 

and organogenesis. Significantly, many of its features are con- 

served in mammals. 4 Recently, a few studies have addressed
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Drosophila development from the perspective of single-cell multi- 

omics. 5,6 The spatial contexts of gene expression at the single-cell 

level are crucial to understanding their biological relevance but are 

often lost during standard single-cell sequencing procedures. 

Previously, we utilized spatial enhanced resolution omics se- 

quencing (Stereo-seq), 7 a sequencing- and patterned DNA nano- 

ball (DNB) array-based spatial transcriptomic platform with high 

spatial resolution and sensitivity, to address this gap. 8 

Here, we expanded our previous spatiotemporal transcrip- 

tomic study of Drosophila to cover its developmental lifespan 

from embryo to pupa. Using Stereo-seq and Spateo, a computa- 

tional pipeline designed to analyze single-cell multimodal data, 9 

we reconstructed 3D transcriptomes at single-cell spatial re- 

solution. We further complemented single-cell Stereo-seq 

(scStereo-seq) data with single-cell RNA sequencing (scRNA- 

seq) and single-cell assay for transposase-accessible chromatin 

using sequencing (scATAC-seq) data to create a multi-omics at- 

las of Drosophila embryogenesis. This atlas includes transcrip- 

tomic and epigenomic information within an ultra-high-resolution 

spatial context, which allowed us to establish multi-omics cell 

state trajectories with spatiotemporal dynamics of associated 

molecular regulatory networks. 

To elucidate the developmental regulation of various cell types 

from a 3D spatiotemporal multi-omics perspective, we em- 

ployed the midgut as a model for investigation. The Drosophila 

midgut fulfills versatile roles in food digestion, nutrient uptake, 

immunity, and endocrine regulation, carried out by distinct types 

of cells and the regions they form, such as enterocytes (ECs, re- 

sponsible for nutrient absorption), entero-endocrine cells 10 (EEs, 

responsible for stimuli sensing and hormone secretion), and 

copper cells (associated with metal ion homeostasis and gastric 

acid secretion). 11,12 During metamorphosis, larval midgut cells 

undergo autophagy-dependent cell death, 13 and adult midgut 

cells reconstitute from a group of specifically designated stem 

cells, termed adult midgut progenitors (AMPs). 14,15 Neverthe- 

less, the timing of differentiation and regulatory mechanisms 

has not been fully elucidated. Focusing on the developing 

midgut, we investigated their cell-type diversification, gene reg- 

ulatory networks (GRNs), and regionalization from a multi-omics 

perspective. Through multimodal analyses, we identified multi- 

ple potential factors involved in cell-type-specific regulation dur- 

ing midgut development and validated a homeodomain (HD) 

transcription factor (TF) exex as a key regulator of copper cells 

using mutant analysis.

The data in this single-cell spatiotemporal multi-omics atlas 

of Drosophila development are curated in our online data- 

base, Flysta3D version 2.0 (Flysta3D-v2, https://db.cngb.org/ 

stomics/flysta3d-v2/). This database will facilitate systematic re- 

search on Drosophila development with its comprehensive infor- 

mation and broad range of applications.

RESULTS

Reconstruction of Drosophila 3D spatial transcriptomes 

from embryogenesis to metamorphosis at single-cell 

resolution 

To construct a multi-omics atlas of Drosophila development, we 

first expanded and enhanced the 3D spatial transcriptomes by 

collecting samples across developmental stages, including em- 

bryos (at 0.5 to 2 h intervals), larvae (early and late stages of L1 

to L3), and pupae (P12 to P72) (STAR Methods; Figure 1A; 

Table S1). 

To achieve single-cell spatial resolution, we performed nu- 

cleus staining and cell segmentation for each chip, allowing for 

more precise single-cell transcriptomic analysis (Figure S1A). 

Utilizing the Stereo-seq platform, we generated organism-wide 

single-cell spatial transcriptomes for 43 embryo, 9 larva, and 5 

pupa samples throughout Drosophila development, with a total 

of 3,812,505 cell bins (Figure 1A; Table S1). We then combined 

cell bins from all sections of individual samples, performed unsu- 

pervised clustering based on both gene expression profiles and 

spatial locations (all clustering results are in Mendeley Data: 

https://doi.org/10.17632/4zf847bxcd.1), and manually anno- 

tated the clusters (Table S2). Integrating spatial locations and 

cell annotations with Spateo, 9 we achieved 3D spatial transcrip- 

tomes to reconstruct diverse tissues with fine anatomical mor- 

phology (Figure 1A). Based on this comprehensive spatiotempo- 

ral transcriptomic dataset, we generated a list of 338 genes 

without reported spatial expression patterns in established in 

situ databases 16,17 and reconstructed their patterns in 3D 

(Table S3). Consequently, we generated 3D spatial transcrip- 

tomes for Drosophila samples, covering the developmental pe- 

riod from embryo to pupa.

A single-cell spatiotemporal multi-omics atlas of 

Drosophila embryonic development 

To augment our single-cell 3D spatial transcriptomic data 

with deeper transcriptomic and epigenomic information, we

Figure 1. A single-cell spatiotemporal multi-omics atlas of developing Drosophila

(A) Overall summary of this study. Time points in sample collection windows indicate hours after egg laying in embryos and hours after pupation in pupa. UMAP 

plots of aggregated scRNA-seq and scATAC-seq data for embryonic stages are color coded by tissue annotation. Quality P36 scStereo-seq and E6-8h scRNA- 

seq data were not obtained. In 3D modeling of representative scStereo-seq samples, models of epidermis, trachea, hemolymph, and muscle are not displayed in 

some samples for better visualization of internal organs. 3D models are not on the same scale. CNS, central nervous system; PNS, peripheral nervous system.

(B) Bar plot showing cell-type composition of scStereo-seq, scRNA-seq, and scATAC-seq data. Cell-type color codes are the same as those in (A).

(C) Validation of representative cell-type-specific marker genes in Table S5. Left: representative FISH images of corresponding stages of gene expression 

enrichment, with sample viewpoints labeled. Right: UMAP plots of marker gene expression specificity in aggregated scRNA-seq and scATAC-seq data. Cells 

with enriched marker gene expression or peak accessibility are highlighted in dashed rectangles.

(D) Evaluation of scStereo-seq/scRNA-seq integration. For each gene, representative FISH images were obtained from stage 13–17 embryos from lateral view. 

Spatial expression patterns generated from original scStereo-seq or integrated scStereo-seq/scRNA-seq data are projected along the z axis. Cyan: gene- 

specific RNA probes; gray: nuclei stained with DAPI. Arrowheads indicate structures with autofluorescence. All scale bars, 50 μm. A-P, anterior-posterior; D-V, 

dorsal-ventral. 

Related to Figures S1 and S2.
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performed droplet-based scRNA-seq and scATAC-seq on em- 

bryos collected at 2-h intervals across embryogenesis 

(Figure 1A). Following quality control, we obtained 238,242 sin- 

gle-cell transcriptomes with scRNA-seq, with a median of 6,841 

unique molecular identifiers (UMIs) and 1,707 genes per cell 

(Table S1). We also obtained 240,573 single-cell chromatin ac- 

cessibility profiles with scATAC-seq, with a median of 11,772 

fragments per cell (Table S1). The statistics of our datasets 

were comparable to or better than previous Drosophila embryo 

scRNA-seq and scATAC-seq datasets 5,6,18 (Figures S1B–S1D). 

Additionally, our scATAC-seq data achieved high coverage of 

previously reported scATAC-seq datasets, 6,18 DNase I hypersen- 

sitive sites (DHSs), 19 annotated transcription start sites (TSSs), 20 

and known enhancer sites 21–23 (Figure S1E). For more compre- 

hensive analyses at larval stages, we generated an additional 

control scRNA-seq dataset from the L3 midgut of NP1- 

Gal4 > UAS-mCherry-shRNA (where NP1-Gal4 is a midgut EC- 

specific driver; shRNA, short hairpin RNA). Following quality con- 

trol measures, we obtained 17,988 single-cell transcriptomes, 

with a median of 8,846 UMIs and 1,795 genes per cell (Table S1). 

With the aggregated scRNA-seq data collected across em- 

bryogenesis, we first performed coarse unsupervised clustering 

and generated 45 cell clusters in the uniform manifold approxi- 

mation and projection (UMAP) plot (Figure S1F). We annotated 

these clusters and classified annotations at three levels (cell 

type-tissue-germ layer, e.g., gastric caecum-midgut-endoderm) 

(Figure 1A; Table S2). We also performed coarse unsupervised 

clustering in aggregated scATAC-seq data (Figure S1G). Simi- 

larly, we generated 40 distinctly annotated clusters in the 

UMAP plot (Figure 1A; Table S2). The data we collected achieved 

extensive coverage of major tissues, as reflected by the propor- 

tion of cells representing each tissue and their dynamics over de- 

velopmental stages (Figure 1B). 

We further profiled tissue cell-type heterogeneity by subclus- 

tering (Data S1; Table S4). In scRNA-seq data, we were able to 

extensively characterize the cell-type composition of embryonic 

tissues, including rare cell types. For example, the subclustering 

of the peripheral nervous system (PNS) cluster allowed for the 

distinct identification of neurons and glia from external sensory 24 

and chordotonal organs 25,26 (File 1 in Data S1). We also identified 

subclusters representing most of these cell types in scATAC-seq 

data (File 2 in Data S1). To verify the subclusters we identified, we 

compiled a list of common cell-type markers identified in both

datasets (Table S5) and validated the expression specificity of 

3 previously unreported cell-type markers using fluorescence 

in situ hybridization (FISH) (Figure 1C). 

In summary, we generated a compendium of scStereo-seq, 

scRNA-seq, and scATAC-seq datasets throughout Drosophila 

embryogenesis. The high granularity and temporal continuity 

of our multi-omics data opened the possibility of cell-type- 

and developmental-age-dependent integration of these multi- 

omics data.

Integration of multi-omics data and construction of 

tissue differentiation trajectories 

To unify the sample ages and integrate multimodal data, we ap- 

plied RAPToR 27 on embryo scStereo-seq and scRNA-seq data 

and a previously described neural network model 6 on scATAC- 

seq data. The resulting set of 43 embryo scStereo-seq samples 

we collected comprehensively covered Drosophila embryogen- 

esis (Figure S2A). The inferred developmental age of single cells 

from scRNA-seq data (Figures S2B and S2C) and scATAC-seq 

data (Figures S2D and S2E) showed good agreement with their 

actual sample collection window. Thus, we used the sample col- 

lection window to integrate the scRNA-seq and scATAC-seq 

data for downstream analysis. 

To integrate scStereo-seq and scRNA-seq data, we selected 

cells with an inferred developmental age difference of 1 h for in- 

tegration using NovoSpaRc. 28 To evaluate this integration, we 

selected 9 previously uncharacterized tissue-specific genes 

(Table S3) and established the ground truth of their expression 

patterns with FISH. We observed that, compared with scSt- 

ereo-seq data alone, the integrated data yielded markedly re- 

duced signal background, enhanced tissue enrichment, and im- 

proved spatial patterns that exhibited greater resemblance to 

FISH results (Figures 1D and S2F). 

To integrate scRNA-seq and scATAC-seq data, an expression 

matrix was imputed from scATAC-seq peak matrix and co-em- 

bedded with scRNA-seq expression matrix in the same UMAP 

space for clustering (Figures 2A, S3A, and S3B). Next, we aimed 

to organize all embryonic tissue cell states in each germ layer of 

scRNA-seq and scATAC-seq data into continuous developmen- 

tal trajectories. We applied PhyloVelo 29 to the integrated data to 

establish velocity vector fields for three germ layers and re-anno- 

tated cell clusters based on marker genes (Files 1–2 in Data S1; 

see also Table S4) and their order along the velocity trajectories

Figure 2. Multi-omics tissue differentiation trajectories and key cell-type-specific TFs

(A) UMAP plots of co-embedded scRNA-seq and scATAC-seq data of aggregated and down-sampled embryo cells. Dashed lines mark cell clusters that are 

largely missing in one of the datasets, with their annotations labeled.

(B) Metro plot showing tissue differentiation trajectories based on cluster phylogeny inferred from Figure S3C for major tissues of three germ layers. The top 3 TFs 

of each cell type, ranked by significance of differential motif activity, are labeled along trajectories. Refer to Table S6 for a full list of TFs. AISN, anlage in statu 

nascendi; AMP, adult midgut progenitor; EE, entero-endocrine cells; EC, enterocyte; MC, midgut chamber; prim., primordium; soma., somatic; visc., visceral.

(C) TF motif enrichment of crp in mesoderm, showing its binding motifs (left), motif enrichment heatmap (upper right), and enrichment p value heatmap (lower 

right).

(D) pySCENIC visualization of regulon activity of TFs in representative samples from integrated scStereo-seq/scRNA-seq data, projected along the z axis. A-P, 

anterior-posterior; D-V, dorsal-ventral.

(E) Venn diagrams showing overlap between target genes in regulons of srp and crp along tissue differentiation trajectories of fat body and plasmatocytes.

(F) FISH validation of colocalization between crp and srp in stage 13–17 embryos. Left: representative confocal images of merged channels at 10× magnification. 

The dashed square indicates selected areas for zoom-in. Arrowheads indicate structures with autofluorescence. A-P, anterior-posterior. Scale bar, 50 μm. Right: 

confocal images of zoom-in areas at 63× magnification. Arrowheads indicate representative loci of colocalization. Scale bar, 20 μm. 

Related to Figures S3 and S4.
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(Figure S3C; see also File 3 in Data S1). With these velocity vec- 

tors, we were able to determine the differentiation trajectories of 

each tissue and arrange cell types in a chronological order 

(Figure 2B). Due to their complexities, the branches of cell-type 

differentiation are better visualized in the 3D UMAP space (Files 

4–7 in Data S1). 

Signaling pathways play critical roles in cell fate determination 

and are indispensable to tissue differentiation. To characterize 

the activities of signaling pathways during development, we uti- 

lized 7 major signaling pathway gene sets from FlyphoneDB 30 

and examined the expression dynamics of core pathway com- 

ponent genes across tissues (Figure S3D). We observed multiple 

well-documented tissue-specific signaling pathways. The bone 

morphogenetic protein (BMP) signaling pathway, known for its 

integral role in ectoderm dorsal-ventral patterning 31 and in the 

regulation of neuromuscular junctions (NMJs), 32 demonstrated 

the highest level of activity in early ectoderm and muscles. 

Meanwhile, the fibroblast growth factor receptor (FGFR) signal- 

ing pathway, which has been recognized for its role in trachea 

branching morphogenesis, 33 showed maximum activity during 

the early stages of tracheal development. Lastly, the Hippo sig- 

naling pathway, well-established for its contribution to myogen- 

esis, 34 was most active in early muscle clusters (Figure S3E). 

These results indicated that our datasets could serve as a sys- 

tematic framework for exploring cell signaling networks.

Cell-type-specific transcription factor activities along 

tissue differentiation 

To decipher the cell-type-specific regulatory activities directed 

by TFs along the tissue differentiation trajectories, we scrutinized 

our integrated scRNA-seq/scATAC-seq data. We first identified 

TF binding motifs demonstrating cell-type-specific activities in 

scATAC-seq data. We further filtered the candidate TF list with 

their target gene enrichment in cell-type marker genes of 

scRNA-seq data. Overlapping candidates in this integrated anal- 

ysis represented the most active cell-type-specific TFs along the 

differentiation paths, including both well-established regulators 

and potential ones that are yet to be characterized (Figure 2B; 

Table S6). 

Representative cell-type-specific TF activities include motifs 

of GATAe in Malpighian tubules, 35 Rfx in both PNS and CNS, 36 

and sage in the salivary gland 37 within the ectoderm. In the mes- 

oderm, we identified motif enrichment of Mef2 in somatic 

muscle, 38 bin in visceral muscle, 39 and srp in fat body 40 and he- 

mocytes. 41 The endoderm displayed motif enrichment of GATA 

family TFs grn, fkh, and GATAe 42,43 regulating late-stage endo- 

derm specification (Figure S4A). We also uncovered several pre- 

viously uncharacterized TFs with potential spatiotemporally spe- 

cific functions during embryogenesis. The TF crp, ubiquitously 

expressed in multiple tissues and known for specifying terminal 

cells in tracheal tubes, 44 demonstrated potential regulatory 

functions in the mesodermal fat body and hemolymph 

(Figure 2C). Moreover, we observed significant motif enrichment 

of CG9727 and CG12219 in nervous systems, CG7368 in cardiac 

mesoderm, and CG12236 and CG4360 in early endoderm, im- 

plying their specific functions in these tissues (Figure S4A). 

To further explore the spatial regulon activities of these TFs, 

we applied SCENIC 45 to the integrated scStereo-seq/scRNA-

seq data, revealing that the spatial patterns of TF regulon activ- 

ities were consistent with the motif enrichment analysis in tissue 

specificity (Figure 2D). The spatial expression patterns of these 

less-characterized TFs were also probed by the Berkeley Droso- 

phila Genome Project (BDGP) in situ database, 46 and all of them 

exhibited weak signal or ubiquitous expression patterns in 

stages of their inferred functions (Figure S4B). Thus, our multi- 

omics data provided additional evidence for elucidating the tis- 

sue-specific regulatory roles of these TFs. 

Subsequently, we employed Pando 47 on the integrated sc- 

RNA-seq/scATAC-seq data to delve into the detailed regulons 

of identified TFs. In the fat body- and hemolymph-specific regu- 

lon activities, we discovered that crp and srp were in the same 

GRN (Figure S4C). Notably, we observed that target genes in 

the regulons of srp and crp largely overlapped in early fat body 

(Figure S4D), and this overlap increased along developmental 

trajectories of mesodermal tissues, including fat body and plas- 

matocytes (Figure 2E). The regulons of srp we identified were 

consistent with its role in inducing fat cell formation starting 

from early fat body development, 40,48 and crp is known to affect 

cell growth and tissue size control. 44 Our analysis implied an in- 

creasingly coordinated role of crp and srp within the same GRN 

during fat body and plasmatocyte development. Consistent with 

this, FISH results confirmed an overlap between cells expressing 

crp and those expressing srp in late-stage embryos (Figure 2F). 

By tracing the tissue differentiation trajectories, we identified 

both previously reported and potential TFs during cell-type dif- 

ferentiation, revealing their tissue specificity and coordinated 

regulatory networks.

Investigating the origins and modes of tissue 

differentiation with spatiotemporal cell-type mapping 

To further investigate the evolution dynamics of cell types along 

tissue differentiation trajectories within their 3D spatial context, 

we aimed to map them to their spatial locations. We applied 

the label transfer method from Seurat 49 to annotate scStereo- 

seq cell bins with the cell types identified in the multi-omics tis- 

sue differentiation trajectories. At the tissue level, the transferred 

labels demonstrated good agreement with manually annotated 

scStereo-seq cell bin clusters (Figure S5A). 

We selected fat body (counterpart of mammalian liver) and 

foregut/hindgut (counterpart of mammalian stomach/large intes- 

tine, both of ectodermal origin 50 ) as models and aligned their cell 

types with embryo scStereo-seq samples (Figures 3A and 3B). 

Within these tissues, the distribution of cell bins from label-trans- 

ferred scStereo-seq and cells from scRNA-seq data exhibited a 

coherent pattern when plotted in the same UMAP space (Figure 

S5B). The prediction scores showed that each scStereo-seq cell 

bin was assigned an unambiguous label from scRNA-seq/scA- 

TAC-seq annotations (Figures S5C and S5D). Within each tissue, 

differentiation trends of various stages of cell types were traced 

through their proportional changes over development. These 

changes coincided with their actual developmental tendencies 

(Figure S5E). These results suggested a reliable mapping of 

cell types to their spatial locations in scStereo-seq data. 

The mapping of tissue cell types at various developmental 

stages offers a unique opportunity to examine the distribution 

of differentiation origins within a spatiotemporal context.
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Figure 3. Spatiotemporal dynamics and morphometric changes of tissue cell types

(A) 3D tissue models across representative embryo scStereo-seq samples, showing spatial distribution of cell types, mesh models for fat body or foregut/hindgut, 

and mesh models of the entire embryo.

(B) Schematic representation of anatomical morphology of developing fat body and foregut/hindgut.

(C) Schematic representation of centralized and decentralized differentiation modes.

(D) Spatial distribution of cell bin CytoTRACE scores in representative fat body and foregut/hindgut models in (A).

(E) 3D models of CNS, CNS cell migration trajectories, and acceleration scores across 7 scStereo-seq samples of developmental age between 7 and 18 h. 

Dashed lines indicate directions of morphometric acceleration.

(legend continued on next page)
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Specifically, tissues with centralized differentiation origins (such 

as stem cells) will generate spatially distinct cell types at different 

stages of development. By contrast, tissues with decentralized 

differentiation origins will produce a mixture of cell types at differ- 

ent stages (Figure 3C). 

It is previously established that fat body cells originate from 

precursors arranged in repeated segments that extend through- 

out the entire tissue. 51 This indicates that the fat body differentia- 

tion is decentralized. To verify this, we quantified the levels of 

spatial aggregation of fat body cell types with neighborhood en- 

richment analysis, where a higher score indicates a greater level 

of spatial clustering. We observed a low level of neighborhood 

enrichment in the fat body (Figure S5F). Consistently, we noticed 

in 3D models that different stages of fat body cell types were scat- 

tered and mixed (Figure 3A). This was further supported by the 

spatial distribution of cell bin CytoTRACE scores of scStereo- 

seq data. CytoTRACE leverages the number of detectably ex- 

pressed genes as a robust indicator of differentiation potential. 52 

We observed that cells of various differentiation potentials were 

intermingled in fat body scStereo-seq data (Figure 3D). 

On the other hand, the spatial distribution of the differentiation 

origin of embryonic foregut/hindgut has not been fully mapped. 

Previous studies identified niches of digestive tract stem cells 

for adult guts, where spatially defined groups of stem cells give 

rise to the adult foregut and hindgut, respectively. 53 It has also 

been documented that the embryonic hindgut derives from a 

narrow ring-shaped domain regulated by multiple signaling path- 

ways, which control the outgrowth of hindgut segments. 54 The 

presence of gut stem cells and the distribution of differentiation 

origins remain unclear during organogenesis in embryos. Our 

data exhibited a significantly higher neighborhood enrichment 

in foregut/hindgut cell types (Figure S5F). Cell types of various 

developmental stages and differentiation potentials also demon- 

strated distinct spatial distributions (Figures 3A and 3D). These 

findings suggested that the embryonic foregut/hindgut differen- 

tiate in a centralized manner, providing evidence for the exis- 

tence of clustered, rather than scattered, differentiation origins 

in the embryonic foregut and hindgut. 

In summary, spatial mapping of tissue cell types offered an in- 

tuitive perspective for analyzing differentiation origins and iden- 

tifying potential stem cell niches.

Transcriptomic dynamics during CNS morphometric 

changes 

The 3D models created using Spateo facilitate tissue morpho- 

metric analysis, which links cell bins between samples and con- 

currently tracks cell migration paths and transcriptomic changes 

across developmental stages, offering a unique perspective for

identifying potential regulators of cell migration and differentia- 

tion (Figure S6A). 

Here, we utilized our CNS 55–57 scStereo-seq data as a model 

for morphometric analysis. The developing CNS demonstrated a 

stratified anatomy, where neuroblasts (neuronal stem cells) and 

ganglion mother cells (GMCs, progenitors of neurons and glia) 

were situated on the ventral side of the ventral nerve cord 

(VNC). Meanwhile, differentiated neurons and glia were located 

on the dorsal side. 58 This stratification was mirrored in the pro- 

portions of these cell types in our 3D CNS models (Figure 

S6B), which substantiated the spatial resolution of cell types in 

our scStereo-seq data. 

We performed morphometric analysis in the CNS across 7 

scStereo-seq samples, spanning developmental ages from 7 

to 18 h (Video S1). Throughout CNS development, we observed 

a shift in regions with the highest acceleration from the posterior 

end of the VNC (before E8.84) to the anterior end of the brain 

(after E13.79) (Figures 3E and S6A). The decline in acceleration 

and curl scores in the VNC was likely linked to the completion 

of germ band retraction, indicating that the shortening of the 

VNC during early development primarily relied on the migration 

of posterior cells toward the anterior end. Conversely, the in- 

crease in acceleration and curl scores in the anterior brain region 

might reflect active cell organization in brain lobes during late 

embryogenesis (Figures 3E and S6C). As anticipated from CNS 

morphology, regions with the highest curvature and curl scores 

concentrated around the curved joint between the VNC and 

the brain (Figure S6C). 

The morphometric analysis yielded a set of genes exhibiting 

spatiotemporal expression changes relevant to CNS morpho- 

metric dynamics (Table S7). Gene Ontology (GO) enrichment re- 

vealed that genes linked to CNS morphometric changes were 

highly enriched in cell fate specification and pattern formation. 

Notably, gene expression terms were more enriched at earlier 

stages, while signal transduction terms were more enriched at 

later stages (Figure S6D). These observations indicated that 

the process of CNS morphogenesis is closely linked to intrinsic 

cellular fate determination. This was further supported by co- 

ntributions to CNS morphometric scores from known CNS de- 

velopment regulators (e.g., mira, tll, and toy). Additionally, we 

identified multiple uncharacterized factors. For example, the ex- 

pression level of CG42394, which codes an uncharacterized 

transmembrane protein, was negatively correlated with acceler- 

ation, while that of lncRNA:CR30009 displayed a positive cor- 

relation (Figure 3F). We validated the CNS-specific expression 

of these potential regulators with FISH and observed that 

CG42394 exhibited a segmented expression pattern, while 

lncRNA:CR30009 was expressed more ubiquitously in the CNS

(F) General linear model-based correlation between acceleration scores and expression levels of CG42394 and lncRNA:CR30009 in transitions between rep- 

resentative scStereo-seq samples.

(G) FISH validation in stage 13–17 embryos of gene candidates identified in CNS morphometric analysis. Representative images of pan-neuronal marker gene 

elav and candidate genes CG42394, lncRNA:CR30009, and lncRNA:CR45388 are shown. All samples are shown in lateral view. Scale bars, 50 μm.

(H) FISH validation of colocalization between candidate lncRNA genes and neuroblast markers mira and cas in stage 13–17 embryos, with sample viewpoints 

labeled. Left: representative confocal images of merged channels at 10× magnification. The dashed square indicates selected areas for zoom-in. Scale bars, 

50 μm. Right: confocal images of zoom-in areas at 63× magnification. Arrowheads indicate representative loci of colocalization. Scale bar, 20 μm. A-P, anterior- 

posterior; D-V, dorsal-ventral. 

Related to Figures S5 and S6.
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(Figure 3G). Notably, the list of potential morphometric regula- 

tors included multiple long non-coding RNA (lncRNA) genes be- 

sides lncRNA:CR30009, which was previously reported to be en- 

riched in glia and colocalize with the glia marker gene repo. 59 

Examining these lncRNA genes in our scRNA-seq data, we ob- 

served that the expression of lncRNA:CR30009 and lncRNA: 

CR45388 showed the highest correlation with neuroblast and 

glioblast marker genes (Figure S6E). We further confirmed their 

colocalization with neuroblast marker genes mira and cas using 

FISH (Figure 3H). These observations indicated that the two 

lncRNA genes may influence CNS cell migration through the reg- 

ulation of neuroblasts. 

Therefore, morphometric analysis on the CNS provided a 

unique angle to investigate genes associated with cell migration 

and identified both known and potential regulators of CNS cell 

migration.

Gene expression and spatial layout of embryonic midgut 

cell subclusters 

The Drosophila midgut is a widely used model for investigating 

regulatory mechanisms of cell differentiation. The anatomical 

morphology and spatial distribution of cell types are highly dy- 

namic during embryo midgut development 60 (Figure 4A). Among 

the various midgut cell types, EEs and ECs can be further clas- 

sified into multiple subclasses based on their marker genes 

and physiological functions in adults. 61,62 However, their dynam- 

ics during embryonic and larval development remain unclear. 

Here, we first aimed to classify embryonic midgut cell types 

into subcategories and portray their differentiation dynamics 

with Dynamo. 63 Possibly due to technical limitations during sam- 

ple collection, we identified very few EEs in scATAC-seq data 

(Figure S3A). Thus, we concentrated on the scRNA-seq data 

for high-resolution subclustering, annotation, and cell state line- 

age depiction (Figure 4B). This revealed 23 cell subclusters of the 

developing midgut and identified the presence and differentia- 

tion paths of AMPs (marked by esg), 64 EEs (marked by pros 

and distinguished by specific expression endocrine genes), 

and ECs (marked and distinguished by digestive enzyme and 

metabolism-related genes) 62 (Figure 4C).

The kinetics of cell state changes revealed by Dynamo implied 

that, in line with previous studies, AMPs and EEs derived from 

the same group of progenitors, 10 which we denoted as ‘‘AMP/ 

EE progenitors’’ in our data. The differentiation paths of AMP/ 

EE progenitors indicated their relatively independent origins 

compared with ECs. Pathway enrichment analysis of cluster 

marker genes revealed that embryonic midgut cells are regu- 

lated by distinct signaling pathways, reflecting their versatile 

functions. Of note, the Notch signaling pathway was enriched 

in AMP/EE clusters, consistent with previous reports. 10,15 Addi- 

tionally, the Wnt signaling pathway was enriched in specific EE 

clusters 65 (Figure S7A). Interestingly, the AMP and EE clusters 

showed high enrichment in autophagy pathways (Figure S7A). 

Consistently, they exhibited high expression levels of autoph- 

agy-related genes (Figure S7B). It is possible that AMPs and 

EEs employ autophagy-related mechanisms to maintain midgut 

homeostasis during embryogenesis. 

It is known that some Drosophila midgut cell types occupy dis- 

tinct spatial locations to carry out their functions. For instance, 

copper cells are exclusively located in a small segment in the 

middle of the midgut. 66 To explore the spatial patterns of midgut 

cell subclusters, we mapped the subclusters identified above to 

their respective spatial locations through label transfer from 

scRNA-seq to embryo scStereo-seq data (Figure 4D). As ex- 

pected from their anatomy, gastric caeca and copper cells ex- 

hibited high spatial clustering (Figure 4D). Co-embedding 

scRNA-seq and label-transferred scStereo-seq data in the 

same UMAP space demonstrated high coherence (Figure 

S7C). The prediction scores showed that each scStereo-seq 

cell bin can be assigned an unambiguous label from scRNA- 

seq (Figure S7D). These observations supported accurate map- 

ping of cell types to their spatial locations. 

In the label-transferred scStereo-seq 3D models, we observed 

the dynamics in cell-type fraction throughout embryogenesis, re- 

flecting the different timings of emergence of these cell types. 

For example, EC (Try29F+) appeared around 13 h of develop- 

ment, while EC (Acbp3+) did not form until around 17 h 

(Figure 4E). Neighborhood enrichment analysis suggested that 

all EC subclusters exhibited a higher aggregated spatial

Figure 4. Cell-type diversity and functional regionalization in developing midgut

(A) Schematic representation of anatomical morphology of developing midgut during embryogenesis.

(B) UMAP plots showing subclustering, annotation, and RNA velocity flow of endoderm cells from scRNA-seq data, derived from Dynamo analysis. Velocity 

trajectories point in the direction of differentiation. AMPs, adult midgut progenitors; ECs, enterocytes; EEs, entero-endocrine cells; GC, gastric caecum. Cell-type 

color codes are in (C).

(C) Bubble plot showing expression levels and enrichment of top marker genes of cell types in (B). Marker genes of EEs are further classified.

(D) 3D midgut models across representative embryo scStereo-seq samples, showing spatial distribution of cell types, mesh models of midgut, and mesh models 

of the entire embryo. Cell-type color codes are the same as (B).

(E) Bar plot showing cell-type composition of midgut in scStereo-seq samples. Cell types are label transferred from scRNA-seq data. Cell-type color codes are 

the same as (B).

(F) Same as (D) but showing spatial distribution of EC (Jon99Cii+) and EC (Try29F+) in representative scStereo-seq samples.

(G) 3D models of L3 early midgut, showing annotated cell types with distinct spatial patterns.

(H) 3D models of L3 early midgut, showing spatial distribution of identified EE subclusters.

(I) Clustering and annotation results of 2D spatial transcriptomes of representative pupa scStereo-seq sample sections. Clusters annotated as ‘‘midgut inner’’ and 

‘‘midgut outer’’ are highlighted and labeled. Samples are not on the same scale.

(J) 3D embryo and midgut models across representative embryo scStereo-seq samples, showing spatial distribution of inferred midgut regions.

(K) Same as (J) but for larva scStereo-seq samples, showing only midgut models, and dashed lines indicate inferred midgut backbones.

(L) Left: same as (H) but for AMPs. Heatmap shows the expression enrichment of esg; right: bubble plot showing expression level and enrichment of top marker 

genes of AMPs in identified midgut regions in the L3 early scStereo-seq sample. 

Related to Figures S7, S8, and S9.
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distribution after 13 h, indicating that mature EC functions are re- 

lated to their specific spatial aggregation (Figure S8A). Across 

embryo scStereo-seq samples, we observed that the ECs 

marked by Jon99Cii and Try29F occupied distinct spatial loca- 

tions, suggesting that these ECs responsible for producing di- 

gestive enzymes tend to take up more posterior locations of 

the midgut tract (Figure 4F). We further examined the spatial dis- 

tribution of marker genes of cell subclusters with high neighbor- 

hood enrichment scores in the BDGP in situ database. The ob- 

servation of distinct distribution patterns underscores the 

spatial specificity of these cell subclusters (Figure S8B). 

In summary, we categorized and examined the variety of cell 

subclusters present in the embryonic midgut. Our analysis un- 

veiled EC subclusters that occupy distinct spatial locations 

and traced their distribution over development.

Gene expression and spatial layout of larval and pupal 

midgut cell subclusters 

We subsequently endeavored to identify midgut cell types in the 

larva and pupa scStereo-seq samples through subclustering 

(Figures S8C–S8E; Table S4). Compared with embryos, larval 

midgut grew significantly in size and displayed a more diverse ar- 

ray of intestinal cell types over development (Figures 4G and 

S8C). Notably, different ECs were densely clustered along the 

anterior-posterior axis of the midgut, as observed in the 3D mod- 

els of their distribution (Figure S8F). In the adult midgut, it has 

been established that EEs can be classified into several subclus- 

ters, each expressing a unique combination of peptide hor- 

mones and occupying distinct regions along the midgut length. 61 

Similarly, in our larval scStereo-seq data, EEs could be classified 

into subclusters expressing various peptide hormones (Figure 

S8D). These EE subclusters also displayed a distinct spatial dis- 

tribution, akin to that observed in the adult midgut (Figure 4H). 

These observations indicated that spatial patterning of EEs 

might also occur in larvae similar to adults. 

During the L3 stage, substantial changes occurred among 

midgut cell types. The anterior gastric caecum and the posterior 

EC (Acbp3+) in the midgut contracted and decreased in number 

in L3 early sample, eventually vanishing in the L3 late sample 

(Figures S8F and S8G). This suggested that significant remodel- 

ing and reorganization of the midgut takes place during the L3 

stage, which coincided with the previously established timing 

of midgut cell death in this region before metamorphosis. 13 Con- 

sistently, the L3 late midgut showed higher expression of cell 

death-related genes compared with other larval stages, includ- 

ing those involved in autophagy and lysosomal pathways (e.g., 

Atg8, CathD, and Cp1) 13 (Figure S8H). Notably, these genes 

showed higher expression levels in AMPs and EEs (Figure 

S8H), consistent with previous observations in embryo scRNA- 

seq data. This suggests the critical functions of AMPs and EEs 

in the regulation of autophagy throughout embryonic and larval 

midgut, consistent with the significant roles of autophagy path- 

ways during metamorphosis. 13 

The spatial transcriptomic data from our pupa scStereo-seq 

samples offered valuable resources for studying the regulation 

of midgut metamorphosis. Examining pupa scStereo-seq sam- 

ples, we observed that the pupal midgut delaminated into two 

layers, which we annotated as ‘‘midgut inner’’ and ‘‘midgut

outer’’ in manual annotation (Figure 4I; also refer to clustering re- 

sults in Mendeley Data: https://doi.org/10.17632/4zf847bxcd.1). 

These structures receded after stage P24 and re-emerged at 

stage P72. Previous studies have found that during metamor- 

phosis, part of AMPs locate to an epithelial layer surrounding 

the larval midgut, which degenerates into a structure termed yel- 

low body. 67,68 The midgut structure observed in pupal scStereo- 

seq samples could reflect such delamination. Examining the ex- 

pression profiles of these two layers, we observed that the 

midgut inner cluster was enriched in metallothionein and ferritin 

family genes, while the midgut outer cluster expressed 

multiple antimicrobial pathway genes (e.g., DptA and Drsl2) 

(Figure S8I). These results provided clues for investigation of 

gene regulation during midgut metamorphosis. 

In conclusion, the use of label transfer-assisted spatial map- 

ping and annotation unveiled spatially distinct larval and pupal 

midgut cell types and their dynamics over development.

Emergence and spatial distribution of midgut functional 

regions 

The adult Drosophila midgut is conventionally divided into five 

regions (hereafter termed R1–R5) based on morphological con- 

straints, with each region performing distinct roles. 69,70 Our prior 

investigations indicated that certain functional midgut regions 

begin to emerge during late embryogenesis. 8 

Here, we further characterized the process of embryonic 

midgut regionalization. Referring to regional marker genes sum- 

marized in Buchon et al., 70 we first identified 6 gene modules 

from adult midgut marker genes with hotspot 71 (Figure S9A) 

and established their correlation with expression profiles of adult 

midgut regions (Figure S9B). With these regional markers as 

references, we identified cell groups exhibiting transcriptomic 

similarity to adult R1 to R5 in scStereo-seq midgut cell bins, 

which we termed R1-like to R5-like. Each regional cell group dis- 

played increasing levels of spatial clustering over development 

(Figure S9C), suggesting that they gradually occupied distinct 

areas in the midgut during embryogenesis. Upon inspecting 

the expression of gene modules in scStereo-seq samples, we 

noted that modules corresponding to most regions began to ac- 

tively express around 13 h of embryogenesis (Figure S9D). Si- 

multaneously, the spatial distribution of regions started to crys- 

tallize around the same time point, mirroring the spatial order 

as observed in the adult midgut (R1 to R5 from anterior to poste- 

rior) (Figure 4J). This suggested that the late-stage embryonic 

midgut exhibited regional compartmentalization akin to its adult 

counterpart. We examined gene GO enrichment of marker genes 

of the identified embryonic midgut regions (Figure S9E). For in- 

stance, the R1/R2-like regions are functionally enriched in fatty 

acid metabolism; the R3-like region is functionally enriched in 

ion transport and pH regulation, consistent with the acidic nature 

of this region 72 ; and the R5-like region is functionally enriched in 

metal ion homeostasis (Figure S9F). These functions aligned well 

with their counterparts in adult midgut regions. 69,70 

We conducted profiling of larval midgut regions in a similar 

manner. Successfully, we identified modules corresponding to 

regions R1 through R5, which were arranged sequentially along 

the anterior-posterior axis of the larval midgut (Figure 4K). Nota- 

bly, the identified larval EE subclusters also exhibited distinct
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regional enrichment akin to their adult counterparts, with 

each subcluster predominantly found in one specific region 

(Figure S9G). Previous studies have reported that adult intestinal 

stem cells (ISCs) also display a regional specificity, with ISCs in 

each region responsible for the differentiation and regeneration 

of cell types specific to their corresponding regions. 69 In our 

scStereo-seq data, we noted that while AMPs (marked by the ex- 

pression of esg) were distributed throughout the entire midgut 

without spatial clustering (Figures 4L, S9G, and S9H), AMPs lo- 

cated in each identified region exhibited distinct expression pro- 

files (Figure 4L). These findings suggested that the regional 

specification of midgut stem cells occurs as early as the larval 

stages. 

Together, our scStereo-seq data demonstrated distinctive re- 

gions and their gene expression profiles in the embryonic and 

larval midgut, which dictated the spatially localized sub-organ 

functions similar to adults.

Identification of exex as a copper cell regulator through 

multimodal analyses 

In pursuit of previously uncharacterized cell-type-specific regu- 

lators during midgut development, we traced the endoderm tra- 

jectories of integrated scRNA-seq/scATAC-seq data (Figures 5A 

and S3C). We first performed differential motif analysis within 

each lineage to identify TFs that exhibited cell lineage-specific 

activities. In the early midgut, we identified multiple motifs corre- 

sponding to previously reported TFs regulating AMP and EE dif- 

ferentiation, including those of ttk 73 and lola. 62,74 During late 

midgut differentiation, we also identified known TFs responsible

for midgut development regulation, such as fkh 75 and cad 76 

(Figure S10A). 

Examining the midgut lineages, we noticed that the copper 

cells derived early from midgut primordium into a highly special- 

ized lineage (Figures 5A and S3C). We observed that differenti- 

ated copper cells emerged around 10 h into embryogenesis 

(Figure 4E). This was consistent with the time point inferred 

from the BDGP in situ database, in which a copper cell marker, 

Vha100-4, appears after stage 13 (∼10 h) of embryogenesis 

(Figure S10B). To further trace the copper cell lineage back to 

its origin in the midgut primordium, we performed subclustering 

of the midgut primordium cluster, yielding 7 cell groups, each 

destined for various midgut cell types along differentiation trajec- 

tories (Figure 5B; Table S2; Data S1). Among these, subcluster 2 

led to the development of copper cells, where we observed both 

specific transcript expression and elevated motif activity of lab 

(Figure S10C). These findings aligned with previous findings 

that the homeobox (Hox) TF lab is a well-established specific de- 

terminant of copper cells in the Drosophila midgut, being both 

necessary and sufficient for copper cell specification and 

maintenance. 77 

To further explore the regulatory factors driving the differentia- 

tion of copper cells, we examined their differentially active TF 

binding motifs and compared them to sibling lineages using scA- 

TAC-seq data. Differential motif analysis revealed that multiple 

HD TF motifs (characterized by their signature TAAT motif se- 

quences 78 ) were significantly enriched in copper cells compared 

with other midgut chamber lineages (Figure S10D). The evolutio- 

narily conserved Hox TFs, a subset of HD TFs, are each respon- 

sible for regulating multiple body patterning and cell-type

Figure 5. exex is a copper cell regulator during midgut development

(A) UMAP plot showing subclustering and annotation of endoderm and midgut cells from integrated scRNA-seq/scATAC-seq data. AMPs, adult midgut pro- 

genitors; EEs, entero-endocrine cells; GC, gastric caecum; ECs, enterocytes.

(B) 3D UMAP plot showing subclustering of midgut primordium and cell types each subcluster differentiates into. MC, midgut chamber.

(C) Line plot showing expression levels of HD TFs corresponding to top copper cell differential motifs in Figure S10D in the copper cell lineage, deduced from 

scRNA-seq data.

(D) Same as (C) but for exex, kay, and lab, showing intervals predicted with a span of 0.75.

(E) Confocal images of representative control (lab-Gal4 > UAS-mCherry-shRNA; UAS-GFPnls, n = 5) and exex KD (lab-Gal4 > UAS-exex-shRNA; UAS-GFPnls, n = 

6) stage 13–17 embryos. Copper cell regions are marked by dashed lines. A-P, anterior-posterior. Scale bars, 50 μm.

(F) Bar plots showing qPCR quantification of mRNA expression levels of exex and lab in copper cell regions. Bars represent mean relative value of gene ex- 

pression, with error bars indicating standard deviation. Each data point represents one biological replicate.

(G) Confocal images of representative control (n = 15) and exex KD (n = 23) unfixed midgut copper cell regions from L3 raised in normal diet. Scale bars, 200 μm.

(H) Line plot showing the number of lab::GFP-positive cells in control and exex KD L3 midgut samples. Lines represent mean ± standard deviation.

(I) Same as (G) but from L3 treated in media supplemented with 500 μM CuSO 4 . Arrowheads indicate representative lab::GFP-positive cells without copper- 

dependent autofluorescence in exex KD samples. Scale bars, 100 μm.

(J) Bar plot showing the percentage of lab::GFP-positive cells emitting copper-dependent autofluorescence in control and exex KD L3 midgut samples, with error 

bars indicating standard deviation.

(K) Same as (I) but from wild-type (Oregon-R-P2) and heterozygous exex KK30 L3. Scale bars, 100 μm.

(L) Line plot showing the number of copper-dependent autofluorescence cells in wild-type and heterozygous exex KK30 L3 midgut samples. Lines represent 

mean ± standard deviation.

(M) Same as (F) but for kay, Jra, and lab.

(N) Line plots showing peak module score (from scATAC-seq data) and expression module score (from scRNA-seq data) of up-regulated copper cell marker 

genes potentially regulated by peaks containing exex, lab, or dual motifs.

(O) Representative 3D midgut models showing the spatial activity patterns of genes with dual and lab or exex single motifs in scStereo-seq. Spatial patterns of 

copper cells are shown as a reference.

(P) Heatmaps showing Moran’s I index (indicator of spatial clustering) and spatial correlation scores with copper cells for up- or down-regulated copper cell 

markers with dual and lab or exex single motifs.

(Q) Scatter plot showing expression fold change of copper cell marker genes in DEGs between exex KD and control in bulk RNA-seq data.

(R) Same as (M) but for Mmp2, CG6763, and CG10000. Unpaired t tests were used for all statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 

Related to Figures S10 and S11.
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specification processes. It is believed that their pleiotropy is 

achieved through interaction with other cell-type-specific regu- 

lators. 78 Thus, there could be previously uncharacterized HD 

TFs involved in copper cell specification. 

To assess this hypothesis, we examined the expression level 

of HD TFs corresponding to top copper cell differential motifs 

along the lineage. Among them, we noted that exex exhibited a 

significantly high level of expression at the origin of the lineage, 

which subsequently decreased after copper cell differentiation 

(Figures 5C and 5D). Moreover, multiple exex motifs were highly 

enriched in differential motifs of both early and late stages of 

copper cell development (Figure S10A). First identified as a reg- 

ulator of axon guidance in the nervous system, 79 exex was also 

found to specify the fate of an EE subset in the midgut. 61 Indeed, 

we observed an expression enrichment of exex in an EE subset in 

our scRNA-seq data (Figure S10E). During embryogenesis, exex 

is expressed in both CNS and midgut 80 (Figure S10B). However, 

its function in copper cell differentiation was not previously 

investigated. 

To examine the potential involvement of exex in copper cell 

regulation, we investigated its expression level and motif activity 

in the copper cell lineage. Compared with lab, the transcript ex- 

pression of exex was present in but not restricted to midgut pri- 

mordium subcluster 2 and decreased to an undetectable level in 

differentiated copper cells. However, exex motifs retained spe- 

cific high activities throughout the lineage (Figures S10C and 

S10E). These expression profiles and regulatory characteristics 

of exex persisted into larval stages. Analysis of the L3 midgut 

scRNA-seq data revealed that although exex expression is 

more widespread compared with lab (Figure S10F), its target 

genes specifically retained copper cell activities, similar to those 

of lab (Figure S10G). These observations further implied the in- 

volvement of exex in copper cell development from embryonic 

to larval stages.

exex is required for copper cell specification and 

homeostasis through regulation of kay and lab 

expression 

To validate the function of exex, we performed copper-cell-spe- 

cific knockdown (KD) using lab-Gal4 to drive the expression of 

both UAS-exex-shRNA and a UAS-GFPnls reporter. Examining 

late-stage embryos, we observed that exex KD embryos showed 

weaker and scarcer lab::GFP signals in the copper cell region 

compared with control embryos (Figure 5E). Consistently, we 

observed that RNAi KD resulted in a substantial decrease in 

exex expression and number of lab::GFP-positive cells in the 

L3 midgut (Figures 5F–5H and S11A). The remaining lab::GFP- 

positive cells exhibited noticeably smaller sizes and aberrant 

morphology compared with the typical large, flattened, and sph- 

erical copper cell features observed in the control (Figure 5G). 

We then examined if physiological functions of copper cells 

were perturbed upon exex KD. Copper cells characteristically 

emit an orange autofluorescence when excited by ultraviolet 

light following dietary copper treatment. 77 This is thought to re- 

sult from the interaction between metallothionein proteins and 

accumulated copper ions in copper cells. 81 In exex KD L3 treated 

with a copper diet, we observed a significant decrease in both 

the number of lab::GFP-positive cells and the proportion of

lab::GFP-positive cells that also exhibited orange fluorescence 

(Figures 5I and 5J). This indicated a loss of copper ion homeosta- 

sis in copper cells upon exex deficiency. We further investigated 

copper cell phenotypes in copper-fed L3 carrying exex KK30 , an 

exex loss-of-function allele. 80 This strain is homozygous lethal 

in our hands. In heterozygous L3, we noted a significant loss of 

cells with copper-dependent autofluorescence and altered mor- 

phology (Figures 5K and 5L). Together, these findings confirmed 

the essential role of exex in copper cell development. 

We subsequently explored the potential mechanisms by which 

exex regulates copper cell specification. We noted that motif ac- 

tivities of kay and Jra ranked top in copper cells (Figure S10D). 

These two TFs are known activators of lab expression in the 

midgut. 82,83 Given the temporal asynchrony between the expres- 

sion level of exex and those of kay and lab (Figure 5D), it is 

plausible that exex activity precedes the other two in primordial 

copper cells. The temporal order was further supported by the 

identification of exex motif sequences at the TSS region of kay 

(Figure S11B). Additionally, the expression level of kay was signifi- 

cantly reduced upon exex KD. Although exex motif was not found 

in the TSS region of Jra, we still noted a similar level of expression 

decrease. Consistent with these findings, we observed a moder- 

ate yet significant reduction in lab expression (Figure 5M). 

Collectively, these observations underscored the pivotal role 

of exex in regulating both copper cell development and copper 

homeostasis within the Drosophila midgut through modulating 

the expression levels of kay and lab.

Potential co-regulation between exex and lab during 

copper cell development 

Although the expression levels of exex and lab displayed a tem- 

poral sequence, their binding motifs remained consistently ac- 

tive within the copper cell lineage. Consequently, we explored 

whether exex also exerts coordinated regulatory functions with 

lab. To investigate this hypothesis, we inspected all the peaks 

containing lab or exex motifs and found that peaks bearing mo- 

tifs of both TFs (dual motifs) showed greater overlap with copper 

cell marker genes compared with those bearing only lab or exex 

motifs (single motifs) (Figure S11C; Table S8). We observed that 

compared with single motif peaks, dual motif peaks were closer 

to the TSS of copper cell marker genes (Figure S11D), potentially 

exerting stronger transcription regulation. In line with this obser- 

vation, copper cell marker genes regulated by dual motifs dem- 

onstrated higher chromatin accessibility and expression levels 

compared with those regulated solely by lab motifs (Figure 5N). 

Additionally, we visualized the spatial expression patterns of 

up- or down-regulated marker genes with either dual or single mo- 

tifs in copper cells using scStereo-seq data. We observed that the 

up-regulated genes with dual motifs displayed an increasing trend 

of spatial aggregation over development, while the genes with sin- 

gle motifs did not exhibit spatial clustering patterns (Figures 5O 

and 5P). Compared with the genes with single motifs, those with 

dual motifs showed progressively increasing and stronger spatial 

correlation with copper cells over time (Figure 5P). These findings 

suggested that genes regulated by dual motifs exhibit a growing 

specificity to copper cells over development. 

To further detect global changes resulting from exex copper- 

cell-specific KD, we conducted bulk RNA-seq on copper
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cell-enriched segments of L3 midgut (Data S2). Upon examining 

the transcripts per million (TPM) of exex, we confirmed its reduc- 

tion in KD samples (Figure S11E). Investigating the 415 differen- 

tially expressed genes (DEGs) between exex KD and control, we 

observed that 107 (25.8%) of them overlapped with copper cell 

markers. Among these genes, we noticed a higher number of 

dysregulated genes with dual motifs compared with those with 

single motifs (Figure 5Q). Inspecting representative dual motif 

genes, including metalloendopeptidase genes Mmp2 and 

CG6763, as well as an uncharacterized glycosyltransferase 

gene CG10000, we noted significant expression dysregulation 

upon exex KD (Figure 5Q), which was confirmed using qPCR 

(Figure 5R). We further observed the presence of dual motifs in 

the copper cell differentially accessible (DA) peaks of these 

genes (Figure S11F). These observations implied that, in addition 

to regulating lab expression, the function of exex might also en- 

compass serving as a transcriptional co-regulator with lab during 

copper cell development. 

In summary, through in vivo functional validation, we con- 

firmed the critical roles of exex in copper cell developmental reg- 

ulation. These results underscored the utility of our multi-omics 

data in identifying regulatory factors at the cell-type level within 

developing tissues.

DISCUSSION

A comprehensive high-resolution multi-omics atlas of 

Drosophila development 

After our initial proof-of-principle application of Stereo-seq on 

Drosophila, we present here a single-cell 3D spatiotemporal 

multi-omics atlas spanning the developmental lifespan of Droso- 

phila from embryogenesis to metamorphosis. This study en- 

hanced Stereo-seq spatial transcriptomic dataset in several 

ways. Firstly, the sample collection window was expanded to in- 

clude development from embryo to pupa. Since systematic da- 

tabases are notably absent for the larval and pupal stages, our 

data serve as a valuable asset for investigating the spatial 

gene expression patterns in larvae and pupae. Secondly, we in- 

corporated imaging data from nucleus staining with Stereo-seq 

to enable cell segmentation and established single-cell spatial 

transcriptomes. Finally, we integrated droplet-based scRNA- 

seq and scATAC-seq data with scStereo-seq data, which im- 

proved genome coverage and incorporated epigenomic infor- 

mation. The plethora of multi-omics data generated in this study 

provided many unique angles for dissecting the molecular 

underpinnings of various aspects of tissue development, as we 

have shown in this study. 

While we annotated tissue subclusters to the best of our 

knowledge, there could still be instances where clusters were 

not assigned their optimal annotations. Therefore, community 

efforts are welcome to help further specify the annotations of tis- 

sue cell types.

Identification of cell-type-specific regulatory factors 

through integrative multimodal data analysis 

Our investigation of midgut cell-type regulators demonstrated 

the power of our high-resolution multi-omics data in supporting 

detailed delineation of tissue development at the cell-type level.

Utilizing a combination of analysis tools to identify TFs that per- 

form cell-type-specific functions, we identified both previously 

reported and potential regulators. Nevertheless, some of our 

analyses did not detect well-established, cell-type-specific 

TFs, such as grn in differentiating midgut 84 and lab in copper 

cells. 77 This could be attributed to the paucity of their down- 

stream targets. These TFs, despite being the primary determi- 

nants for certain cell types and appearing in cell-type marker 

genes (Figure S11G), might regulate only a few target genes, re- 

sulting in a low ranking in enrichment-based analyses. Another 

explanation is the divergence between a TF’s transcript expres- 

sion and its motif activities. For instance, lab motif activity was 

not restricted in copper cells, but lab transcript expression was 

highly exclusive to copper cells, leading to specific activation 

of its target genes in copper cells (Figure S11H). 

The identification of the copper cell regulator exex in this study 

was facilitated by a multimodal analysis approach. Solely relying 

on transcript expression data, exex remained elusive due to its 

low expression levels in copper cells within our scRNA-seq 

data. HD family TFs share highly similar binding motifs with the 

consensus TAAT sequence, which complicates the identification 

of lab co-regulators based only on motif information from scA- 

TAC-seq data. However, through comprehensive multimodal 

analyses, we successfully revealed the importance of exex in 

copper cells and its regulatory coordination with lab. These find- 

ings underscored the importance of the integration of multiple 

analysis methods.

Potential exploitations of integrated multi-omics 

datasets 

The extensive datasets we generated here can be leveraged in 

many ways. We used the midgut as an example to demonstrate 

how our scStereo-seq data can provide a spatial framework for 

single-cell studies of larval or pupal tissues, such as through in- 

tegration with existing larva scRNA-seq datasets. 85–87 The 

study of Drosophila early pupal development has been chal- 

lenging due to significant tissue lysis and reformation. Our 

pupa scStereo-seq data provided valuable insights for the in- 

vestigation of tissue-specific transcriptomic changes during 

metamorphosis. 

Moreover, our datasets can serve as a source of inspiration for 

the development of multiple types of bioinformatic algorithms 

and methods and can serve as benchmarking resources for 

such algorithms, such as cell segmentation of spatial transcrip- 

tomic data, integration of multi-omics data, spatial mapping of 

cell types, machine-learning-based cell-type and age prediction, 

and cell lineage tracing, among others. 

To make our data more accessible, we have incorporated our 

datasets into the Spateo Viewer platform. 9 This platform is a ver- 

satile and scalable web application specifically designed for the 

exploration of spatial transcriptomics data. Accessible through 

our online data portal, Flysta3D-v2, the Spateo Viewer provides 

user-friendly access to our 3D models with interactive visualiza- 

tion of gene expression and a variety of other customizable pa- 

rameters within spatiotemporal contexts. A detailed tutorial of 

Spateo Viewer can be found in the software repository 88 and 

https://db.cngb.org/stomics/help. We believe that our compre- 

hensive multi-omics database will serve as a catalyst for
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systematic research into Drosophila development, facilitating a 

deeper understanding of organism-wide spatiotemporal 

dynamics.

Limitations of the study 

Our multimodal analysis demonstrated its potential for sys- 

tematic investigation of Drosophila development at the tissue 

cell-type level. However, there are still certain technical limita- 

tions of our datasets. 

First, the single-cell resolution of Stereo-seq data was 

achieved through imaging-based cell segmentation that relies 

on nuclei staining images, which may not always be accurate. 

Potential issues include the same cell being recognized as two 

cells in separate sections or overlapping cells not being properly 

defined. These technical issues may be addressed with robust 

cell membrane staining instead of nuclei staining for better delin- 

eation of cell boundaries. On the computational side, improved 

algorithms utilizing machine learning can enhance cell recogni- 

tion across sections. 89,90 

Second, the scRNA-seq and scATAC-seq data in this study 

were obtained from separate experiments. These technical and 

batch variations resulted in differences in genome coverage 

and cell composition across datasets. Despite our efforts in 

age-matched integration, it is still possible that data used for in- 

tegration were from different states of cells, confounding the 

analysis results. To overcome this issue, methods for simultane- 

ous capture of transcriptomic and chromatin accessibility pro- 

files from single cells have been developed lately 91–93 and can 

be applied in future studies.
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STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-Digoxigenin antibody Abcam ab420; RRID: AB_304362

Rabbit anti-Biotin antibody Abcam ab53494; RRID: AB_867860

Alexa Fluor 488 Tyramide 

SuperBoost Kit, goat anti-mouse IgG

Invitrogen B40941

Alexa Fluor 594 Tyramide 

SuperBoost Kit, goat anti-rabbit IgG

Invitrogen B40925

Critical commercial assays

Tissue-Teck OCT Sakura 4583

20X Saline-sodium citrate (SSC) Thermo AM9770

Cornmeal-sucrose-agar Drosophila media Hopebio HB8590

Drosophila incubator Laifu PGX-280A-3H

Cryostat Leica CM1950

Halobarcon oil 700 Macklin H909293

Hoechst 33342 MCE HY-15559

m-cresol purple Yuanye S19181

Fluorescence stereo microscope Soptop SZX12

Confocal microscope Zeiss LSM 980 NLO

40 μm cell strainer NEST 258369

70 μm cell strainer NEST 258368

DNBelab C4 Pocket Single-Cell Lab Package MGI 940-000506-00; 940-000507-00; 940-000508-00;

940-000509-00; 940-0005010-00

Stereo-seq STOmics Gene Expression Package MGI 101KT114

VAHTS Universal V8 RNA-seq 

Library Prep Kit for Illumina

Vazyme NR605

DIG RNA Labeling Mix Roche 11277073910

Biotin RNA Labeling Mix Roche 11685597910

T7 RNA polymerase Fermentas EP0111

RNA Isolator Total RNA Extraction Reagent Vazyme R401

HiScript II Q Select RT SuperMix for qPCR Vazyme R233

ChamQ SYBR qPCR Mastermix Vazyme Q311

Deposited data

Sequencing data generated by Stereo-seq, 

scRNA-seq, and scATAC-seq

This study https://db.cngb.org/stomics/flysta3d-v2/

Processed matrices for 

scStereo-seq and scRNA-seq data

This study https://doi.org/10.17632/tvvjfr3c6j.1

Processed matrices for embryo 

scATAC-seq data (part 1)

This study https://doi.org/10.17632/29695x8txs.1

Processed matrices for 

embryo scATAC-seq data (part 2)

This study https://doi.org/10.17632/4zf847bxcd.1

Raw sequencing reads of bulk RNA-seq data of 

lab-Gal4 > UAS-mCherry-shRNA copper cells

This study https://doi.org/10.17632/pvft366s4d.1

Raw sequencing reads of bulk RNA-seq data of 

lab-Gal4 > UAS-exex-shRNA copper cells

This study https://doi.org/10.17632/wjjhnfzy9n.1

Experimental models: Organisms/strains

Drosophila melanogaster w1118 Tsinghua Fly Center THJ0265

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Drosophila melanogaster lab-Gal4 Bloomington Drosophila Stock Center BDSC43652

Drosophila melanogaster w; NP1-Gal4 Gift from Dr. Yuxuan Lyu N/A

Drosophila melanogaster w1118; UAS-GFPnls Bloomington Drosophila Stock Center BDSC4776

Drosophila melanogaster UAS-mCherry-shRNA Bloomington Drosophila Stock Center BDSC35785

Drosophila melanogaster UAS-exex-shRNA Tsinghua Fly Center TH04061.N

Drosophila melanogaster Oregon-R-P2 Bloomington Drosophila Stock Center BDSC2376

Drosophila melanogaster exex KK30 Bloomington Drosophila Stock Center BDSC9930

Oligonucleotides

Primers for generating FISH 

probes and qPCR primers

This study Table S9

Software and algorithms

bap2 Lareau et al. 94 https://github.com/buenrostrolab/bap

BEDTools Quinlan and Hall 95 http://code.google.com/p/bedtools

BWA Li and Durbin 96 http://maq.sourceforge.net

Cellpose Stringer et al. 97 http://www.github.com/mouseland/cellpose

CIS-BP Weirauch et al. 98 http://cisbp.ccbr.utoronto.ca/

COSG Dai et al. 99 https://github.com/genecell/COSG

CytoTRACE Gulati et al. 52 https://cytotrace.stanford.edu/

DoubletFinder Mcginnis et al. 100 https://github.com/chris-mcginnis- 

ucsf/DoubletFinder

Dynamo Qiu et al. 63 https://github.com/aristoteleo/dynamo-release

FlyPhoneDB Liu et al. 30 https://www.flyrnai.org/tools/fly_phone/web/

Gephi Bastian et al. 101 http://gephi.org

Harmony Korsunsky et al. 102 https://github.com/immunogenomics/harmony

HOMER Heinz et al. 103 http://homer.ucsd.edu/homer/download.html

Hotspot DeTomaso and Yosef 71 https://github.com/YosefLab/Hotspot

MACS2 Zhang et al. 104 https://pypi.python.org/pypi/MACS2/

NovoSpaRc Moriel et al. 28 https://pypi.org/project/novosparc

Pando Fleck et al. 47 https://github.com/quadbiolab/Pando

PANGEA Hu et al. 105 https://www.flyrnai.org/tools/

pangea/web/home/7227

Phylovelo Wang et al. 29 https://github.com/kunwang34/PhyloVelo

PISA Shi et al. 106 https://github.com/shiquan/PISA

Plotly Kruchten et al. 107 https://github.com/plotly/plotly.py

Plotnine Kibirige et al. 108 https://github.com/has2k1/plotnine

pySCENIC Van de Sande et al. 109 https://github.com/aertslab/pySCENIC

RAPToR Bulteau and Francesconi 27 https://github.com/LBMC/RAPToR

rearrr Olsen 110 https://github.com/LudvigOlsen/rearrr

scanpy Wolf et al. 111 https://scanpy.readthedocs.io/en/stable/

scVI Lopez et al. 112 https://github.com/YosefLab/scVI

Seurat Hao et al. 49 https://github.com/satijalab/seurat/

Signac Stuart et al. 113 https://github.com/timoast/signac/

Spateo Qiu et al. 9 https://github.com/aristoteleo/spateo-release

squidpy Palla et al., 2021 https://squidpy.readthedocs.io/en/stable/

STAR Dobin et al. 114 https://github.com/alexdobin/STAR

Velocyto La Manno et al. 115 http://velocyto.org/velocyto.py

VennDiagram Chen and Boutros 116 https://cran.r-project.org/web/

packages/VennDiagram/index.html
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Fly strain maintenance 

All Stereo-seq, scRNA-seq, and scATAC-seq samples were obtained from Drosophila strain w1118. Flies were maintained on corn- 

meal-sucrose-agar media in a 25 ◦ C incubator on a 12 h/12 h light/dark cycle. Detailed strain information can be found in the 

key resources table.

Fly sample preparation 

Samples were prepared and embedded for cryosection and Stereo-seq as previously described. 8 Unless otherwise specified, em- 

bryo samples were sectioned along the left-right axis to represent sagittal planes. 

For scRNA-seq, single cells from embryos were isolated and fixed following protocols described in Alles et al. 118 and stored at 

-20 ◦ C until further use. Single cells from midgut samples of wandering third instar larvae were isolated as described in Hung 

et al. 62 and fixed in the same manner until further use. 

For scATAC-seq, embryos were collected from a population cage and transferred to a 70 μm cell strainer, dechorionated in 

commercial bleach for 3 min, rinsed with ddH2O, and dried on a Kimwipe. Samples were then snap-frozen in liquid nitrogen and 

stored at -80 ◦ C until further use.

METHOD DETAILS

Stereo-seq library preparation and sequencing 

Tissue processing and imaging 

Stereo-seq library was prepared following the protocol in Chen et al. 7 with modification. Unless otherwise mentioned, buffer recipes 

and primer sequences used in this study were the same as Ref 7 . Briefly, embedded samples were balanced at -20 ◦ C for 30 min and 

sectioned using a Leica CM1950 cryostat at a thickness of 7 or 8 μm. All available resulting slices were collected for sequencing. To 

minimize batch effects, six embryo/L1 slices, or four L2 slices, or two L3/pupa slices were mounted on one 1 cm × 1 cm Stereo-seq 

chip simultaneously. The mounted chips were then incubated at 37 ◦ C for 3 min and subsequently fixed in cold methanol (Sigma, 

34860) at -20 ◦ C for 30 min. After fixation, chips were treated with staining solution consisted of 0.1 × SSC (Ambion, AM9770), 

1/200 nucleic acid dye (Invitrogen, Q10212), and 2 U/μl RNase inhibitor (NEB, M0314L). Sections were incubated in staining solution 

for 3 min and then rinsed with 0.1 × saline sodium citrate (SSC) buffer supplemented with 2 U/μl RNase inhibitor. Sections were then 

imaged using a Motic Custom PA53 FS6 microscope (10 × objective) before RNA capture. 

RNA capture and in situ reverse transcription 

Tissue slices, mounted on Stereo-seq chips, were subjected to treatment with 0.1% pepsin (Sigma, P7000) in a 0.01 M HCl solution, 

followed by incubation at 37 ◦ C for 6 min for permeabilization. Permeabilized slices were washed twice using 0.1 × SSC buffer 

supplemented with 0.05 U/ml RNase inhibitor. After permeabilization, RNAs were released from the tissue and captured by DNA 

nanoballs (DNBs) on Stereo-seq chips. Chips were incubated in reverse transcription mixture at 42 ◦ C overnight. After reverse tran- 

scription, chips were washed twice with 0.1 × SSC buffer and subsequently incubated in tissue removal buffer at 37 ◦ C for 30 min. 

cDNAs were collected by treating the chip with Exonuclease I (NEB, M0293L) for 1 h at 37 ◦ C. Residual cDNAs were collected through 

a final rinse of the chip with 0.1× SSC buffer. The flowthrough, combined with the Exonuclease I treated product, was purified using 

0.8 × VAHTS DNA clean beads (Vazyme, N411-03). 

Library construction and sequencing 

Purified cDNAs were amplified using the KAPA HiFi Hotstart Ready Mix (Roche, KK2602) with 0.8 μM cDNA-PCR primer. PCR am- 

plification was performed with the following steps: pre-heating at 95 ◦ C for 5 min; 15 amplification cycles with 98 ◦ C for 20 s, 58 ◦ C for 

20 s, and 72 ◦ C for 3 min; final incubation at 72 ◦ C for 5 min. Amplified cDNAs were purified using 1 × VAHTS DNA clean beads. For 

library construction, 20 ng cDNAs were fragmented using in-house Tn5 transposase at 55 ◦ C for 10 min. 0.02% SDS was added to 

terminate the reaction. Fragmented cDNAs were then subjected to amplification using the KAPA HiFi Hotstart Ready Mix with the 

addition of 3 μL each 10 μM Stereo-seq-Library-F primer and Stereo-seq-Library-R primer. PCR amplification was performed 

with the following steps: pre-heating at 95 ◦ C for 5 min; 13 amplification cycles with 98 ◦ C for 20 s, 58 ◦ C for 20 s, and 72 ◦ C for

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

FlyPrimerBank Hu et al. 117 https://www.flyrnai.org/cgi-bin/

DRSC_primerbank.pl

Other

Custom codes generated

using open-source software

This study https://github.com/Flysta3D/

multi_omics_atlas
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30 s; final incubation at 72 ◦ C for 5 min. Amplified PCR products were purified using VAHTS DNA clean beads. Construction of se- 

quencing libraries and sequencing with MGI DNBSEQ-T10 sequencer were performed following manufacturer’s protocols.

scRNA-seq library construction and sequencing 

Sequencing libraries were prepared using the DNBelab C Series High-throughput Single-Cell RNA Library Preparation Kit (MGI, 

94000004700) following manufacturer’s protocol. Briefly, fixed single cell suspensions, preserved in methanol, were balanced at 

4 ◦ C for 5 min and centrifuged at 2,000 g at 4 ◦ C for 5 min. Cell pellets were washed twice with wash buffer [PBS with 1% RNAse 

inhibitor and 0.04% bovine serum albumin (BSA)] before resuspension in 100 μL wash buffer. Cells were counted and 20,000 cells 

were aliquoted for droplet generation, emulsion breakage, beads collection, reverse transcription, second strand synthesis, cDNA 

amplification, and droplet index product amplification to generate barcoded libraries. Sequencing libraries were quantified using Qu- 

bit ssDNA Assay Kit (Invitrogen, Q10212) and subsequently sequenced with MGI DNBSEQ-T10 sequencer.

scATAC-seq library construction and sequencing 

Sequencing libraries were prepared using the DNBelab C Series Single-Cell ATAC Library Prep set (MGI, 1000021878) following the 

manufacturer’s protocol. Briefly, single nuclei were extracted by grinding flash-frozen embryos in the lysis buffer using a 2 mL ho- 

mogenizer (Sigma-Aldrich, D8938). Nuclei were washed twice with wash buffer and resuspended in 100 μL wash buffer. Nuclei 

were counted before 50,000 nuclei were aliquoted and subjected to in-house Tn5 transposase treatment. Treated single-nucleus 

suspension was then converted to barcoded scATAC-seq libraries through droplet encapsulation, pre-amplification, emulsion 

breakage, beads collection, DNA amplification, and purification. Indexed sequencing libraries were constructed following the man- 

ufacturer’s protocol and quantified using Qubit ssDNA Assay kit. Sequencing libraries were subsequently sequenced with MGI 

DNBSEQ-T10 sequencer.

scStereo-seq data processing 

Cell segmentation 

Manual registration of the DNB image with the nucleic acid staining image was performed as described in Chen et al. 7 . Nucleus iden- 

tification and cell segmentation was performed on the aligned images using Cellpose. 97 Additionally, spateo.cs.expand_labels func- 

tion from Spateo 9 was applied to augment each segmented nucleus with an additional 10 DNBs, approximating the actual size of 

Drosophila cells. Furthermore, spateo.io.read_bgi function was employed to perform cell segmentation on the aligned bin1 matrix. 

Within each segmented cell, UMI counts from all DNBs corresponding to the segmentation were aggregated, preserving the counts 

on a per-gene basis. These aggregated counts were then summed to generate a gene/cell matrix for downstream analysis. To ac- 

curately determine the centroid of each cell, rearrr package 110 was used to facilitate the identification of the central position within the 

segmented cell. 

Section alignment 

spateo.align.morpho_align function was used to perform registration on all slices of each sample, which involved aligning and co- 

registering all slices within a sample to ensure accurate spatial alignment throughout the sample volume. 

Data quality control 

Cell bins were first filtered to retain those with mitochondrial gene content ≤ 10%. Cell bins were further filtered with filter_cells func- 

tion from the spateo.pp.filter module (min_area=20, min_expr_genes=20). Gene filtering was applied with filter_genes function from 

the same module (min_cells=3, min_counts=1). spateo.tl.pearson_residuals function was then used to normalize data from all slices 

from the same sample. Normalized data were combined to create an integrated matrix for each sample. 

Dimension reduction and clustering 

dynamo.tl.compute_neighbors function was first used to compute a neighbor graph with parameters n_neighbors=6 and n_pca_ 

components=50. Dimensionality reduction was performed using spateo.tl.pca_spateo function with parameter n_pca_compo- 

nents=50, along with the spateo.tl.reduceDimension function from the dyn.tl module with parameter n_components=2. Cluster 

assignment was performed using spateo.tl.scc function. Marker genes for each cluster were determined using scanpy.tl.rank_ge- 

nes_groups function from SCANPY 111 with t-test method. Based on marker genes and spatial morphology, clusters were manually 

curated and annotated into cell types, tissues, and germ layers. 

3D model reconstruction and alignment 

Spateo was employed to reconstruct 3D models of spatial transcriptomic data. Specifically, 3D point-cloud models of scStereo-seq 

samples were generated using spateo.tdr.construct_pc function with default parameters. To align spatial coordinates for continuous 

morphometric analysis, the scStereo-seq sample of the first time point was set as the reference by transforming the coordinates of 

the sample through spateo.tdr.rotate_model function, such that the centroid of the embryo was located at origin. The anterior-pos- 

terior axis and dorsal-ventral axis corresponded to the x and y axis in the coordinate system, respectively. spateo.tl.model_align 

function was used with default parameters to align all other sample models to the same coordinate system. Finally, 3D mesh models 

of samples were created through spateo.tdr.construct_surface function with parameters adjusted for each sample. 3D models of in- 

dividual tissues were generated with the same methods as those for the entire embryo.
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Gauging scStereo-seq capture efficiency 

The precise cell count has not been definitively established for all embryonic tissues, thereby limiting our ability to accurately gauge 

the percentage of cells captured by scStereo-seq. Nevertheless, it is understood that following the 14 th cell cycle of the syncytial 

embryo (∼2 h into development), there are around 6,000 nuclei, with the majority forming individual cells and the remainder residing 

in the yolk. 50 This aligns with the cell numbers observed in our early scStereo-seq samples. For instance, the E2.95 sample captured 

5,564 cells, and the E3.25 sample captured 6,175 cells. These results implied that there was no significant cell loss during scStereo- 

seq sample preparation at these stages. Owing to handling mishaps, certain scStereo-seq samples, particularly those from pupal 

stages, which were structurally amorphous, did not have all cryosection slices preserved (Table S1). To ensure the integrity of down- 

stream analyses, we used samples with complete slice capture whenever possible.

scRNA-seq data processing 

Construction of gene/cell matrix 

Raw reads generated by DNBelab C4-based scRNA-seq were processed as previously described. 119 Briefly, reads were pre-pro- 

cessed with PISA 106 and aligned to the Drosophila melanogaster genome (dm6) using STAR. 114 Gene expression levels were quan- 

tified with PISA to generate gene/cell matrix, and genes present in < 3 cells were filtered. 

Data quality control 

Cells were filtered by the following criteria: feature number > 500 and mitochondrial gene content ≤ 10% for embryo data; feature 

number > 500, mitochondrial gene content < 25% and UMI between 1000 and 80000 for L3 midgut data. DoubletFinder 100 was 

used to identify and remove doublets, with a doublet anticipation of 3%. Batch effects were corrected with scVI 112 for embryo data. 

Dimension reduction, clustering, and annotation 

Seurat 49 was used for data normalization and dimension reduction. Louvain method was used for cell clustering. Based on marker 

genes, clusters were manually curated and annotated into cell types, tissues, and germ layers. For tissue subclustering, annotated 

tissues were divided into their respective matrices and subjected to RunUMAP function, followed by re-clustering at different reso- 

lutions (see Table S4) to identify detailed cell subclusters. Based on marker genes, subclusters were manually curated and annotated 

into cell subclusters. For all plots, hex color codes of tissues can be found in Table S10.

scATAC-seq data processing 

Construction of peak/cell matrix 

Raw reads generated by DNBelab C4-based scATAC-seq were pre-processed with PISA. Retained reads were then aligned to the 

Drosophila melanogaster genome (dm6) using BWA 96 with default parameters to generate BAM files. Subsequently, fragment files 

from the same scATAC-seq library were created using bap2. 94 Processed fragments were used for peak calling with MACS2 104 for 

each sample, including only autosome peaks. To minimize batch effects, samples within the same time window were matched pair- 

wise and peak integration was performed with IDR. 120 IDR integrated peaks were then merged using BEDTools. 95 The resulting 

merged peak list per time window was used to construct the peak/cell matrix for each time window. Peaks present in < 1% cells 

were filtered. Further analysis was carried out using Signac. 113 

Data quality control 

Cells were filtered by the following criteria: peak region fragment number > 4000 and < 40000; reads percentage in peaks ≥ 15%; 

blacklist ratio < 0.05; TSS enrichment score > ∼1.7 (adjusted for each time window); reads per peak (reads per cell divided by peak 

number per cell) > 1.5 - 2.1 (adjusted for each time window); nucleosome signal < 4. Doublets were removed through a modified 

scrublet algorithm. 6 After calculation of doublet scores, cells above the 95th percentile were retained. To assess the quality of our 

data, peaks from our data were juxtaposed with annotated TSS sites (2 kb upstream and 200 bp downstream of TSS), 20 peaks 

from previous Drosophila embryo scATAC-seq datasets, 18 curated sets of known embryonic enhancers, 21–23 and bulk DHS peaks. 19 

For each pair of datasets, the percentage of elements in one set that overlapped with elements in the other set was calculated, per- 

mitting a minimum overlap of 1 bp, and reciprocally. 

Dimension reduction and clustering 

Dimension reduction and clustering were performed following pipelines described in Ref 6 . Briefly, peak/cell matrix was normalized 

using latent semantic indexing with log-scaled term frequency. The 2 nd to the 50 th principal components were retained after running 

RunPCA function from Seurat and L2-normalization was applied to these components. To minimize batch effects, Harmony 102 was 

applied on the PCA matrix prior to running RunUMAP function from Seurat (min.dist = 0.3) for clustering. Louvain clustering algorithm 

was used and cluster resolution for each time window was set to 0.3. Two rounds of dimension reduction and clustering were per- 

formed for each time window. In both rounds, clusters with a cell count < 5% of total cell count and clusters dominated by cells from a 

single batch (> 80%) were discarded. After the first round of clustering, remaining clusters were used in cluster-specific peak re-call- 

ing to generate a new peak/cell matrix, including only autosome peaks. For each round of clustering, batch effects were removed with 

Harmony. 102 The resulting clusters were then re-clustered and selected for the final whole embedding. 

Integrative UMAP embedding 

To create an integrative peak list encompassing samples from all time windows, peak profiles from all 11 time windows after the peak 

re-calling were merged using BEDTools. With this peak list, 11 chromatin accessibility objects were created, containing retained cells 

after two rounds of clustering. These objects were then merged to generate a single chromatin accessibility profile. Dimension
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reduction and clustering were performed as described above with some modifications, including removal of peak representation fil- 

ter. Clusters with < 100 cells, instead of clusters with a cell count < 5% of total cell count, were excluded. Additionally, Runharmony 

function from Harmony was not run on the integrative matrix to preserve differences between time windows, which may reflect epi- 

genetic changes during development. 

Tissue and cell type annotation 

To annotate cell types at the tissue level, a gene activity matrix was created using GeneActivity function from Signac, which com- 

puted the counts in both gene body and promoter region (2 kb upstream of TSS) to generate a gene/cell matrix. Marker genes for 

each cluster were identified using the FindAllMarkers function from Seurat with the parameters min.pct = 0.1 and logfc.threshold = 

0.1. Based on marker genes, clusters were manually curated and annotated into cell types, tissues, and germ layers (Table S4). Tis- 

sue subclustering was performed as described for scRNA-seq data. 

Cell composition discrepancies between datasets 

We noticed that the proportion of cells representing some tissues differed among the three datasets (Figure 1B), which was attrib- 

utable to different technical procedures during sample preparation stage. For instance, the proportion of epidermis was significantly 

greater in scStereo-seq compared to the other two datasets. During the single-cell isolation phase for scRNA-seq and scATAC-seq, 

the chorion (the outermost layer of the eggshell with dorsal appendages at the anterior end) was removed from embryos as it con- 

tributes significant impurities to the cell suspension. Conversely, for the scStereo-seq samples, the chorion was left intact to facilitate 

the handling of embryos and the determination of orientation during embedding. Epidermal cells derived from or attached to the cho- 

rion were thus retained in scStereo-seq dataset but largely lost in the other two. There was also a significant decrease in the fraction of 

epidermis and muscle cell types in scRNA-seq data compared to scATAC-seq (Figure 1B). This discrepancy stemmed from technical 

limitations in capturing muscle (likely due to their syncytial characteristics) and epidermal cells with our single cell suspension gen- 

eration procedure. scATAC-seq, on the other hand, fractioned cells for single nuclei during library preparation and better captured 

these two cell types. Additionally, due to drastic morphological differences between larval and embryonic tissues, cells representing 

each tissue also varied between them.

Developmental age inference 

Necessity of age inference and matching 

Considering the rapid spatiotemporal gene expression changes during embryogenesis, it is crucial to confirm that the developmental 

ages of embryo samples were matched before integrating multi-omics data. Age matching involving scStereo-seq samples was also 

necessitated by instances where mated female flies might retain embryos in their reproductive tract for some time between fertiliza- 

tion and egg laying (‘‘egg retention’’)26, leading to possible deviations of the actual developmental age from the sample collection 

windows in individual scStereo-seq samples. scRNA-seq and scATAC-seq data were acquired from several hundred embryos 

per sample batch. Sample developmental age matched collection window for most embryos, and the substantial sample size miti- 

gated the influence of sporadic female egg retention. 

Age inference of scRNA-seq and scStereo-seq data 

Inference of developmental age for each cell in scRNA-seq and scStereo-seq data was performed by RAPToR Drosophila refer- 

ence 27 . For scRNA-seq data, normalized gene expression matrices of single cells were used as input; for scStereo-seq data, pseudo 

bulk expression matrices of entire embryo samples were used as input. Overlapping genes between our data and reference data 

were used for age inference. ae function was used to generate age predictions from input. The inferred age of scStereo-seq data 

aligned well with the collection window for most samples and matched better with nuclear staining morphologies. 

Age inference of scATAC-seq data 

Inference of developmental age for each cell in scATAC-seq data was performed following a neural network-based algorithm de- 

scribed in Calderon et al. 6 . The peak/cell matrix described above was used to train a new model from our own dataset. In brief, 

peak/cell matrix was divided into 11 partitions and 10 of them were used for model training, reserving 1 partition for testing. The mid- 

point of each time window was considered as the developmental age. The constructed model was then used to infer the develop- 

mental age of all cells.

Spatial TF enrichment analysis 

To analyze spatial changes in TF regulon activities, enrichment scores for all 815 known Drosophila melanogaster TFs were calcu- 

lated using pySCENIC 109 on imputed scStereo-seq matrix. Results were visualized with Plotnine 121 by overlaying registered sections. 

Gene expression patterns were mapped along the anterior-posterior (x) and dorsal-ventral (y) axes, with transparency inversely pro- 

portional to TF regulon activity levels.

Integration of scRNA-seq and scStereo-seq data 

Gene expression imputation 

NovoSpaRc 28 was used for gene expression imputation in scStereo-seq data based on scRNA-seq data. Single cells within 1 h differ- 

ence of inferred age in scRNA-seq data were used for imputation of each scStereo-seq sample. Gene expression matrices from scRNA- 

seq data were used as the primary input for NovoSpaRc and scStereo-seq gene expression matrices were used as reference atlas. 

Optimal transport of cells to their spatial locations was computed with the following parameters: alpha_linear = 0.8, epsilon = 5e-3.
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Label transfer of scRNA-seq annotation 

After dimensionality reduction, top 20 dimensions of scRNA-seq data were used for label transfer. Canonical correlation analysis 

(CCA) was performed using FindTransferAnchors function from Seurat to identify corresponding anchors between scRNA-seq 

and scStereo-seq data. TransferData function was used to transfer annotations from scRNA-seq data to scStereo-seq data. Map- 

Query function was used to integrate embeddings of scRNA-seq and scStereo-seq data and project them in the same UMAP space 

for visualization. Given the substantial developmental changes and technical differences, for larval midgut samples (except L3 late), 

label transferred and re-annotated embryo scStereo-seq midgut cell bins, instead of scRNA-seq midgut cells, were used as the refer- 

ence for label transfer. Cell clusters with low transfer confidence scores were manually re-annotated. Label transfer was performed 

on L3 late midgut with similar methods, with label transferred and re-annotated L3 early midgut as the reference. 

Neighborhood enrichment 

To calculate spatial enrichment scores of each cell type within each scStereo-seq sample and generate heatmap and bar plot visual- 

ization, squidpy.pl.nhood_enrichment function from Squidpy 122 was used with the mode parameter zscore.

Integration of scRNA-seq and scATAC-seq Data 

CCA data integration 

scRNA-seq data and scATAC-seq data of three germ layers (ectoderm, mesoderm, and endoderm) were integrated for analysis. The 

gene activity matrix for the scATAC-seq data was calculated using GeneActivity function from Signac. Both scRNA-seq expression 

matrix and scATAC-seq gene activity matrix were normalized using NormalizeData function from Seurat. To mitigate biases intro- 

duced by different sequencing techniques, CCA was performed using FindTransferAnchors function from Seurat. CCA was con- 

ducted with scATAC-seq gene activity matrix as the query and scRNA-seq expression matrix as the reference to identify transfer 

anchors. Leveraging these transfer anchors, TransferData function from Seurat was employed to obtain the imputed scATAC-seq 

matrix (refdata = ‘scRNA data matrix‘, weight.reduction = ‘scATAC pca.l2 matrix‘, dim = 2:50). Subsequently, imputed scATAC- 

seq matrix was merged with scRNA-seq data matrix. Dimension reduction was performed to co-embed them into the same 

UMAP space. After running RunPCA function, the 1 st to the 50 th principal components were used to run RunUMAP function to obtain 

the co-embedded UMAP matrix. 3D UMAP plots were generated with plotly, 123 and the third dimension of UMAP were calculated by 

RunUMAP function (n.components = 3L). 

Annotation of integrated data 

Cell type marker genes were generated using FindAllMarkers function from Seurat with the thresholds minimum cell fraction = 0.1 and 

logFC > 0.1. The top 50 markers were selected for manual annotation. Top 200 marker genes generated by the COSG 99 were also 

examined for additional reference, where the minimum cell fraction was also set to 0.1. Based on marker genes identified by both 

methods, clusters were manually curated and annotated (Table S4). For all plots, hex color codes of tissue cell types can be found 

in Table S10.

Generation of vector fields with PhyloVelo 

Phylovelo 29 was used to generate velocity fields and infer trajectories using monotonically expressed genes. First, duplicate genes 

were filtered using drop_duplicate_genes function. Log-normalization was then performed to filter genes with < 10 read counts. Sub- 

sequently, velocities were inferred using the normalized data and the top 5% of genes with the highest Spearman correlations. k=15 

was set for the k-nearest-neighbor (kNN) graph for the final velocity embedding.

Construction of tissue differentiation trajectory 

Based on cell differentiation Alta, Silhouette indexes of adjacent cell types were calculated to evaluate the divergence time between 

adjacent cell types using scikit-learn. 124 The adjacent cell types and their corresponding Silhouette indexes were used as nodes and 

edges, respectively, to construct an undirected graph. The layout of graph was arranged by using the Yifan Hu proportional algo- 

rithm 125 and rendered in Gephi. 101

Cell differentiation potential analysis 

CytoTRACE 52 was utilized to estimate the differentiation potential of single cells with default parameters. A sample size of 3,000 were 

used. plotCytoTRACE and plotCytoGenes functions were used to visualize the results.

Signal pathway activity analysis 

Gene components of signaling pathways were obtained from FlyphoneDB. 30 scRNA-seq data were filtered by the following criteria: 

cells with ≥ 200 genes, and genes present in ≥ 3 cells. Filtered data were then subjected to preliminary normalization using scanpy. 

pp.normalize_per_cell function, followed by log transformation with scanpy.pp.log1p function. scanpy.pp.scale function was applied 

to perform further data standardization. scanpy.tl.score_genes function was used to assess the expression scores of major genes 

from each signaling pathway in individual cells. sns.clustermap function was used to compute the mean expression scores of 

each pathway across cell types and collection windows and generate heatmaps.
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TF motif enrichment for GRN analysis 

Overlapping genes between top 200 markers from Seurat and top 200 markers from COSG in each cell type in integrated scRNA-seq/ 

scATAC-seq data were selected as potential TF target genes. Genomic regions of potential target genes were overlapped with differ- 

entially accessible peaks (DA peaks, identified by FindAllMarker function of Seurat, using test "LR" and parameters minimum cell frac- 

tion = 0.1 and logFC > 0.1) specific to each cell type. Only peaks annotated as promoter-TSS peaks by the annotatePeak.pl program 

from Homer 103 were used for motif enrichment. Motifs from the CIS-BP database 98 were enriched in the selected peak regions using 

the FindMotifs function from Signac. A p-value cutoff of < 10 -4 was used to filter significant motifs. Activity scores were then generated 

for these significant motifs. After applying AddMotifs function in Signac, motif activity score matrix was created using RunChromVar 

function from Signac. Venn plots of target genes overlapped between two TFs were created with VennDiagram package. 126

Nomination of cell type-specific TFs 

Cell type-specific marker genes within each germ layer were identified with FindAllMarker function of Seurat (minimum cell fraction = 

0.1, logFC > 0.1, p.adjust < 0.05). Top 200 up and down-regulated markers were selected. Next, genomic regions 2kb up- or down- 

stream of TSS regions of these genes were overlapped with with peak regions (fragment number > 0) and overlapping peaks were 

used for motif enrichment. Motifs from the CIS-BP database were enriched in the selected peak regions using the FindMotifs function 

from Signac. The enriched motifs were combined with differential motif results for TF nomination.

Differential motif analysis 

Differential motif activities between each cell type or each lineage were calculated by FindAllMarkers function of Seurat, setting the 

average difference calculation method as mean.fxn = rowMeans.

GRN analysis with Pando 

Pando 47 was used to generate GRN in desired cell groups. For each cell type, motifs retained after enrichment analysis were used as 

input for the motif position weight matrix (PWM) and overlapping genes between top 200 markers from Seurat and top 200 markers 

from COSG in each cell type were used as target genes input. To infer GRNs, TF correlation threshold was set to be ≥ 0.1 and Signac 

method was used for the peak-to-gene assignment. To identify TF-target gene modules, p-value threshold was set to 0.05. The num- 

ber of variables in the model and R-square threshold were adjusted based on the total number of modules found (nvar = 10, rsq = 0.2, 

or nvar = 1, rsq = 0.05). After module inference, modules with p-values > 0.05 or p-values > 10 -4 were discarded, depending on the 

total number of modules identified. GRN and TF graphs were then visualized.

Spatial stratification of CNS cell types 

To examine the layered distribution of CNS cell types, 3D VNC models were first stratified with spateo.dd.digitize function along the 

D-V axis. The digital layers were further divided into equal bins with pd.cut function. Cell type distribution and proportion within each 

digital bin was calculated.

CNS morphometric analysis 

Morphometric trajectories between two scStereo-seq samples were modeled with spateo.tdr.cell_directions from Spateo with 

default parameters. Each cell from the earlier time point was assigned to their most likely counterpart from the later time point to gen- 

erate morphometric vector fields with SparseVFC algorithm through spateo.tdr.morphofiled function. Subsequently, geometry quan- 

tities were calculated with spateo.tdr.morphofield_acceleration, spateo.tdr.morphofield_curvature, spateo.tdr.morphofield_curl, and 

spateo.tdr.morphofield_torsion functions. A general linear model (GLM) regression was performed with spateo.tl.glm_degs function 

to identify genes with highest correlation with morphometric property changes. Gene set enrichment was then performed with 

PANGEA. 105

Sub-clustering and re-annotation of endoderm scRNA-seq data 

Endoderm cells were isolated from the scRNA-seq Seurat object using subset function. Cell clusters with germ layer annotation of 

endoderm were extracted, and the cluster annotated as "hindgut anlage" was excluded. The dimensionality of the data was reduced 

first by PCA (30 components) on the top 3,000 most variable genes, and then further by UMAP (dims = 1:30). Cell clusters were iden- 

tified first with the Seurat FindNeighbors function (dims = 1:30), and then FindClusters function with a resolution of 1.4. This process 

resulted in a total of 37 subclusters. Marker genes for each cluster were identified using Seurat FindAllMarkers function (only.pos = 

TRUE, min.pct = 0.25, logfc.threshold = 0.5). Clusters were annotated based on these markers. Clusters annotated as "visceral 

muscle", "neurons", "plasmatocytes", and "proventriculus" were then excluded (Table S4).

Midgut marker gene enrichment 

Marker genes of each cell subcluster were generated using Findmarker function of Seurat package with parameters logFC > 0.5 and 

pValue < 0.05. Top 100 markers were used. To screen for more cell type-specific markers, COSG package was also used to generate 

marker genes of each cell type. Common marker genes identified with both methods were kept for the following analysis. Gene on- 

tology and pathway enrichment were identified with PANGEA.
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Gene module identification in midgut cell types 

Hotspot 71 was utilized to identify co-expressed gene modules in endoderm cells. A weighted kNN graph with 30 neighbors was com- 

puted and genes were ranked in descending order based on their Z scores. The top 2,000 genes were selected and genes with an 

auto-correlation FDR > 0.05 were discarded. Gene modules were generated through agglomerative clustering, with the minimum 

number of genes per module set at 40. 17 modules were identified, and 376 genes were not assigned to a module. Hotspot eigengene 

module scores were determined by calculate_module_scores function. Mean scores of each module were calculated based on cell 

types and visualized using clustermap function in seaborn. 127

RNA velocity field analysis 

Based on re-annotated endoderm cells in scRNA-seq data, Velocyto command line interface 115 was used to calculate spliced and 

unspliced transcripts of captured genes. Dynamo 63 was used to model differentiation dynamics of cell trajectories. Raw count ma- 

trices of spliced and unspliced transcripts were processed with recipe_monocle function in Dynamo. The top 2,000 highly variable 

genes were used as feature genes for dimension reduction using UMAP and default parameters. Kinetic parameters were calculated 

with dynamo.tl.dynamics function. Velocity vector flows were projected to 2D UMAP space and visualized with dynamo.tl.cell_veloc- 

ities function. Continuous vector fields were generated in the UMAP space using vf.VectorField function. Velocity pseudotime of 

single cells were determined with ddhodge function. Expression patterns of genes of interest were plotted against single-cell pseu- 

dotime. Using the vector fields, speed, acceleration, and curvature scores for single cells were calculated with vf.speed, vf.acceler- 

ation, and vf.curvature functions, respectively.

Gene module analysis in midgut regions 

A set of 1,500 regional marker genes from Ref 70 were used for midgut region analysis. These markers were overlapped with genes 

captured in scStereo-seq data and 1,452 of them were retained to create a kNN graph using hs.create_knn_graph function (weight- 

ed_graph=True, n_neighbors=100) from Hotspot. A local correlation matrix was constructed to assess the correlation among cells 

within each midgut region. The top 50 marker genes of each region were selected for local correlation calculation with hs.local_cor- 

relation_z function. Gene modules were filtered to retain the ones that contained ≥ 8 genes and had a false discovery rate 

(FDR) < 0.05. The similarity between gene modules and midgut regions were evaluated by similarity scores, which calculated the ratio 

of region-specific genes in each module. Identified midgut regions were filtered to retain the ones that contained ≥ 20 cells. Due to 

significant developmental gaps during larval stages, midgut regions were inferred independently for each sample with the same 

workflow.

Fluorescence in situ hybridization 

FISH was performed following protocols described in Fly-FISH database 17 with the following modification: Alexa Fluor 488 Tyramide 

SuperBoost Kit, goat anti-mouse (Invitrogen, B40922) or Alexa Fluor 594 Tyramide SuperBoost Kit, streptavidin (Invitrogen, B40935) 

was used in the signal developmental step after primary antibody incubation following vendor protocols. Primers to generate RNA 

probes from embryo cDNA are listed in Table S9. Samples were imaged with a Zeiss LSM 980 NLO confocal microscope with a 

10 × objective. Imaging results were processed and analyzed with ImageJ. 128

Generation and assaying of transgenic flies 

For copper-cell-specific knockdown and morphology observation, lab-Gal4; UAS-GFPnls strain was crossed with UAS-mCherry- 

shRNA or UAS-exex-shRNA strain. When indicated, larvae were transferred to culture media containing 500 μM CuSO 4 for 24 h be- 

fore imaging. Dissected L3 midgut samples (from gastric caecum to the branching point of Malpighian tubules) were incubated in 

PBS containing 5 μg/mL Hoechst 33342 for 10 min and rinsed with PBS before being mounted in halocarbon oil 700. For 

exex KK30 larvae, the remaining carcass was used for DNA extraction and genotyping to determine homozygosity. Samples were im- 

aged with a Zeiss LSM 980 NLO confocal microscope with a 5 × or 10 × objective. For sample examination at lower magnification, 

dissected L3 midgut samples were imaged with a stereo microscope. Imaging data was processed with ImageJ and the number of 

GFP positive cells were manually counted. Image capture and processing parameters were set identically between control and ex- 

perimental groups.

RT-qPCR 

For evaluation of knockdown efficiency in copper cells, copper cell segments from L3 midgut were excised and subjected to RNA 

extraction. RNA extraction was performed with RNA Isolator (Vazyme R401) following vendor’s protocol. For each sample, 1 μg 

total RNA was subjected to reverse transcription using HiScript II Q Select RT Supermix (Vazyme R233) following vendors’ pro- 

tocol. cDNA products were diluted 10 × and used as qPCR template. qPCR was performed with ChamQ SYBR qPCR Mastermix 

(Vazyme Q311) following vendor’s protocol. qPCR primer pairs used in this study were designed by FlyPrimerBank. 117 Primer se- 

quences are listed in Table S9. For each primer pair, qPCR of serial dilution of cDNA samples was performed to generate a stand- 

ard curve. Gene expression levels were quantified based on Ct values (normalized to internal control αTub84B) and standard 

curves.
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Bulk RNA-seq library prep and analysis 

Extracted RNAs were subjected to RNA-seq library preparation using VAHTS Universal V8 RNA-seq Library Prep Kit for Illumina 

(NR605). PE150 next generation sequencing was performed at HaploX Shenzhen. The raw data were aligned to the reference ge- 

nome dm6 by STAR using a parameter peOverlapNbasesMin 5 to avoid high ratio of unmapped short reads. featureCounts 129 

was used to calculate gene region read counts. TPM (transcripts per million) method was used to normalize read counts.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical details of experiments, including statistical tests, significance definition, and statistical methods, can be found in the 

figure legends.
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Supplemental figures

Figure S1. Data quality control and pre-processing of multi-omics datasets, related to Figure 1

(A) Cell segmentation workflow of a representative L1 early section. 

(B and C) Quality benchmark of embryo (B) scRNA-seq and (C) scATAC-seq datasets in this study, showing quality statistics of this and previous Drosophila 

embryo scRNA-seq or scATAC-seq studies.

(D) Additional quality control statistics for scATAC-seq data, with bar plots showing median reads per peak, median fraction of reads in peaks (FRiP) per cell, and 

median TSS enrichment scores across sample batches.

(E) Heatmap showing proportion of embryo scATAC-seq peaks in this study overlapping peaks in two previous Drosophila embryo scATAC-seq studies, bulk 

DHS peaks, and peaks in known TSSs and enhancers. 

(F and G) UMAP plots of aggregated (F) scRNA-seq and (G) scATAC-seq data after coarse unsupervised clustering, colored and labeled by cluster number.
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Figure S2. Developmental-age-matched integration of multi-omics data, related to Figure 1

(A) Line plot showing RAPToR-inferred developmental age of embryo scStereo-seq samples.

(B) UMAP plot of aggregated embryo scRNA-seq data, color coded with inferred developmental age or actual sample collection window.

(legend continued on next page)

ll
Resource



(C) Violin plot showing RAPToR-inferred developmental age of cells from scRNA-seq data.

(D) Same as (B) but for scATAC-seq data.

(E) Violin plot showing neural network model-inferred developmental age of scATAC-seq samples.

(F) Additional examples for Figure 1D.
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Figure S3. Construction of multi-omics tissue differentiation trajectories, related to Figure 2

(A) UMAP plots of co-embedded scRNA-seq and scATAC-seq data of three germ layers. Dashed lines mark cell clusters that are largely missing in one of the 

datasets, with their annotations labeled.

(legend continued on next page)
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(B) Co-embedded UMAP plots of integrated scRNA-seq/scATAC-seq data of three germ layers after unsupervised clustering, color coded and labeled by cluster 

number.

(C) Velocity fields of co-embedded UMAP plots of three germ layers in (B), inferred with PhyloVelo and color coded with re-annotated cell types based on 

clustering of integrated scRNA-seq/scATAC-seq data. Velocity trajectories point backward from chronologically older to younger cells. See detailed annotations 

in File 3 of Data S1.

(D) Heatmap showing median gene activity scores of core components of signaling pathways across tissues, based on scRNA-seq data.

(E) UMAP plots of scRNA-seq cells in the co-embedded UMAP space, color coded with gene activity scores of core components of signaling pathways. 

Representative tissues enriched in signaling pathway activities are labeled.
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(legend on next page)
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Figure S4. Transcription factor regulatory networks along tissue differentiation trajectories, related to Figure 2

(A) TF motif enrichment along tissue differentiation trajectories, showing TF binding motifs (left), motif activity heatmap (upper right), and enrichment p value 

heatmap (lower right) across tissue types and developmental stages in cells from three germ layers in scATAC-seq data. Previously characterized TFs are in bold.

(B) BDGP in situ patterns of less-characterized TFs in (A). A-P, anterior-posterior; D-V, dorsal-ventral.

(C) Pando identified GRNs of TFs srp and crp in fat body early cell cluster.

(D) Pando identified regulons of TFs srp and crp in fat body early cluster.
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(legend on next page)
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Figure S5. Spatiotemporal cell-type dynamics along tissue development trajectories, related to Figure 3

(A) Sankey plots showing agreement between scStereo-seq manual tissue annotations and transferred labels from integrated scRNA-seq/scATAC-seq data in 

representative scStereo-seq samples.

(B) Co-embedding of fat body and foregut/hindgut cells from scRNA-seq and scStereo-seq (pooled samples) data in the same UMAP plots, labeled with original 

scRNA-seq annotations or transferred annotations. 

(C and D) Heatmap showing prediction scores of scStereo-seq cell bins from (C) fat body and (D) foregut/hindgut, predicted with label-transferred cell types from 

scRNA-seq data.

(E) Bar plots showing cell-type composition of fat body and foregut/hindgut in scStereo-seq samples. Cell types are label transferred from scRNA-seq data.

(F) Heatmaps showing neighborhood enrichment scores of fat body and foregut/hindgut cell types across scStereo-seq samples. Blank cells indicate the ab- 

sence of label-transferred cell types or lack of enrichment in corresponding samples.
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(legend on next page)
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Figure S6. Gene expression dynamics during CNS morphometric changes, related to Figure 3

(A) Scheme of 3D model aligning and cell bin connection in CNS morphometric analysis. The boundary between brain and VNC is shown.

(B) Proportion of CNS cell types distributed along the dorsal-ventral axis of the VNC in a representative scStereo-seq 3D model. GMC, ganglion mother cells.

(C) Visualization of curvature, curl, and torsion scores of morphometric changes in CNS across the 7 scStereo-seq samples in Figure 3E.

(D) Bubble plots showing GO enrichment of genes associated with changes in four CNS morphometric scores among representative scStereo-seq samples. 

Pathways in bold are discussed in the main text.

(E) Bar plots showing genes that display the highest expression correlation with lncRNA:CR30009 and lncRNA:CR45388 in scRNA-seq data. Gene names in bold 

indicate neuroblast or glioblast markers.
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Figure S7. Diversity of embryonic midgut cell types and functions, related to Figure 4

(A) Bubble plots showing Kyoto Encyclopedia of Genes and Genomes (KEGG) and Drosophila RNAi Screening Center (DRSC) PathON pathway enrichment of 

midgut cell-type marker genes from representative clusters. Pathways in bold are discussed in the main text.

(legend continued on next page)
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(B) UMAP plots of embryonic midgut scRNA-seq data showing expression levels of cell death-related genes Atg101, Atg9, chrb, and scyl.

(C) Co-embedding of midgut (upper) and EEs (lower) from scRNA-seq and scStereo-seq data in the same UMAP plots. Original scRNA-seq annotations or 

transferred scStereo-seq annotations are labeled.

(D) Heatmap showing prediction scores of scStereo-seq midgut cell bins, predicted with label-transferred cell types from scRNA-seq data.
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(legend on next page)
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Figure S8. Spatial distribution of midgut cell types, related to Figure 4

(A) Heatmap showing neighborhood enrichment scores of cell types across scStereo-seq samples. Blank cells indicate the absence of label-transferred cell types 

or lack of enrichment in corresponding samples.

(B) BDGP in situ patterns of marker genes of midgut cell types with high neighborhood enrichment scores in scStereo-seq data. 

(C–E) Bubble plots showing expression level and enrichment of top marker genes of (C) all larval midgut, (D) larval entero-endocrine cells, and (E) pupal midgut cell 

types in scStereo-seq data. AMPs, adult midgut progenitors; ECs, enterocytes; EEs, entero-endocrine cells.

(F) 3D midgut models across representative larva scStereo-seq samples, showing spatial distribution of cell types, mesh models of midgut, and mesh models of 

the entire embryo.

(G) Bar plot showing cell-type composition of larval and pupal midgut in scStereo-seq samples. Annotations with (L) or (P) indicate clusters identified only in larva 

or pupa samples, respectively. Cell types diminishing in the L3 late sample are labeled in bold and highlighted in L3 early. Cell-type color codes are the same as 

(F).

(H) Upper: bar plot showing KEGG pathway enrichment of up-regulated genes in the L3 late sample compared with other larval midgut samples; lower: heatmap 

showing mean expression levels of KEGG autophagy-related genes in L3 late midgut cell types.

(I) Bubble plots showing expression and enrichment differences between midgut inner and midgut outer clusters in representative pupa scStereo-seq samples. 

Genes discussed in the main text are in bold.
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Figure S9. Functional regionalization of embryonic and larval midgut, related to Figure 4

(A) Heatmap showing correlation of functional gene modules identified by Hotspot from adult midgut region marker genes in scStereo-seq data. Each row and 

each column represent a module marker gene, and the Z score indicates their correlation.

(B) Heatmap showing correlation between Hotspot identified gene modules and adult midgut region markers.

(C) Heatmaps showing neighborhood correlation of midgut regions across scStereo-seq samples.

(legend continued on next page)
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(D) Heatmap showing expression level of region-related gene modules across scStereo-seq samples.

(E) Bubble plot showing expression level and enrichment of top marker genes of identified midgut regions.

(F) Bar plots showing GO enrichment of marker genes in representative regions identified in embryonic midgut.

(G) Heatmap showing enrichment of AMPs and EE subclusters in identified midgut regions in the L3 early scStereo-seq sample.

(H) Pie chart showing percentage of AMPs distributed in identified midgut regions in the L3 early scStereo-seq sample.
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(legend on next page)
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Figure S10. Identification of midgut copper-cell-specific regulators with multi-omics data analysis, related to Figure 5

(A) Bubble plots of top differential motif activity between lineages (upper, showing TF gene names) and heatmaps of enrichment p value (lower, showing cor- 

responding motif codes) across early and late midgut cell types from Figure 5A. Cell-type labels are identical in y axes between upper and lower panels.

(B) BDGP in situ patterns of exex, lab, and copper cell marker gene Vha100-4 in stage 11–12 and stage 13–16 embryos. A-P, anterior-posterior; D-V, dorsal- 

ventral.

(C) Violin plots showing transcript expression and representative motif activity of lab and exex in midgut primordium subclusters. Subcluster 6 did not include cells 

from scATAC-seq. Unpaired t tests were used for statistical comparison between subcluster 2 and other subclusters. NS, not significant; **p < 0.01, ***p < 0.001.

(D) Differentially accessible TF binding motifs between copper cell lineage and other midgut chamber lineages. lab motifs are not enriched among top differential 

motifs, and their representative motif is shown in the lower left corner. Homeodomain-containing TFs are in bold.

(E) The same UMAP plots as Figure 5A but showing cells from scRNA-seq or scATAC-seq separately, color coded with gene expression levels of exex and 

activities of its representative binding motifs, respectively.

(F) Left: UMAP plot of L3 midgut scRNA-seq data from NP1-Gal4 > UAS-mCherry-shRNA sample. The cell cluster representing copper cells is highlighted; right: 

same as the left panel but color coded with expression level of lab and exex.

(G) Violin plots showing expression level of lab and exex target gene modules in L3 midgut scRNA-seq data. Unpaired t tests were used for statistical analysis. 

***p < 0.001.
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Figure S11. Identification of exex as a copper-cell-specific regulator with multi-omics data analysis, related to Figure 5

(A) Representative fluorescence stereoscope images of the entire midgut samples from control and exex copper-cell-specific RNAi KD L3. Arrowheads indicate 

copper cell regions. Scale bars, 1 mm.

(B) chromosomal regions around TSS of kay, showing detected peaks in midgut cell types from scATAC-seq data and binding motifs of exex.

(legend continued on next page)
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(C) Upper: Venn diagram showing overlap between peaks containing lab and exex motifs. Number of nearest genes of the peaks are labeled. Lower: Venn di- 

agrams showing overlap between genes in the upper panel and copper cell marker genes.

(D) Line plot showing distances between TSS of copper cell marker genes and peaks containing exex, lab, or dual motifs in scATAC-seq data.

(E) Bar plots showing TPM of exex in control and exex KD samples from bulk RNA-seq data.

(F) Same as (B) but for Mmp2 and CG6763.

(G) Bubble plot showing expression level and enrichment of top TF marker genes of midgut cell types.

(H) The same UMAP plots as Figure 5A but showing cells from scRNA-seq or scATAC-seq separately, color coded with gene expression levels of lab and activities 

of its representative binding motifs, respectively.
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