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MR-link-2: pleiotropy robust cis Mendelian
randomization validated in three
independent reference datasets of causality

Adriaan van der Graaf 1,2, Robert Warmerdam 3,4, Chiara Auwerx 1,2,5,
eQTLGenConsortium*, UrmoVõsa6,Maria Carolina Borges7,8, Lude Franke 3,4 &
Zoltán Kutalik 1,2,9

Mendelian randomization (MR) identifies causal relationships from observa-
tional data but has increasedType 1 error rates (T1E)when genetic instruments
are limited to a single associated region, a typical scenario for molecular
exposures. We developed MR-link-2, which leverages summary statistics and
linkage disequilibrium (LD) to estimate causal effects andpleiotropy in a single
region. We compare MR-link-2 to other cisMRmethods: i) In simulations, MR-
link-2 has calibrated T1E and high power. ii) We reidentify metabolic reactions
from three metabolic pathway references using four independent metabolite
quantitative trait locus studies. MR-link-2 often (76%) outperforms other
methods in area under the receiver operator characteristic curve (AUC) (up to
0.80). iii) For canonical causal relationships between complex traits, MR-link-2
has lower per-locus T1E (0.096 vs. min. 0.142, at 5% level), identifying all but
one of the true causal links, reducing cross-locus causal effect heterogeneity to
almost half. iv) Testing causal direction between blood cell compositions and
marker gene expression shows MR-link-2 has superior AUC (0.82 vs. 0.68).
Finally, analyzing causality between metabolites not directly connected by
canonical reactions, only MR-link-2 identifies the causal relationship between
pyruvate and citrate (α̂ = 0.11, P = 7.2⋅10−7), a key citric acid cycle reaction.
Overall, MR-link-2 identifies pleiotropy-robust causality from summary statis-
tics in single associated regions, making it well suited for applications to
molecular phenotypes.

The identificationof causal relationships in humans is historically done
using randomized control trials (RCTs). However, these trials require
the separation of individuals into treatment and control groups, which
is a burden on the subjects and can be expensive. Additionally, some
trials cannot be carried out due to ethical considerations or are simply

impossible to perform as there is no suitable way to perturb the trait
under investigation.

Observational causal inference attempts to identify causal rela-
tionships fromobservational data by identifying randomization events
that occurred naturally in a group of individuals. If performed
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correctly, observational causal inference can be useful in improving
our understanding of the causal relationships that underlie human
biology, aiding in the development or repurposing of drugs and
treatments.

One observational causal inference technique that is popular in
the genetics community is Mendelian randomization (MR)1,2. For
instance, MR has shown to be effective in identifying the causal rela-
tionship between low density lipoprotein cholesterol (LDL-C) levels
and coronary heart disease and between alcohol consumption and
cardiovascular disease3,4, while careful application of MR has shown
that high density lipoprotein cholesterol (HDL-C) levels are not cau-
sally linked to myocardial infarction, evidence that was also corrobo-
rated by RCTs5,6.

A validMRanalysis is done based on three statistical assumptions:
i) The relevance assumption, ii) the independence assumption and iii)
the exclusion restriction (also known as pleiotropy) (Fig. 1a), described
in more detail in (Supplementary Note). Considering the assumptions
underlying MR, it is particularly difficult to ensure that the genetic
variants that are used as instrumental variables (IVs) are free from
horizontal pleiotropy. As it is usually impossible to ensure that a
genetic variant only acts through the chosen exposure7.

MR methods are constantly being developed to ensure MR esti-
mates are robust8–13. Generally, thesemethods use tens to hundreds of
independent locations on the genome in a meta-analysis to mitigate
violations of the relevance assumption and exclusion restriction with
the hope that independent instruments would lead to independent
biases which cancel each other out. However, when considering
molecular traits, such as RNA and protein expression or metabolite
concentrations, there is generally only a single or a handful of asso-
ciated regions, reducing the robustness of these ‘meta-analyzing’ MR
methods. Improving MR methods for application on molecular expo-
sures is of high priority as these exposures are important causes for
disease and are potential drug-targets.

Currently, identification of molecular traits as causes to disease
often relies on “closest gene analysis”, tools like MAGMA and PASCAL
or colocalizationmethods14–18. These approaches have shown that they
can identify the correct molecule, but they do not strictly test for
causality between two traits. For instance, a closest gene analysis will
not identify the context in which a gene has its effect while colocali-
zation analysis will only indicate if two traits share the same causal
genetic variant(s). It is not answering the question if one trait is causal
to the other or if there is a shared causal confounder. Furthermore, if a
molecule under investigation has more than one associated genetic
locus, it is difficult to combine the information into a single estimate of
relevance. In contrast, MR has the benefit that it identifies a causal
relationship, possibly from multiple loci.

Unfortunately, except for some obvious examples, we lack good
sources of truth for true causal links and false causal links between
(molecular) traits in humans9,19. This limits our ability to compare dif-
ferent MR methods, as methodologists usually use simulations and
single examples to highlight the strength of their causal inference
method.

This study has two goals: i) to introduce a novel summary statis-
tics cis MR method that is robust to horizontal pleiotropy and ii) to
develop (gold)-standard reference datasets for the validation of (cis)
MRmethods. First, we introduce a summary statisticsMRmethod that
is robust to pleiotropy even when only a single region is available for
analysis, making it suitable for the analysis of molecular traits as risk
factors. We coin the method “MR-link-2” (Fig. 1b). Conceptually, MR-
link-2 uses the region surrounding the genetic variant around the IV to
estimate the effects of pleiotropy20. In contrast to the original MR-link
(v1), MR-link-2 does not require individual level data but it is designed
tobe applied to association summary statisticsof the exposure and the
outcome, allowing for more widespread applications20. The second
main novelty lies in the development of benchmarking datasets.

We benchmark MR-link-2 against other cis MR methods, two
colocalization methods as well as meta-analyzing MR methods (when
appropriate) using extensive simulations (Fig. 1c) (Table 1) and three
real-world datasets of true and false causal links. In the first real data
validation, we create a metabolite network using three sources of
curated databases of human metabolite pathways and we assess dis-
criminative performance of each method using metabolite quantita-
tive trait loci (mQTLs) that are derived from four different studies
(Fig. 1d). Second, we assess the performance ofMRmethods on known
causal relationships between complex traits, as well as relationships
that are unlikely to be causal (Fig. 1e). Third, using new data from the
full transmapping of gene expression by the eQTLGenConsortium,we
test for the causal relationship between blood cell composition and
whole-blood expression levels of cell-type specific marker genes
(Fig. 1f)21.

In all validation datasets, MR-link-2 compares favorably to other
methods, exhibiting lower type 1 error (T1E) and often good dis-
criminative performance between true and false causal links, whichwe
attribute to the method’s robustness to the presence of horizontal
pleiotropy. The pleiotropy robust design of MR-link-2 leads to higher
nominal type 2 error rates, as a limited number of true causal linksmay
go undetected. However, when considering results identified outside
of the validation datasets, MR-link-2 uniquely identifies regulation
between metabolites including an exclusive link that is found in the
citric acid cycle highlighting that MR-link-2 can pick up signals missed
by other methods.

Results
The MR-link-2 method
MR-link-2 is a likelihood function that estimates three parameters
basedon the exposure and the outcomesummary statistics in a region,
combined with a reference linkage disequilibrium (LD) matrix (Fig. 1b)
(Methods). MR-link-2 is now more widely applicable as it does not
require individual level data, which was a limitation of the original
version20. MR-link-2 tests for two parameters using a likelihood ratio
test: the causal effect estimate α̂, which is of central interest, and the
remaining horizontal pleiotropic variance, ĥ

2

Y, which would otherwise
violate the exclusion restriction (Methods) (SupplementaryNote). The
modeling of the pleiotropic variance allows MR-link-2 to be robust to
violations of LD-induced pleiotropy which can bias MR estimates
particularlywhenusing only a singlegenetically associated region.MR-
link-2 replaces the exclusion restriction assumption with two other
milder and biologically more plausible assumptions. i) MR-link-2
assumes that all genetic variants in a locus have non-zero genetic
effects on the exposure and their mean is zero (infinitesimal model)
and all variants (can) have an independent pleiotropic effects on the
outcome (InSIDE assumption). ii)MR-link-2 assumes that the LDmatrix
is measured without error. We therefore estimate that the likelihood
function of MR-link-2 can be sensitive to three parameters: i) when the
LD matrix is measured with imprecision (either due to small sample
size of the reference panel or population mismatch), ii) when the
pleiotropic effects are correlated and iii) when there is only a small
number SNPs have non-zero causal effect on the exposure and the
outcome trait.

Simulations
To understand the statistical behavior of MR-link-2, we performed
simulations of causality in a single genetic region. Our aim was to
understand how MR-link-2 performs when the parameters in the
simulations are varied, including when assumptions underlying MR
(Fig. 1a) and MR-link-2 are violated. We also compare the perfor-
mance of MR-link-2 with four other cis MR methods to understand
how each method performs as a function of the simulation para-
meters. As simulations only approximate the real world, we also
apply these cis methods to real biological data and compare the
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results to a large body of assembled ground truth (Methods)
(Table 1).

Across 3240 simulation parameter settings, we simulated 1000
instances of exposure and outcome pairs that are genetically regu-
lated by a single region based on LD derived from the UK10K
cohort22. We varied 6 parameters: the simulated causal effect (α), the
cis heritability of the exposure (h2

X) and the extent of pleiotropy of

the outcome (h2
Y), the number of causal variants (mcausal) that have a

genetic effect on the exposure, and the same number of causal
(mcausal) genetic variant that affect the outcome, their minimum
correlation between the causal markers for the exposure and those
with direct causal effect on the outcome (min (rcausal) and impreci-
sion in the LD reference (parameterized by the reference panel size,
nref) (Methods). Note that in case of sparse genetic effects,
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increasing the min(rcausal) parameter leads to the violation of the
InSIDE assumption.

In simulations with 10 (mcausal) underlying causal exposure and
outcomeSNPs and an LDmatrixmeasuredwith full precision,MR-link-
2 has calibrated T1E (min: 0.02, median 0.05, max 0.06), across the
range of simulated exposure heritabilities including when there is
strong violation of the pleiotropy assumption (Fig. 2a) (Supplementary
Data 1). When simulating a large causal effect 0.2 (Fig. 2b) (Supple-
mentary Data 1), we find that increasing the exposure genetic variance
increased detection power (up to 1.00), whereas increasing pleiotropy
reduced detection power (Fig. 2b). T1E rates generally increased when
simulating violations in the MR-link-2 assumptions. MR-link-2 has
increased T1E rates when we introduce imprecision in the LD refer-
ence. Up to 0.42 when the LD reference is measured only in 500
individuals. This is also seen for other LDdependentmethods:MR-PCA
T1E = 0.816, MR-IVW LD T1E = 0.782, but as expected, not for MR-IVW,
T1E = 0.127, which has lower power in exchange (Supplementary
Data 1), when causal genetic variants of the two traits are in very strong
LD (up to 0.243 when SNPs are in LD r2 > 0.1 to each other) (Supple-
mentary Data 1). However, MR-link-2 is not dependent on the number
of causal SNPs that underlie a trait (max T1E rate = 0.05 when simu-
lating 1 causal SNP for the exposure and 1 causal SNP for the outcome)
(Supplementary Data 1). When violating all these assumptions toge-
ther, the T1E rate increased to0.84when simulating a single causal SNP
combined with an extremely large h2

Y of 0.03 (Supplementary Data 1).
Nonetheless, this is anextremeandunrealistic situationwhere all other
tested cis MR methods (MR-IVW T1E = 0.95, MR-IVW-LD T1E = 0.973
and MR-PCA T1E = 0.96) fail and the T1E is still the lowest for MR-
link-223,24.

A unique feature of MR-link-2 is that it can identify residual
genetic variance in the outcome, which would otherwise be modeled
as violations of the exclusion restriction. When simulating minute
ðh2

Y = 10
�20Þ pleiotropy and following the MR-link2 underlying

assumptions, MR-link-2 does not detect pleiotropy (detection rate
minimum = 0.00, maximum = 0.01) with deflated test statistics com-
pared to the expected 0.05 (Fig. 2c) (Supplementary Data 1). However,
when simulated pleiotropy is increased aboveh2

Y = 10
�4

in simulations,
MR-link-2 correctly estimates the extent of pleiotropy (Fig. 2c).

To ensure that MR-link-2 is adequately powered, we compared
MR-link-2 to three other (cis) MR methods (MR-IVW, MR-IVW LD and
MR-PCA) as well as to two colocalization methods (coloc and coloc
SuSiE) using the area under the receiver operator characteristic curve
(AUC) metric14,15,23–25 (Table 1) (Fig. 2d–h) (Supplementary Data 2). In
many cases, we find that the AUC of MR-link-2 is higher, especially
when simulating pleiotropy (h2

Y > 10
�4)(Fig. 2f). To understand the

influence of each parameter setting on the discriminative ability of
eachmethod, we performed ordinary least squares regression with all
model parameters as predictors and the AUC of a method as the
dependent variable (Fig. 2i) (Supplementary Data 3). Here we see that

the AUC generally decreased for each method as pleiotropy is simu-
lated, with the smallest decline observed for MR-link-2, providing
further evidence for robustness to pleiotropy of our method (Fig. 2i)
(Supplementary Data 3). Furthermore, we see that the imprecision of
the reference panel negatively influences only MR-link-2 and coloc
SuSiE (Fig. 2i).

Using metabolite networks as a source of true causal links
Unfortunately not many causal relationships are established for
molecular exposures that could be used to reliably benchmark MR
methods19. Here, we compile reactions between metabolites as true
positive molecular causal relationships26. We use these causal rela-
tionships as a ground truth, to understand when a particular MR
methods fail and to subsequently compare these MR methods to
each other.

Our ground truth metabolite network is derived from the human
metabolic pathway definitions of KEGG, MetaCyc and
WikiPathways27–29 (Fig. 3a) (Methods). Orthogonally, we applied MR/
colocalization methods to four mQTL studies comprising of 1,291
harmonized metabolite measurements of 1,035 unique
metabolites30–33 (Methods) (Fig. 3a). After harmonization with the
pathway definitions, we kept 266measurements acrossmQTL studies,
representing 154 unique metabolites. One hundred ninety-two meta-
bolite measurements have an mQTL at P ≤ 5⋅10−8, representing
126 separate metabolites which can be used as exposures to compare
their causal effects to the “ground truth” (Fig. 3a–c). Across these 154
unique metabolites, our pathway definitions define 287 individual
chemical reactions that can be used as true causal links. (Fig. 3a–c)
(Methods) (Supplementary Data 4). Comparing pathway definitions
between each other, the concordance of MetaCyc and WikiPathways
was the highest, while KEGG was less concordant. Indeed, only 34 out
of 284 reactions are present in all three pathway databases. Fifty-five
reactions are shared by at least two pathway databases and the
remaining 194 reactions are specific to single pathway data-
bases (Fig. 3c).

Multiple measurements of the same metabolites across different
mQTL studies allows for a bias analysis across MR methods. From 64
unique metabolites across 140 measurements, we perform pairwise
causal inference (Supplementary Data 4). Here, the expectation is that
the causal estimate of a metabolite on itself is exactly 1.0 and any
deviation from this value is considered as bias (Fig. 4a–d). We find that
MR-link-2 has the smallest deviation from the expectation (α = 1.00)
and thus the lowest estimation bias (mean α̂ = 1.027) (Fig. 4a) com-
pared to MR-IVW (mean α̂ = 0.935) (Fig. 4b), MR-IVW LD (mean α̂ =
0.927) (Fig. 4c) and MR-PCA (mean α̂ = 0.873) (Fig. 4d)23–25 (Supple-
mentary Data 5) (Table 1).

The chemical reactions present in human metabolism are gov-
erned by well-established rules, one of which is the principle of le
Chatelier, stating that an increase in a substrate will increase the

Fig. 1 | Overview of this study: the assumptions underlying Mendelian rando-
mization (MR), a graphical representation of MR-link-2 method and the four
ways we benchmark and compare MR-link-2 to other cis MRmethods.
a Directed acyclic graph to illustrate the assumptions underlying MR. Single
nucleotide polymorphisms (SNPs) are used as instruments to estimate the causal
effect between an exposure (X) and an outcome (Y) confounded by C. The blue,
yellow and purple arrows highlight the assumptions underlying MR. Black arrows
are allowed but are not necessary for correct inference. bGraphical representation
of theMR-link-2method. In contrast to otherMRmethods,MR-link-2models all the
SNPs in a genetic region to simultaneously estimate the (local) cis heritability of the
exposure (IV-I, h2

X, blue arrows), the total pleiotropic effects on the outcome due to
violations of the exclusion restriction assumption (IV-III, h2

Y, purple arrows) and the
causal effect α (green arrow) that is robust to violations of IV–III. MR-link-2 requires
that linkage disequilibrium is measured in between the genetic variants (chain

symbol). c–f Validations done to compare MR-link-2 to other methods. (c) First
validation is done using simulations. Shown here is a simulated genetic region
where an exposure is causal to an outcome. The outcome also contains genetic
effects independent of the exposure, which would violate the exclusion restriction
(two-sided P values come from a univariable linear regression) (IV–III). d We per-
form a second comparison of cis MRmethods using gold standard metabolite
reactions present in curatedmetabolic networks. For illustration, we showhere the
human caffeine metabolism from WikiPathways. e Validation through canonical
causal relationships between complex traits. Shown here, for illustration, is the
well-known causal relationship between smoking and coronary artery disease.
f Final validation tests the ability to decide between forward vs reverse causal
effects. We utilize the genetics of blood cell proportions to predict their causal
effect onto well-known blood cell marker genes. Null causal effects are defined as
the reverse direction which should not be causal.

Article https://doi.org/10.1038/s41467-025-60868-1

Nature Communications |         (2025) 16:6112 4

www.nature.com/naturecommunications


product of a reaction (Methods) (SupplementaryNote). Therefore, we
expect that a causal estimate that represents a metabolic reaction
should be strictly positive, as the causal effect represents the effect of
the increase in a substrate. Indeed, when considering Bonferroni sig-
nificant MR estimates (238,097 testable exposure, outcome and
associated region combinations, P < 2.1 × 10−7), all methods identify
more positive effects than negative effects (range: 58%–80%)
(Fig. 4e–h), with the highest percentage (80%) for MR-link-2 (Fig. 4e),
considerably higher than the second-best performing method, PCA-
MR (62%) (Fig. 4h) (Supplementary Data 6) (Supplementary Note).

To compare the cis performance of all the methods in our meta-
bolite network we assess each exposure locus independently, i.e., we
do not meta-analyze any loci together as in Fig. 3b and Fig. 3c. This
allows us to make per locus comparisons of coloc and different MR
methods, which would be less transparent when meta-analyzed. True
causal links are defined as direct reactions (Fig. 3c) (Fig. 4i). As it can be
difficult to prove a negative in (human) biology, we utilize a reaction
distance metric to define variable sets of false causal links that are
increasingly likely to be null (Fig. 4j) (Methods). Compared to naively
using all available non-causal combinations as false causal links, this
approach reduces bias that may be due to causal relationships that
exist between understudiedmetabolites, while also providingmultiple
AUC measures across different sets of false causal links. As such, this
can be viewed as a sensitivity analysis due to imperfect definitions of a
true null link dataset (Fig. 4j) (Methods). We ensure that the true null
set is not too close to true links, by defining true null edges as those
with the shortest path being at least five reaction long, while the
strictest definition of null edges is defined as themaximumdistance in
which the number of false causal links is larger than ten (Fig. 4j)
(Methods).

If we compare the discriminative performance of theMRmethods
with coloc methods, we find that in aggregate, coloc methods have
lower AUC than anyMRmethod used here (Fig. 4k-p) (Table 1)14,15. This
results in similar discriminative performance across comparisons
(Pearson r = 0.997). The AUC of MR-IVW and MR-IVW LD are also
correlated (Pearson r = 0.998). MR-PCA and MR-link-2, use the whole
genetic region for their inference, regardless of significance of the
other genetic variants in the associated region. This approach is ben-
eficial as MR-PCA or MR-link-2 usually (145 out of all 156 AUC com-
parisons) provide the highest discriminative performance of all
methods tested, with MR-link-2 being usually slightly better than MR-
PCA: MR-link-2 has the highest AUC in 33 out of 36 comparisons in
KEGG (Fig. 4k), 20 out of 33 in MetaCyc (Fig. 4l) and 20 out of 26 in
WikiPathways (Fig. 4m) (Supplementary Data 7) (Methods).

We reduce uncertainty caused by differences in pathway defini-
tions, by combining pathway references together (Methods)
(Fig. 4n–p). MR-link-2 remains the method which most often has the
highest AUC when all true causal links and false causal links are com-
bined into a union (33 out of 36) (Fig. 3j) (Fig. 4n), when a true causal
link and a false causal link is present in at least 2 datasets (12 out of 13)
(Fig. 4j) (Fig. 4o). In the smallest true causal link dataset, the inter-
section of all true causal links and false causal links, PCA-MR has the
highest AUC in 10 out of 10 cases (Fig. 4j) (Fig. 4p) (Supplemen-
tary Data 7).

Discriminative ability based on an AUCmetric is derived from a
segmentation of all P values or other test statistics. However,
investigators researching causal molecular traits generally only
consider Bonferroni significant (P < 2.1 × 10−7) results. Therefore, we
determine the precision and recall of theMRmethods tested at this
Bonferroni significance. We find that MR-link-2 has the highest
precision in all the pathway comparisons (competingmethods have
54–97% of the relative precision of MR-link-2, across all pathways
and all methods), with lower recall (between 50−70 % of the recall
for MR-link-2, across all pathways) (Supplementary Fig. 1a) (Sup-
plementary Data 8).Ta
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Up to now, we analyzed single locus estimates in isolation; how-
ever,MR estimates can bemeta-analyzed together using the inverse of
their variance estimate as weights (not to be confused with MR-IVW
methods) (Fig. 3b) (Fig. 3c) (Table 1) (Methods).

When meta-analyzing results, discriminative performance of MR-
link-2 is less pronounced over the other causal methods tested in this
manuscript (116 out of 148 comparisons MR-link-2 does not have
superior AUC) (Supplementary Fig. 2) (Supplementary Data 9).Moving
away from the true causal links andnegative causal links in thepathway
definitions and considering the broader Bonferroni significant (49,335

exposure-outcome combinations, P < 1.0 × 10−6) results of these esti-
mates weighted across associated regions, the precision remains
highest forMR-link-2 in4out of 6 pathway comparisons andmore than
99% of the relative precision otherwise. Unlike in the regional esti-
mates, the recall of MR-link-2 is similar compared to competing MR
methods: MR-link-2 has a recall that is 72–97% of the highest com-
peting method (Supplementary Fig. 1b) (Supplementary Data 8).

When applying MR, it is usually recommended to apply multiple
methods to ensure that conclusions are not based on the assumptions
of a single method. Since our focus was to benchmark these methods

a b c

d e f

g h

i

Fig. 2 | Simulations ofMR-link-2 in different scenarios. a Type I error rate ofMR-
link-2 in simulations with no causal effect (α =0) and various combinations of
exposure genetic variance (σ2

X, which is a measure of IV–I) and outcome genetic
variance (h2

Y, which violates the IV–III assumption of no pleiotropy). b Statistical
power in the same simulation scenarios as panel (a) with a simulated causal effect
(α =0:2). c The power to detect non-zero pleiotropy by MR-link-2 (testing the
pleiotropy parameter h2

Y). The simulation settings are the same as in panel (a),
however, here we do not test for a causal effect, rather we test for violations of the
IV–III assumptions of no pleiotropy.d–hThe discriminative ability ofMR-link-2 and
other testedmethodsbetween simulations of no causal effect and thosewith a non-
zero causal effect, characterized by the area under the receiver operator char-
acteristic curve (AUC). The AUC values ofMR-link-2 are compared to those of other
competing methods. Here we also included additional simulation scenarios, where
the infinitesimal exposure geneticmodel is violated (Methods). Parameter settings

are only plotted for which both methods successfully estimate at least 750 /
1000 simulation instances in both null and non-null causal effect scenarios. Points
are colored by the simulated pleiotropy parameter of h2

Y. The x-axis corresponds to
methods as follows: d MR-IVW; e MR-IVW LD; f MR-PCA; g coloc; h coloc SuSIE.
(Methods) (Supplementary Data 2) (i) A heatmap of (multivariable ordinary least
squares) regression coefficients for eachmethodwhenAUC is regressedon various
model parameters. This allows identification of the impact of each simulation
parameter on the AUC of each method. The simulated range of each parameter is
shown in brackets. 1/nref : represents the precision of the linkage disequilibrium
reference used in this study, i.e. the inverse of the reference panel size. minðrcausal Þ
represents theminimum correlation between the causal SNPs and SNPs with direct
effect on Y. mcausal =100 represents the number of causal SNPs selected in the
region divided by 100 to ensure comparable regression coefficient scales
(Methods).
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on reference data sets, we weremore interested in the global patterns
of result overlaps across methods34. We compare the 848 Bonferroni
significant MR-link-2 results weighted across regions to the Bonferroni
significant results of other tested MR methods, we find that MR-link-2
shows less similar results compared to other methods, with the lowest
Jaccard index (min = 0.34, max = 0.45, lowest other Jaccard index =
0.66 between MR-PCA and MR-IVW) in a pairwise comparison of all
four MR methods tested (Supplementary Fig. 3).

MR-link-2 identifies 188 causal relationships at Bonferroni
significance that are not found by other methods. This is more
than for any competing method: 19 for MR-IVW, 4 for MR-IVW LD
and 95 for MR-PCA. Sixteen of these 188 unique MR-link-2 esti-
mates are found in the pathway databases used in this study
whereas this number is only 3 out of 95 for MR-PCA, 2 out of 15 in
MR-IVW LD and none of the 15 links unique to MR-IVW (Supple-
mentary Data 10).

a b

Reaction detected by MR-link-2

Reaction not detected by MR-link-2

No genetic association available

Reaction present in 2 references

Reaction present in 1 reference

Reaction present in 3 references

Metabolite measured in 4 studies

Metabolite measured in 3 studies

Metabolite measured in 1 study

Metabolite measured in 2 studies

c

Shin et al. (2014)
529metabolites
7,824individuals

Lotta et al. (2021)
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86,507individuals

Chen et al. (2023)
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8,299 individuals

UKbiobank NMR
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118,461individuals

mQTLstudies

Metabolic pathwaydefinitions

KEGG
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1,270metabolites

Wikipathways

4,871reactions
3.795metabolites

humancyc

3,900reactions
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Harmonization:
1,035unique metabolites

harmonized

Harmonization to
HMDB and ChEBI

mQTL (P< 5 · 10-8)
193metabolites(126 unique)

266measuredmetabolites
(154unique) in direct

reaction with one another

C

SNP
Leucine 4-Methyl-2-

oxopentanoate

Associated  regions for leucine

Chromosome

Shin et al. leucine effects on
4-methyl-2-oxopentanoate

Lotta et al. leucine effects on
4-methyl-2-oxopentanoate

Regional
estimates

Regional
estimates

Regional
estimates

UKB leucine effects on
4-methyl-2-oxopentanoate

1.5 1.0 0.5 0.0 0.5 1.0 1.5
causal estimate (95% C.I.)
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Biological interpretation of causal relationships between
metabolites
We further explored the 188 Bonferroni significantMR-link-2 estimates
(weighted across regions) between metabolites that are not reported
by any of the three pathway references. (SupplementaryData 10). Even
though they may not necessarily be direct chemical reactions, causal
relationships that MR-link-2 uniquely identified can be integrated into
human metabolism. For instance, MR-link-2 is the only MR method
tested that identifies a bidirectional causal relationship between pyr-
uvate and citrate (α̂ = 0.11, P = 7.2⋅10−7. reverse = α̂: 0.08, P = 3.3⋅10−9).
These are the only Bonferroni significant metabolite pairs which are
found in the citric acid cycle pathway (HMDB)35,36. Another striking
example in energy metabolism is the negative bidirectional causal
relationship identified between lactate and acetoacetate (α̂ = −0.25, P =
5.85 ⋅ 10−10. reverse: α̂ = −0.34, P = 1⋅10−8). MR-link-2 is the only method
that identified the negative causal relationship between the anaerobic
fermentation pathway represented by lactate concentrations and the
aerobic respiration pathway, represented by acetoacetate
concentrations37,38 (Supplementary Data 10). MR-link-2 is also the only
method that identifies the positive causal relationship between two
unsaturated fatty acids, (1-(1-enyl-stearoyl)-2-arachidonoyl-gpe (p-
18:0/20:4) on cholesterol: α̂ = 0.30, P: 4.3 ⋅ 10−7 and n-stearoyl-
sphingosine (d18:1/18:0) on cholesterol α̂ = 0.33, P = 1.8 ⋅ 10−8). These
two causal relationships recapitulate the role cholesterol has in stif-
fening membranes that contain unsaturated fatty acids39,40 (Supple-
mentary Data 10).

MR-link-2 further exclusively identifies the causal relationship
between 3-hydroxybutyrate (3HB) and lactate (α̂ = 0.21, P = 4.01⋅10−9).
This relationshiphasbeen corroboratedby a clinical study that infused
3HB in heart failure and reduced ejection fraction patients41. After 3HB
infusion, lactate levels were increased. This is hypothesized to be due
to competitive inhibition of 3HB that is preferentially used over pyr-
uvate as a substrate for oxidative phosphorylation, the excess pyruvate
is then converted into lacate42.

Applying cis MR methods to complex traits
Using a second independent benchmarking dataset, with the goal to
ensure that MR-link-2 is not only effective at identifying causal rela-
tionships between molecular traits, we tested the cisMR performance
in a set of true and null relationships between complex traits. For this
we offset complex trait combinations that are ‘considered causal’with
those that are considered ‘implausible or unsupported’ and ‘con-
sidered non-causal’ as defined by Morrison et al.9 (Methods).

Since complex traits do not rely on MR performed in a single
region, we additionally explored the performance of state-of-the-art
non-cis MR methods, such as the MR-PRESSO and the MR-APSS
methods7,43, to five trait combinations that are unlikely to be causal,
e.g., outcomes that precede the risk factor in time, such as adult LDL-C
levels impacting childhood onset asthma (COA) (Methods). Only one

false positive link is identified at nominal significance (by MR-IVW and
MR-IVW LD, diastolic blood pressure on COA, P =0.023 and P =0.019
respectively) (Supplementary Data 11) (Methods). All methods falsely
identify the ‘non-causal’ relationship between HDL-C and coronary
artery disease (CAD) as well as between HDL-C and stroke, which is
notoriously difficult to accurately estimate through univariable MR
methods9 (Fig. 5a). In the positive control analysis, all MR methods
includingMR-APSS andMR-PRESSO, identify all causal relationships at
nominal significance, albeit these latter have larger confidence inter-
vals than cis MR methods (Supplementary Data 11).

Cis MR methods can provide a per locus causal estimate both on
the true positive and true negative combinations. When determining
the per locus detection rate at nominal significance (P <0.05) for the
cis MR methods (excluding MR-APSS and MR-PRESSO as they do not
provide regional estimates),MR-link-2 has a consistently lowermedian
T1E rate: MR-link-2: 0.096, MR-IVW : 0.142, MR-IVW LD : 0.160, MR-
PCA : 0.163 (Supplementary Data 12) (Fig. 5a). The lower T1E rate could
be interpreted as lower power and indeed the detection rate is lower
when analyzing causal relationships that are ‘considered causal’ (MR-
link-2median detection rate per locus = 0.23,MR-IVW=0.272,MR-IVW
LD = 0.266, MR-PCA = 0.255) (Fig. 5b). Themedian power over median
T1E ratio is highest forMR-link-2: 2.4 compared to 1.56 -1.9 for other cis
methods.

After meta-analysis, regional estimates can deviate from the
weighted causal effect. Indicating that the associated region seems to
deviate from the meta-analyzed estimate, which is partly due to vio-
lations of the “no-pleiotropy” assumption. To test the relevance ofMR-
link-2’s pleiotropy parameter estimate, for each region we compared
its value to the absolute deviation between the regional IVW-MR esti-
mate and the meta-analyzed version across all regions. The latter is
expected to be larger for regions where the pleiotropy assumption is
more violated. We found a strong spearman correlation of 0.21 (P =
1.5 × 10−235) between nominally significant estimates of ĥY and the MR-
IVW absolute deviation from the weighted estimate (Fig. 5c) (Supple-
mentary Data 13), suggesting that MR-link-2 detects region-specific
pleiotropy accurately (without the knowledge of estimates from other
regions). This correlation alsoholdswhen thedeviations are computed
for other methods, including MR-link-2 (Supplementary Data 13).

Moreover, when meta-analyzing all loci for all complex trait
combinations analyzed in this study, we find that MR-link-2 has sub-
stantially lower heterogeneity in termsofCochran’sQ statistic (median
for MR-link-2 = 582, lowest competing = 1021) (Methods) (Fig. 5d)
(Supplementary Data 11).

We further applied all cis MR methods in “drug-target-MR” set-
tings. Exposure-outcomeMR is performed using instruments from the
vicinity of one gene. As positive controls, we used the following three
gene-exposure-outcome combinations: LDL-C→CAD instrumented
from HMGCR44, IL18→atopic dermatitis instrumented from IL1845 and
C-reactive protein→COVID-19 instrumented from IL6R46,47. As negative

Fig. 3 | Metabolite quantitative trait loci (mQTL) studies used in this analysis,
an example MR analysis and the true causal links and true positives identified
in this study. aChart depicting themetabolites and theirmQTLs used in this study.
We utilized four mQTL studies whose studied metabolites were harmonized into
1035 consensus metabolites. To create ground truth causal links between these
metabolites, we used three pathway definitions. Overlapping mQTL studies with
the metabolite databases resulted in 266metabolite measurements across studies.
Metabolites can be measured in multiple studies, leading to 154 unique measured
metabolites. In Mendelian randomization (MR), an exposure (a substrate in a
reaction) needs to have at least one mQTL available, resulting in 193 (126 unique)
metabolites with at least one SNP (P ≤ 5 � 10�8). This is not a requirement when the
metabolite is the outcome. b Example MR result for the reaction between leucine
and 4-methyl-2-oxopentanoate (supported by three databases). Leucine has
genetic associations in 3outof 4mQTLstudieswhere itwasmeasured.Weuse SNPs
in the associated regions for leucine as instruments to estimate the causal effect of

leucine on 4-methyl-2-oxopentanoate. For brevity, causal estimates are only shown
when the outcome is measured in Shin et al. All regional causal estimates (round
circles) can be meta-analyzed into a weighted estimate (large diamond) for a joint
causal estimate. c The ground truth positive causal relationships between meta-
bolites extracted from 3 databases, containing 287 reactions across 154 metabo-
lites. Causal estimates outside the pathway definitions are not shown. The size of
the nodes represents the number of measurements. Arrow width represents the
occurrence of the reaction in themetabolic pathway definitions. The color denotes
if a reaction was found or not. Green: The reaction was Bonferroni significant
(P < 1.0 × 10−6) forMR-link-2 in at least one study combination whenmeta analyzing
the estimates across the reaction (the weighted estimate from panel b). Grey: The
reaction was not Bonferroni significant for MR-link-2. Pink: The substrate in the
reaction does not have associated regions, meaning that there is no data for causal
estimation.
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controls, we used C-reactive protein →Type-2-diabetes 19 instru-
mented from IL6R48, LDL-C→BMI instrumented from PCSK949 and
C-reactive protein →coronary artery disease instrumented from CRP50,
based on established and disproven causality from these loci. After

Bonferroni correction, only MR-link-2 (P = 1.2 × 10−9) and MR-PCA (P =
1.7 × 10−7) identify the causal link between LDL-C and CAD instru-
mented fromHMGCR after multiple testing correction across 104,007
pairwise regions of these complex traits (P < 4.8 × 10−7)
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Fig. 4 | Comparison of different cis MRmethods through effect size analysis,
the true and false causal link datasets used for a comparison of discriminative
ability of the metabolites in this study. Causal effects are estimated for an
exposure for each associated exposure region, testing single region results for each
region. a–d The causal effect estimates of the Mendelian randomization (MR)
methods tested in this study, when comparing nominally significant (P ≤0:05)
estimates between a metabolite on itself using two different mQTL datasets, when
they are not included in the true positive dataset. The mean (μ) of a self-estimate is
expected to be 1.0. panels represent different methods: a MR-link-2 (79 compar-
isons), b MR-IVW (80 comparisons), c MR-IVW LD (82 comparisons) and (d) MR-
PCA (80 comparisons). e–h Distribution of Bonferroni significant (P ≤ 2:1 � 10�7)
regional causal effect estimates. We report percentage positive effect size esti-
mates, these likely represent direct metabolic reactions, as substrate to product
reactions should have positive effect. e MR-link-2 (1242 combinations), f MR-IVW
(3218 combinations), g MR-IVW (3373 combinations) and (h) MR-PCA (3229

combinations). i A Venn diagram representing the number of true causal link
combinations used for the regional results in this study per pathway definition.
True positives are metabolites (one for each associated exposure region) that are
one reaction apart. j Negatives used in this study. We define the link between two
metabolites as a negative when separated by at least m reactions in the full
metabolite graphs created from the databases (combinations with more than 10
links). k–p The area under the receiver operator characteristic curve (AUC) of cis-
MR and colocalization methods benchmarked against different databases (k–m)
and database combinations (n–p). Only considering comparisons with more than
10 negatives (same as panel j) per positive definition (same as panel i). When there
is no SuSIE coloc estimate available for a region, the original coloc estimate is
used. True causality and false causality: k from the KEGG pathway, l from the
MetaCyc pathway, m from the WikiPathways pathway, n present in any pathway
definition, o present in at least two pathway definitions, p shared in all pathways.
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(Supplementary Data 14). When using amore lenient P value threshold
of only these 6 positive and negative controls (P <0.05 / 6), all 3
positive controls are identified by MR-IVW LD and MR-PCA and 2 / 3
positive controls are detected by MR-link-2 and MR-IVW. This

undetected positive control (C-reactive protein→COVID-19 instru-
mented from IL6R) has little evidence of causal variant colocalization
(colocPP4: 1.0 × 10−16) in the locus.Thisfindingmay seemingly contrast
with the clinically validated efficacy of tocilizumab in severe COVID-19,
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Fig. 5 | Analysis of different MR methods on canonical causality and the caus-
ality between blood cell traits. a The per locus detection rate (at P<0.05) for
phenotype combinations that are not considered causal or are unlikely to be con-
sidered causal by Morrison et al. b The per locus detection rate (at P>0.05) for
phenotypes that are considered causal. c Pleiotropic estimates (ĥY, where ĥY P <
0.05) (y-axis) compared to MR-IVW absolute regional (αr) estimate deviation from
the meta-analyzed one (�α) (x-axis). The r correlation coefficient is the Spearman
correlation. The regression line is from linear regression n log10 transformed com-
parisons. Due to a large number of points in the plot, the points are shown as a
density. d Violin plot of the heterogeneity statistics of 306 complex trait to complex
trait comparisons for the MRmethods tested in this study. Uponmeta-analysis of all

the pairwise phenotype combinations in (a) and (b), we plot the Q statistic for each
method (log10 scale). The bars andwhiskers in the plot refer to theminimum,median
and maximum heterogeneity value. e Blood cell type and eQTL analysis results. MR-
link-2 Bonferroni significant (P< 5:15 � 10�4) causal links between cell type con-
centrations and the RNA expression of their respective marker genes (Supplemen-
tary Data 18). Green colored arrows indicate the cell type influences the RNA gene
expression in blood causally. These are considered true causal links. The red arrows
indicate an (incorrect) causal link between the gene expression and the blood cell
type marker, indicating reverse causality. f Area under the receiver operator char-
acteristic curve for the cell type directionality analysis for all MR methods tested in
this study based on the reported P value of the method.
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which targets the IL-6 pathway. However, it is possible that CRP levels
do not fully capture the relevant immunopathological mechanisms
induced by IL-6 receptor blockage in COVID-19. Only at the lowest
thresholds of significance (0.05/6) was this combination significant in
MR-IVW LD and MR-PCA.

Using reverse causality as true causal links from eQTL
information
As a final independent true positive dataset, and to ensure that MR-
link-2 does not identify reverse causality excessively, we applied the
studied cis MR methods and MR-APSS and MR-PRESSO to test how
oftenwe can identify the correct causal direction betweenwholeblood
bulk gene expression levels and blood cell composition
phenotypes51–53 (Fig. 1f). Our assumption is that when analyzing a
mixture of cells such as blood, the differences in the concentrations of
certain cell type causally affect the gene expression of respective
marker genes (i.e., the observed expression quantitative trait locus
(eQTL) effect is caused by genetically regulated cell type differences),
whereas the opposite direction is a false positive. These marker genes
are derived from reference single cell RNA expression experiments
that are typically used to identify cell types from untargeted assays54.
We test the bidirectional causal relationship between RNA expression
of 73 cell-type marker genes and 12 types of peripheral blood mono-
nuclear cells (PBMCs) measured in up to 563,085 individuals of Eur-
opean ancestry54. Using newly generated RNA expression eQTLs from
the eQTLGen consortium that contains a genome-wide cis and trans
eQTL summary statistics from 19 cohorts and 14,855 individuals55

(Methods) (Supplementary Note).
Upon themeta-analysis ofMR estimates across associated regions

for 42 true (cell type to gene expression) and 54 false (gene expression
to cell type) causal combinations, we find 38 Bonferroni significant (P <
1.9 × 10−4) MR-link-2 comparisons. All estimates have a positive causal
effect direction estimate (SupplementaryData 15). Indeed, we find that
94.7% (all but two) of the Bonferroni significantMR-link-2 estimates are
in the correct direction (from cell type to RNA expression) (Fig. 5e).
Interestingly, in these Bonferroni significant estimates, one false
positive is bidirectional, meaning that MR-link-2 identifies both the
true causal link and the false causal link (Fig. 5e). In comparison with
the other tested cis MR methods, we find that MR-link-2 has higher
discriminative ability (MR-link-2 AUC: 0.82, best competing: 0.68) to
identify the correct effect direction based on the MR methods causal
estimate P value (Fig. 5f) (Methods).

We were intrigued by the reverse causal direction that MR-link-2
identified between S100A9 expression and monocyte concentra-
tions. S100A9 is considered a marker gene for monocyte con-
centrations based on single cell experiments54. MR-link-2 only
identifies the reverse effect: S100A9 increases monocyte con-
centration with a larger effect (S100A9 as exposure: 1 locus, α̂ = 0.112,
P = 3.4⋅10−6, monocyte count as exposure 514 loci, α̂ = 0.06, P =
2.8 ⋅ 10−3) (Fig. 5f) (Supplementary Data 15). Based on a literature
review, the causal effect direction of S100A9may actually have been
correctly estimated by MR-link-2, as S100A9 has been shown to
promote accumulation of leukocytes from mouse knockout
experiments56 as well as inhibiting dendritic cell differentiation57.
Dendritic cells are a class of monocytes, which upon differentiation,
migrate to non-blood tissues, reducing monocyte blood concentra-
tions. These results suggest that S100A9 expression promotes
monocyte accumulation in whole blood and might represent a true
causal link, as found by MR-link-2.

Discussion
In this study, we present a new cis MR method: MR-link-2, which can
perform pleiotropy robust MR in a single region when summary sta-
tistics and an LD reference are available. To our knowledge, MR-link-2
is the only summary statistics cis MR method that explicitly models

pleiotropy. MR-link-2 provides estimates of causal relationships
through modeling the effect of all SNPs in an entire cis region on an
exposure and an outcome. We have tested MR-link-2 in four different
validation datasets, three of which being based on real data. When
compared to competing cis-MR and colocalizationmethods,MR-link-2
has better discriminative ability and lower T1E. Furthermore,MR-link-2
uniquely identified compelling biological examples, such as the
negative causal relationship between lactate and acetoacetate which
contrasts anaerobic and aerobic energy pathways in humans, respec-
tively, and the relationship between 3HB and lactate, which is a more
cryptic causal relationship that has been validated in human trials.
Together, these results illustrate the ability of MR-link-2 to help shape
our understanding of the underpinnings of molecular mechanisms in
humans, including those underlying disease.

Our simulations suggested that MR-link-2 is sensitive to scenarios
with strong LD between causal SNPs, especially when the reference LD
matrix is measured with high uncertainty, in which MR-link-2 has high
T1E, which is a commonality it shares with all other tested methods.
Furthermore, our simulations are somewhat limited as we do not
simulate directional or correlated pleiotropy8,9,11,58. We found it
important to show both simulation and real data applications, as each
has its own weaknesses.

In real data validations MR-link-2 exhibits lower T1E rates com-
pared to other methods while retaining good discriminative ability.
The application to real-world validation datasets show thatMR-link-2 is
robust to the presence of horizontal pleiotropy in a locus. We make
this conclusion based on the lower T1E in the per locus estimates of
complex traits, the closer agreement with le Chatelliers principle in
metabolites, the correlation of the pleiotropy parameter ĥ

2

Y with
regional deviation from meta-analysis, the lower heterogeneity of
estimates in our complex trait application and the identification of
causality in the correct direction in the blood cell count and eQTL
analysis.

This does notmean thatMR-link-2 is robust to all violations of the
assumptions underlying MR. In cases of extreme pleiotropy, e.g., the
HDL-C to CAD analysis, T1E rates are increased. In less extreme cases,
we expect the per locus T1E to be 0.05, while ourmedian per locus T1E
is 0.09 in the non-causal complex trait analysis. This analysis indicates
that accounting for pleiotropy could be improved by allowing for
multiple exposures in themodel, which couldbe a natural extension of
MR-link-2. Compared to other methods, MR-link-2 does not always
provide superior estimates. For instance, in the cis locus metabolite
analysis, MR-link-2 has superior AUC over other methods in 105 / 156
(76%) of comparisons. MR-link-2 also missed one (IL6R instrumented
CRP levels andCOVID-19) out of three true positives in the drug-target-
MR analysis at lenient multiple testing thresholds.

Taken together and given that MR-link-2 i) provides meaningfully
different results from the other testedmethods in this study and ii) has
lower T1E than other methods, we believe that MR-link-2 can be useful
both as a standalone method as well as for secondary validation. Even
though the MR methods tested in this work are developed to be
principally for the analysis of cis associations, they still perform well
when meta-analyzing multiple cis estimates together. We have found
no limitation to the number of regions that MR-link-2 estimates,
enabling its application to complex exposures.

The true and null causal relationships from the reference datasets
used in this study can be discriminated by genetically informed causal
inference methods. Unfortunately, these reference datasets remain
imperfect, which is illustrated by the limited agreement between
metabolite pathway references in the metabolite datasets. We purpo-
sefully did not include metabolite pairs that are more than 1 reaction
away from each other, as such links would represent an order of
magnitude smaller causal effects, which are undetectable given the
current sample sizes. Hence such seemingly true links would only be
detected by mistake by any method. Another striking example of
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imperfect reference datasets relates to S100A9, for which we hypo-
thesize that altered gene expression is causally changing blood com-
position. This is at odds with our initial assumption that changes in
blood composition are causal to changes in the expression of cell
marker genes.

Nonetheless, the benchmarking data developed in this study
provide a reasonable ground-truth for testing causal inference meth-
ods. In the future, the community should increasingly seek to refine
and broaden these datasets to facilitate the development and bench-
marking of new causal inference tools. One important step towards
this is to build causal datasets in a tissue specific way. The current
ground truth datasetswill contain some tissue specific links thatwill be
difficult to detect. Indeed, the limited tissue specificity in the meta-
bolite analysis likely contributes to the relatively low recall of all causal
edges. Improvement of the tissue specificity in these datasets may
contribute to better discriminative ability of each method.

In this study we use summary statistics of European ancestry
individuals when they are available. We justify this decision based on
sample sizes and availability of a large and representative LD reference.
It is important to note that our methodology is not limited to indivi-
duals of European ancestry. We even hypothesize that a more diverse
association panel would make MR-link-2 more powerful as the diver-
sity of the available LD panel will allow for better distinction between
causal effect and horizontal pleiotropy which we believe is paramount
to correct causal inference. The availability of more multi-ancestry
population studies is likely to improve our understanding of causality,
with the caveat that the LD panel should match the ancestry compo-
sition from which the summary statistics were derived.

In all the validations performed in this study, MR-link-2 has shown
to be a promising tool to study exposures with dominantly cis- asso-
ciations and leads to improved identification of causal links between
molecular trait, which will – in turn – facilitate shedding light on the
molecular basis of complex traits.

Methods
Research ethics compliance
This work includes data that is derived from human participants, all
whom provided informed consent for their analysis. All studies have
been approved by research ethics committees. We analyzed three
categories of human-derived data: i) publicly available summary sta-
tistics of human traits, ethics and consent statements of which can be
found in the source publications, ii) the UK10K genotype reference
which we accessed under data access agreement. Ethical approval and
informed consent statements can be found in the UK10K source
publication22 and iii) summary statistics from the eQTLGen Con-
sortium. These research activities have been carried out under the
ethical approval nr. 1.1-12/655 and its extension 1.1-12/490 by the
Estonian Committee on Bioethics and Human Research (Estonian
Ministry of Social Affairs).

Mendelian randomization and colocalization methods
Existingcisgeneticmethodsused in this study.Weuse six cisgenetic
methods in this study to identify if two phenotypes are causally related
to each other. Two methods are colocalization methods and four
methods are MR based methods.

We use two versions of colocalization, namely coloc14 and coloc-
SuSIE15 (R v4.3.2 coloc package version 5.2.3). Both methods test for
the following question: Are the causal variants of the traits shared?
coloc assumes that there is a single causal variant in the locus, whereas
coloc-SuSIE relaxes this assumption by identifying independent SNPs
and subsequently performing a conditional coloc analysis per variant.
We define detection of a causal variant sharing as having a coloc
posterior probability (PP4) larger than 0.9 for the 4th hypothesis (two
traits share a causal variant). As coloc-SuSIE may estimate multiple
causal effects, we take the maximum PP4 across analyses (Table 1).

We use three existing (cis) MR methods and introduce one new
MR method: MR-link-2. The three existing MR methods used are MR-
IVW24, MR-PCA23 and MR-IVW LD23. We used the ‘mr_ivw’ and ‘mr_wal-
d_ratio’ functions (for multiple instrumental variables and a single
instrumental variable respectively) from the TwoSampleMR
package59,60 ‘https://github.com/mrcieu/TwoSampleMR’. We adapted
the MR-PCA and MR-IVW-LD code from Burgess and Thompson23 our
adaptation was limited to storing duplicated code segments in mem-
ory that can otherwise take a long while to process. (Code reference
https://github.com/adriaan-vd-graaf/mrlink2, using python version
3.11.6). We compared our adaptation to the original and found no
difference in effect estimates or levels of significance (Table 1). MR-
IVW-LD accepts the same variants as instrumental variables; however,
the method adjusts their effect sizes based on the LD in between the
instrumental variables.

Whendetermining detection rates in our simulations,we consider
it evidence for a causal relationship if the MR P value is smaller than
0.05. We have not compared the original MR-link (v1) method as our
analysis depends exclusively on summary statistics and as such, the
method is not suited for our comparisons20.

Additionally, we have applied MR-APSS (v0.0.0.9000) and MR-
PRESSO (v1.0) causal estimates in appropriate comparisons in this
study. Using the ‘MRAPSS’ and ‘MRPRESSO’ R packages, we clumped
(r2 < 0.001, 1000Kb window) the summary statistics at P ≤ 5 × 10−8 for
MR-PRESSO (genome wide significance), and P ≤ 5 × 10−8 for MR-APSS,
using functionality provided by the MR-APSS package, following
recommendations by the MR-APSS authors.

The MR-link-2 likelihood function. MR-link-2 is a likelihood function
that models the summary statistics found between a cohort of nX
exposure phenotypes (X) and an nY outcome phenotypes (Y). The full
derivation of the MR-link-2 likelihood function can be found in
the Supplementary Note. We continue with a bird’s eye view of the full
derivation.

We model the causal relationship α between an exposure and
outcome in the following way:

X=G � γ Xð Þ + ϵX ð1Þ

Y=α � X+ G � γðYÞ + ϵY ð2Þ

Here, G represents a genotype matrix, with normalized genotypes to
zero-mean and unit variance across samples. SNP effects are modelled
as random, γ Xð Þ � Nð0, σ2

XÞ and γðYÞ � Nð0, σ2
YÞ, where σ2

X is a per
variant heritability estimate related to the cisheritability ofX, such that
σ2
X =h

2
X=m and σ2

Y is the per variant direct (vertically pleiotropic) cis
heritability of Y, such that σ2

Y =h
2
Y=m. Error terms are distributed as

follows: ϵX � Nð0, 1� h2
XÞ and ϵY � Nð0, 1� α2 � h

2
YÞ. The marginal

GWAS summary statistics, estimated in samples of size nX and nY,
respectively, can then be written as:

bβX =C � γ Xð Þ +ηX ð3Þ

bβY =C � α � γ Xð Þ + γ Yð Þ� �
+ ηY ð4Þ

Where C represents an m by m LD matrix: C=GT�G =n and

ηX =α � ðGT�ϵXÞ=nX which is distributed as � N 0,C � 1�h2
X

� �
nX

� �
. ηY =

α � ðGT � ϵXÞ=nY + ðGT � ϵYÞ=nY is distributed as� N 0,C � 1�α2 �h2
X�h2

Y

� �
nX

� �
.

These distributional assumptions allow us to formulate a joint like-
lihood function for both summary statistics to estimate the causal
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effect and underlying multivariable SNP effects: Lðβ̂X, β̂Yjα, γX, γYÞ.
To maximize the likelihood function, we would have to optimize
2 �m+ 1 variables which can be difficult, as m could contain
thousands of parameters, when an associated region has many
genetic variants. Therefore, we integrate out the underlying SNP
effects γðXÞ and γðYÞ, conditional on the per SNP heritabilities σ2

Y and

σ2
X:This reduces the parameters to optimize to 3, which is faster

and increases power. After some algebraic transformations
(Supplementary Note), the MR-link-2 log likelihood function simpli-
fies to:

Lðβ̂X, β̂Yjα, σ2
X, σ

2
YÞ = �m � log 2πð Þ

� 1
2
�
Xm
i= 1

log α2 � nY +nX

� � � λi +σ�2
X � α2 � n2

Y � λ2i
nY � λi + σ�2

Y

 !

� 1
2
�
Xm
i= 1

log nY � λi + σ�2
Y

� �
+
1
2

Xm
i= 1

δ̂
Xð Þ� �2

i
� D X,Xð Þ

i, ið Þ

� �
+
Xm
i= 1

δ̂
Xð Þ
i � δ̂ Yð Þ

i � D X,Yð Þ
i, ið Þ

+
1
2

Xm
i= 1

δ̂
Yð Þ� �2

i
� D Y,Yð Þ

i, ið Þ

� �

� nX

2

Xm
i= 1

δ̂
Xð Þ
i

� �2
= λi

� �
� nY

2

Xm
i= 1

δ̂
Yð Þ
i

� �2
=λi

� �
+
m
2
� log nX

� �
+ log nY

� �� �
�
Xm
i= 1

log λi
� ��m � ð log σX

� �
+ logðσYÞ

ð5Þ
To arrive to this expression, we used a singular value decom-

position of the correlation matrix,C=U �Λ �UT , which preserved 99%
of the variance. This led to the introduction of the following quantities:

λi is the ith diagonal element of Λ, δ̂
Xð Þ
=UT � β̂ðXÞ

and δ̂
Yð Þ
=UT � β̂ðYÞ

.

Finally, theDðX,XÞ,DðX,YÞ andDðY,YÞ are diagonalmatriceswith diagonal

elements defined as D X,Xð Þ
i, ið Þ = α2 � nY +nX

� � � λi + σ�2
X

� �� α2 �n2
Y �λi

2

nY �λi + σ�2
Y

� ��1

,

D X,Yð Þ
i, ið Þ = �D X,Xð Þ

i, ið Þ � α�nY �λi
nY �λi + σ�2

Y
and D Y,Yð Þ

i, ið Þ = 1
nY �λi + σ�2

Y
+D X,Xð Þ

i, ið Þ � α2 �n2
Y�λ

2
i

nY �λi + σ�2
Yð Þ2.

The full derivation and Python implementation details can be
found in the (Supplementary Note).

Application of the MR-link-2 likelihood function. We optimize the
MR-link-2 likelihood function using the Nelder-Mead optimizer using
the ‘scipy optimize minimize‘ function (scipy v1.14.1)61. We optimize
the likelihood function three times, first by setting i) α =0 and freely
estimating σ̂2

X and σ̂2
Y. Then, ii) by setting the pleiotropic variance σ2

Y to
zero and freely estimating α̂ and σ̂2

X. Andfinally, iii) by freely estimating
all three parameters α̂, σ̂2

X and σ̂2
Y:We identify confidence intervals and

P values of α̂, and σ̂2
Y through a likelihood ratio test with one degree of

freedom.
We estimate that under the following assumptions, the MR-link-2

model provides accurate estimates of causality
1. The relevance assumption (IV-1): The genetic variant G is asso-

ciated to the exposure X
2. The independence assumption (IV-2): The genetic variant G is

independent of any confounder C
3. The infinitesimal genetic architecture assumption: All genetic

variants G in a locus have a non-zero genetic effect on the
exposure with zero mean

4. Independence of pleiotropy assumption: The pleiotropic effect
magnitudeG→Y are independent from the direct effects ofG→X

5. The correlation between genetic variants is measured
without error

A full implementation for MR-link-2 is available online at https://
github.com/adriaan-vd-graaf/mrlink2. This implementation accepts 2
harmonized summary statistic files and a plink style “.bed” genotype
file used for generating an LD reference62. For all associated regions in
the exposure summary statistics file, MR-link-2 provides a causal
estimate.

Simulations
Simulations of summary statistics. We performed extensive
simulations to ensure that MR-link-2 provides accurate causal infer-
ence, as well as to compare it to other cis methods. Our
simulations were performed with the goal of mimicking a cis region
of a molecular -omics study that is potentially causal to a
complex trait that is measured in a large cohort. Therefore, the
exposure is measured in 10,000 individuals (nX), while the
outcome is measured in 300,000 individuals (nY) in a genomic
region of 2068 genetic variants (m) that is derived from a
UK10K region on chromosome 1022. Our simulations contain
six different parameters that we vary: the causal effect (α ∈{0, 0.05,

0.1, 0.2}), the exposure heritability (h2
X 2 0:001, 0:01, 0:1f g),

pleiotropy that is represented as outcome heritability

(h2
Y 2 10�20, 10�5, 10�4, 0:001, 0:01, 0:03

n o
), The size of the linkage

disequilibrium (LD) reference (nref∈{500, 5000, ∞}), the number of
underlying causal SNPs (mcausal∈{1, 3, 5, 10, 100}) which represents a
subset of m, the minimum and maximum LD between causal and
pleiotropic SNPs (r2causal 2 f 0:1, 0:95ð Þ, 0:01, 0:95ð Þ, 0:0, 1:0ð Þg for
minimum and maximum correlation respectively). In total we have
simulated 3,240 different scenarios with 1000 replications per sce-
nario. Of note, none of the 3240 parametrizations of our simulations
do not violate the specific assumptions underlying MR-link-2. MR-link-
2’s underlying assumptions are violated when nref ≠ ∞,mcausal ≠ 2068 =
m and when r2causal ≠0.

We simulated summary statistics for the two phenotypes in the
following way:
1. From the total number of markersm, a subset ofmcausal SNPs are

selected from the region for the exposure and the outcome.
Selection is random across the region when rcausal = (0, 1) and
following the procedure of the original MR-link manuscript
otherwise20. In this procedure, SNPs are selected iteratively until
mcausal SNPs are selected. First, a SNP causal to the exposure is
drawn randomly from the region, then the next exposure SNP is
drawn from all possible SNPs that meet the correlation criteria
compared to the previously selected SNPs. The SNPs causal to the
outcome will be selected to be within the LD window of at least
one exposure causal SNP.

2. Independent SNP effects for the exposure and the outcome (γX
and γY respectively) are randomly drawn from a normal dis-
tribution γX � Nð0, σ2

XÞ and γY � Nð0, σ2
YÞ for each SNP that is

selected to be causal, otherwise it is set to zero.
3. Independent SNP effects γY, γX are transformed into uncondi-

tional effect sizes β in the following way. We multiply the inde-
pendent SNP effects by the correlation matrix C and add
measurement error term βX = γX � C+Nð0, C � 1�h2

X
nX

Þ and βY =
γY � C+N 0, C � 1�α2 �h2

X�h2
Y

nY

� �
.

These simulated summary statistics are then introduced in their
respective MR and colocalization algorithms. When nref is infinite, the
LDmatrix that is used as input for the algorithms (Ĉ) is the same as the
original (C).Whennref is not infinite, we simulate impreciselymeasured
LD through Wishart sampling the C matrix63. In cases where C is not
positive semidefinite, we add regularization constants (up to 0.5) to
the diagonal of the original matrix to ensure that Wishart sampling
continues correctly.
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For the methods that require instrument selection (MR-IVW and
MR-IVW LD) we selected instruments using P value clumping at a P
value threshold of 5 × 10−8 and an LD r2 squared threshold of 0.01.

Summary statistics used in this study
Summary statistics harmonization and associated region selection.
In this work we utilize summary statistics from a variety of different
studies. We processed summary statistics of all studies in the same
way: First, if necessary, we lifted over summary statistics into human
chromosome build 37 using UCSCs liftover tool (https://genome.ucsc.
edu/cgi-bin/hgLiftOver) combined with their chain files (https://
hgdownload.soe.ucsc.edu/downloads.html). Then, we include SNP
variants that have LD information available, by overlapping the var-
iants (based on chromosome, position and alleles) present in the
summary statistics file with the variants in our LD reference (UK10K).
Due to potential strand inconsistencies, palindromic SNPs were
removed.

We ensured that effect size magnitudes of summary statistics are
the same between studies by converting to standardized effect sizes:

βstandardized =
zffiffiffiffiffiffiffiffiffiffiffiffi

n + z2
p ð6Þ

se βstandardized

� �
=

1ffiffiffiffiffiffiffiffiffiffiffiffi
n+ z2

p ð7Þ

where the n is the sample size of the tested SNP and z is the Z score of
the tested SNP. If n was not available per SNP, we set n to be the
maximum sample size reported by the authors. If z was not available,
the P value of the SNP-trait association combined with the effect
direction was converted into a Z score. Genetic associations are
retained if they have at least a minor allele frequency of 0.5% in the
UK10K LD reference and if the variant has been measured in at least
95% of the maximum number of measured individuals (if this
information was available) (Supplementary Note).

We identify associated regions using the –clump command of
plink (v1.90b7)62, using a clumping window of 250Kb, an LD threshold
of 0.01 r2 and a P value threshold of 5⋅10−8. If clumped regions overlap,
we combine them together, so these regions can be much larger than
250Kb. All harmonized regions are then analyzed by each cis genetic
method individually. If the method requires the selection of IVs (MR-
IVW, MR-IVW LD), these are clumped inside the region at a P value
threshold of 5⋅10−8 and an r2 threshold of 0.01.

Summary statistics of metabolite QTL studies. We analyzed the
summary statistics of four different mQTL studies. To match the
associations to our reference panel, we chose to analyze the
European component of the individuals, when available. Shin et al. was
downloaded from http://metabolomips.org/gwas/index.php?task=
download33, Lotta et al. was downloaded from https://omicscience.
org/apps/crossplatform/32, Chen et al. summary statistics derived from
European populations were downloaded from the GWAS catalog31,64.
The UK biobank summary statistics were downloaded from the IEU
openGWASproject, wherewe included 19 accessions that represented
small metabolites30,65. More information about themetabolites used in
this study can be found in (Supplementary Data 4).

Summary statistics of complex trait harmonization and processing.
To understand the behavior of cis MR methods, we selected ground
truth (non-)causal relationships between complex trait combinations
from Morrison et al.9 These involve 10 unique phenotypes, summary
statistics of which were downloaded from their respective datasets
(Supplementary Data 16). In brief, we utilized summary statistics from
lipid phenotypes (LDL-C, HDL-C and total cholesterol) from Graham
et al.66, blood pressure (diastolic blood pressure and systolic blood

pressure) summary statistics from Warren et al.67, coronary artery
disease summary statistics from Aragam et al.68, stroke summary sta-
tistics fromMishra et al.69, childhood asthma summary statistics from
Ferreira et al.70, Type 2 diabetes summary statistics from Mahajan
et al.71 summary statistics of smoking from Karlsson Linnér et al.72,
circulating IL18 measurements were derived from Sun et al.73

C-reactiveproteinwasmeasurementswere fromSaid et al.74, COVID-19
was download from the Covid host genetics consortium (https://www.
covid19hg.org/results/r7/, using the ‘Very severe respiratory con-
firmed covid vs. population – only europeans’ summary statistics)75

and atopic dermatitis was downloaded from Budu-Aggrey et al.76

C-reactive protein was downloaded from Said et al.74. Some of these
studies are based onmulti-ancestry analyses, when population specific
summary statistics were available, we exclusively analyzed the Eur-
opean subset of the final summary statistics (Supplementary Data 16).

Summary statistics of eQTLGen. The eQTLGen Consortium is an
initiative to investigate the genetic architecture of blood gene
expression and to understand the genetic basis of complex traits. We
used interim summary statistics from eQTLGen phase 2, wherein a
genome-wide eQTL analysis has been performed in 19 cohorts,
representing 14,855 individuals. Numbers of individuals and their sex
can be found in Supplementary Data 17. Of note, all cohorts except the
INTERVAL77 cohort were part of the original publication, thus the
INTERVAL cohort is a new addition to the consortium (Supplemen-
tary Note).

All 19 cohorts performed cohort-specific analyses as outlined in
the eQTLGen analysis cookbook (https://eqtlgen.github.io/eqtlgen-
web-site/eQTLGen-p2-cookbook.html). Genotype quality control was
performed according to standard bioinformatics practices and inclu-
ded quality metric-based variant and sample filtering, removing rela-
ted samples, ethnic outliers and population outliers. Genotype data
was converted to genome build hg38 if not done so already and the
autosomes were imputed using the 1000G 30xWGS reference panel78

(all ancestries) using our imputation pipeline (https://github.com/
eQTLGen/eQTLGenImpute). Like the genotype data, gene expression
data was processed using our data QC pipeline (https://github.com/
eQTLGen/DataQC). For array-based datasets, we used the results from
empirical probe mapping approach from our previous study21 to
connect the most suitable probe to each gene which has previously
been to show expression in the combined BIOS whole blood expres-
sion dataset. Raw expression data was further normalized in accor-
dance with the expression platform used (quantile normalization for
Illumina expression arrays andTMM79 for RNA-seq) and inverse normal
transformation was performed. Gene expression outlier samples were
removed and gene summary information was collected for filtering at
the central site. Samples for whom there were mismatches in geneti-
cally inferred sex, reported sex, or the expression of genes encoded
from sex chromosomes were removed. Similarly, samples with unclear
sex, based on genetics or gene expression were removed.

The HASE framework (using Python version 2.7.15)80 was used to
perform genome-wide meta-analysis. For genome-wide eQTL analysis,
this limits the data transfer size while ensuring participant privacy. At
each of the cohorts, the quality controlled and imputed data was
processed and encoded so that the individual level data can no
longer be extracted, but while still allowing effect sizes to be
calculated for the linear relationship between variants and genes.
(https://github.com/eQTLGen/ConvertVcf2Hdf5 and https://github.
com/eQTLGen/PerCohortDataPreparations).

Centrally, the meta-analysis pipeline was run on the 19 cohorts.
The pipelinewhich performsper cohort calculations of effect sizes and
standard errors and the inverse variance meta-analysis is available at
https://github.com/eQTLGen/MetaAnalysis (using Python 3.11.3). We
included 4 genetic principal components as covariates. Per every
dataset, genes were included if the fraction of unique expression
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values was equal or greater than 0.8, Variants were included based on
imputation quality, Hardy-Weinberg equilibrium and minor allele fre-
quency (MAF) (Mach R2 ≥0.4, Hardy-Weinberg P ≥ 1×10-6 and
MAF ≥0.01).

Summary statistics of cell type proportions. We processed the
summary statistics of 15 cell type composition phenotypes from the
Chen et al. (2020) meta-analysis, using the summary statistics of
individuals with European ancestry. these cell type composition phe-
notypes were downloaded from http://www.mhi-humangenetics.org/
en/resources/51,52.

Harmonization of metabolites. The mQTL studies studied here use
different metabolite naming schemes for their metabolites. To make
sure that all metabolites studied are the same, we harmonized meta-
bolites to HMDB database identifiers36. The HMDB is a large reference
database for human metabolites and contains references to other
metabolites. In this work we utilized the HMDB database of 17th of
November 2022. Downloaded from https://hmdb.ca/system/
downloads/current/hmdb_metabolites.zip.

As a starting point for the harmonization of metabolites, we
utilized the metabolite comparison information provided by the
supplementary table 4 of the Chen et al. publication31. Here, 2075
metabolites across 6 studies were provided a harmonized name.
One mQTL study used in this work was not considered (UKB
metabolites), therefore, we manually harmonized 19 metabolites
from the unharmonized UKB information into a derived table
(Supplementary Data 4). Combined, the 4 mQTL studies under
investigation have 1518 unique harmonized metabolites mea-
sured. We removed 430 measured metabolites that were not
matchable to a single compound, leaving 1035 metabolites for
study. 660/1035 metabolites were already matched to the HMDB
database by Chen et al. For the remaining matches, we matched
name and synonyms for a further 239 matched names to HMDB
identifiers. As a final step we manually matched a further 56
compounds based on manual web searching the HMDB website,
resulting in 854 metabolites with a HMDB identifier (Supple-
mentary Data 4). To ensure that metabolites can be easily mat-
ched with other databases, these metabolites have also been
matched with InChIKey, KEGG compound ID and ChEBI ID (Sup-
plementary Data 4).

Metabolite networks used in this study. We created 3 different
metabolite networks to benchmark our causal inference method: the
MetaCyc HumanCyc v24 pathway (released 30th of April 2020), the
WikiPathways Homo sapiens (“https://wikipathways-data.wmcloud.
org/current/gpml/wikipathways-20230510-gpml-Homo_sapiens.zip”)
pathwayand theKEGGpathway (downloadedon the 30th ofMay 2023).
Each pathway has an extended graph and a measured graph. The
measured graph contains the direct reactions of the measured meta-
bolites in this study, whereas the extended graph contains all the
causal relationships in the pathway definition.

Creation of the MetaCyc network graph. To create the MetaCyc
metabolite network we loaded the compound and reaction informa-
tion from downloaded MetaCyc HumanCyc flat files27. Some com-
pounds are very common reactants, therefore, we removed the
following HumanCyc Identifiers from our analysis: {‘GTP’, ‘CL-‘, ‘CYS’,
‘Fatty-Acids’, ‘HCO3’, ‘GDP’, ‘3-5-ADP’, ‘MALONYL-COA’,‘NADH-P-OR-
NOP’, ‘CMP’, ‘PAPS’, ‘NAD-P-OR-NOP’, ‘SUC’, ‘Acceptor’, ‘AMMONIUM’,
‘NA+ ‘, ‘ACETYL-COA’, ‘ADENOSYL-HOMO-CYS’, ‘HYDROGEN-PEROX-
IDE’,‘UDP’, ‘AMP’, ‘Donor-H2’,‘NADH’, ‘PPI’, ‘NADPH’, ‘ADP’, ‘NAD’,
‘CARBON-DIOXIDE’, ‘Pi’, ‘CO-A’, ‘NADP’, ‘ATP’,‘OXYGEN-MOLECULE’,
‘WATER’, ‘PROTON’}. After common reactant removal, we built an
extended graph containing 2,560 compounds and 3,900 reactions.We

matched HumanCyc compound identifiers with HMDB and ChEBI
identifiers27,81. After matching with our mQTL studies, this resulted in
115 compounds across 146 reactions in the measured graph.

Creation of the WikiPathways network graph. To create the Wiki-
Pathways metabolite network, we downloaded each individual human
pathway and kept all combinations where a compound is converted
into another according to the ‘mim-conversion’ arrow specifier29. This
resulted in an extended graph containing 3795 compounds and 4871
reactions. We matched the compounds in WikiPathways with the
HMDB36 or the ChEBI databases81 and find 160 compounds across 155
reactions that were measured in the measured graph.

Creation of the KEGG network graph. To identify the KEGG meta-
bolite network, we used the following procedure. For the 435 com-
pounds for which a KEGG ID was matched, we downloaded the
compound data and determined in which full pathways (‘map’) the
compound could be found. For each of these 229 pathways, we
downloaded the human equivalent (replacing ‘map’ with ‘hsa’) KGML
files. From these KGML files, all human reactions were parsed to con-
struct a graph of 1877 reactions across 1270 compounds in the
extended graph. 113 of which were measured in at least one mQTL
study. This measured graph contains 126 reactions.

Bias estimation and leChatelliers principle inmQTLMR. We test the
bias of MR methods by comparing causal estimates of the same
metabolite when they aremeasured in different studies (Fig. 4a–d).We
take the mean of the effect sizes of these ‘self comparisons’ when the
respective MR method identifies the causal estimate as nominally
significant.

We can determine if the causal estimates of the mQTL analyses
seem to represent metabolism by ensuring that the causal estimate is
positive, which would represent a chemical reaction between a sub-
strate and a product in equilibrium conditions. We test for this “le
Chatelliers principle” By taking the proportion of positive causal esti-
mates compared to the total number of Bonferroni significant MR
estimates (Fig. 4e–h) (Supplementary Note).

Reference set of metabolite reactions. To benchmark the cis genetic
methods used in this publication, we define a ground truth set of
reactions. Real reactions are defined when the substrate ‘causes’
changes in the levels of the product. Unfortunately, it is difficult to
define false causal links, as it is almost impossible to prove that two
metabolites are not in a reaction together. On top of that, it could be
that a metabolite is understudied and therefore a potential reaction is
simply not known. Our approach defines negative metabolite combi-
nations based on distance in the graph of “ground truth” reactions. If
theminimumdistance (counted as reactions) betweenmetabolites is a
certain number of steps or more, we consider the combination as a
ground truth null reaction, as it is unlikely that any statistical method
will have the power to pick up a signal after a certain number of
reactions. We do not consider metabolite combinations a false causal
link if there is no path possible between them in the extended graph
for two reasons. First, we reduce the chance of an understudied
metabolite being considered non-causal as they are present in the
metabolite network that we test. Secondly, this approach ensures that
the exposures studied are used both for true causal link and false
causal links datasets, making the analysis less dependent on which
associated regions are used, as they are the sameor similar between all
sets. Of note, sometimes a causal reaction is bidirectional, which
translates to both forward and backward causal links being considered
as ground truth.

Meta-analyzing multiple associated regions. When there are multi-
ple associated gene regions available for a metabolite, it becomes
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possible to meta-analyze regions. We meta-analyze regions by taking
the weighted mean �α (and standard error se �αð Þ) of all associated
regions together:

�α =
Σk
r = 1

α̂r

se α̂rð Þ2
Σk
r = 1seðα̂r Þ�2

0B@
1CA, ð8Þ

seð�αÞ= p Σk
r = 1se α̂r

� ��2
� �

ð9Þ

where k are all the associated regions found in the initial clumping step,
α̂r is the regional estimate with its associated standard error: seðα̂rÞ.

Analysis of complex traits
MR detection rates and false positive rates canonical causality.
Next to metabolites, we turn to canonical causal relationships
between complex traits. We perform regional estimates to
understand the per region false positive rate and detection rate of
MR methods (Fig. 5a-b). For each regional causal estimate we
determine if it is nominally significant (0.05) and report the
proportion of causal.

Heterogeneity of causal estimates. We meta-analyze the causal
estimates of canonical causality in the same way as the metabolites
(Methods). We estimate Cochran’s Q statistics across all these asso-
ciated regions by taking the sum of the Z score deviation of a regional
estimate with the meta-analyzed estimate for each trait pair (Fig. 5c).

Analysis of gene expression and cell types
We used cell type definitions and their marker genes to determine if
MRmethods correctly identify the causal direction between cell types
and their marker genes. Marker genes were taken from the Azimuth
PBMC cell type reference (http://www.mhi-humangenetics.org/en/
resources/)54, which is typically used to identify cell types from sin-
gle cell RNA sequencing experiments. We can identify marker genes
for 10 out of 15 cell types. For each cell type composition /marker gene
combination (41 in total), we perform bidirectional MR between cell
types and their respective marker genes, where we assume that
the marker genes are the cause of the cell type and not vice
versa (Supplementary Data 15) (Supplementary Data 17) (Fig. 5e). We
combine all cell type–marker gene causal relationships together and
use P values to determine discriminative ability in terms of
AUC (Fig. 5f).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The summary statistics for the metabolite analysis, the complex trait
analysis and the blood cell type composition phenotypes are available
from the respective source publications (Supplementary Data 16).

The data used from the eQTLGen Consortium cohorts is listed in
the (Supplementary Note) and Võsa et al.21. Per-cohort summary sta-
tistics for discovery cohorts can bemade available after approval of an
analysis proposal (https://eqtlgen.github.io//eqtlgen-web-site/
documents.html) in eQTLGen and with agreement of the cohort PIs.

This Phase 2 analysis of the eQTLGen Consortium uses previously
published data from the INTERVAL study77, this data is available to
bona fide researchers from ceudataaccess@medschl.cam.ac.uk. The
data access policy for the data is available at http://www.donorhealth-
btru.nihr.ac.uk/project/bioresource. The RNA-sequencing data are
available at the European Genome-phenome Archive (EGA) under the
accession number EGAD00001008015.

The newly generated eQTLGen Consortium summary statistics
can be found under accession https://doi.org/10.5281/zenodo.
14982207.

The genotype information underlying the LD matrices for the
UK10K data resource were downloaded from the EGA under accession
IDs EGAD00001000740 and EGAD00001000741. As this is individual
level genotype data, a data access agreement is required for access.
Conditions for this data access agreement can be found at https://
www.uk10k.org/data_access.html.

Code availability
The code for simulations, working examples and the true positives
used in this study for MR-link-2 and the other cis- causal inference
methods are available at: https://github.com/adriaan-vd-graaf/
mrlink2, and https://doi.org/10.5281/zenodo.14961110
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