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ABSTRACT 25 

Rice biology research involves complex decision-making, requiring researchers to navigate a 26 

vast and growing body of knowledge that includes extensive literature and multiomics data. The 27 

exponential increase in biological data and scientific publications has posed significant 28 

challenges in efficiently extracting meaningful insights. While large language models (LLMs) 29 

show promise for knowledge retrieval, their application to rice-specific research is hindered by 30 

the absence of specialized models and the challenge of synthesizing multimodal data integral to 31 

the field. Moreover, the lack of standardized evaluation frameworks for domain-specific tasks 32 

impedes the assessment of model performance in this area. To address these challenges, we 33 

introduce SeedLLM·Rice (SeedLLM), a 7-billion-parameter model trained using 1.4 million rice-34 

related publications, which represent nearly 98.24% of global rice research. Additionally, we 35 

present a novel human evaluation framework designed to assess LLM performance in rice 36 

biology tasks. Initial evaluations of rice-specific tasks demonstrate that SeedLLM outperforms 37 

general-purpose models such as OpenAI GPT-4o1 and DeepSeek-R1, achieving win rates 38 

ranging from 57% to 88%. Furthermore, SeedLLM is integrated with the rice biological 39 

knowledge graph (RBKG), which consolidates genome annotations for Nipponbare and large-40 

scale synthesis of transcriptomic and proteomic information from over 1,800 studies. This 41 

integration enhances the ability of SeedLLM to address complex research questions requiring the 42 

fusion of textual and multiomics data. To facilitate global collaboration, we provide free access 43 

to SeedLLM and the RBKG via an interactive web portal (https://seedllm.org.cn/). SeedLLM 44 

represents a transformative tool for rice biology research, facilitating unprecedented discoveries 45 

in crop improvement and climate adaptation through its advanced reasoning capabilities and 46 

comprehensive data integration. 47 

 48 
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 51 

SUMMARY 52 

SeedLLM·Rice, a 7-billion-parameter language model trained on 1.4 million rice-related 53 

publications, outperforms general-purpose models such as GPT-4o and DeepSeek-R1 in rice-54 

specific tasks. Through integration with a rice biological knowledge graph, it demonstrates 55 
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superior capacity for multiomics data synthesis, positioning it as a robust tool for AI-enabled 56 

crop genomics and systems biology, with continued validation anticipated to broaden its 57 

applicability.  58 
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INTRODUCTION 59 

Paddy rice (Oryza sativa) is a crucial staple crop that supports nearly half of the global 60 

population (Shi et al., 2023). Research on rice biology is inherently complex, requiring a 61 

comprehensive understanding of literature, experimental data, and hypothesis formulation to 62 

advance knowledge in the field (Majumdar et al., 2017). This iterative process often challenges 63 

or refines established theories, leading to new insights. For example, investigating the function of 64 

uncharacterized genes in rice requires a thorough understanding of related biological pathways, 65 

as documented in prior studies (Consortium, 2009; Warde-Farley et al., 2010). Similarly, crop 66 

breeding efforts rely heavily on genetic and phenotypic data to select optimal parental lines 67 

(Huang et al., 2022b). Therefore, a deep understanding of existing knowledge and empirical data 68 

is fundamental to advancing rice research. 69 

However, the rapid expansion of biological data, coupled with an overwhelming volume 70 

of research literature, presents significant challenges (Bornmann and Mutz, 2015). The 71 

sequencing of the rice genome in 2002 marked a key turning point, and subsequent 72 

advancements in high-throughput technologies have accelerated the generation of vast datasets 73 

(Li et al., 2014; Project, 2007). Despite the increasing availability of data, extracting meaningful 74 

insights remains a labor-intensive task. Researchers require extensive academic training to 75 

navigate this expanding body of knowledge, making the discovery of novel insights increasingly 76 

difficult. This highlights the urgent need for advanced tools that are capable of efficiently 77 

navigating and extracting relevant information from the growing corpus of rice-related biological 78 

data. 79 

A promising solution lies in the application of large language models (LLMs) (Naveed et 80 

al., 2023). However, several challenges hinder their effective use in rice biology research. First, 81 

there is a lack of standardized evaluation frameworks tailored to rice biology, making it difficult 82 

to assess the performance of general-purpose LLMs in domain-specific tasks such as 83 

comprehension, reasoning, and language generation (Lam et al., 2024). Although benchmarks 84 

exist for multilingual tasks or biomedical applications (Li et al., 2020; Singhal et al., 2023), no 85 

such tools have been developed for rice biology. Second, the absence of domain-specific training 86 

limits the effectiveness of general-purpose models in this domain (Nazi and Peng, 2024), where 87 

domain-specific LLMs have been shown outperforming performance over general-purpose 88 

LLMs. This gap stems from the limited availability of large-scale, diverse corpora needed to 89 
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train rice-specific models. Finally, rice biology studies generate complex, multiomics data 90 

(Huang et al., 2022a)—such as transcriptomics and genomic sequences—that are difficult to 91 

fully represent in textual formats. LLMs, which are predominantly trained using textual data, 92 

struggle to synthesize multimodal information, restricting their ability to address complex 93 

research questions that require an integrated approach. 94 

To address these challenges, we introduce SeedLLM·Rice (hereafter referred to as 95 

SeedLLM), a 7-billion-parameter large language model trained using 1.4 million rice-related 96 

publications, covering nearly 98.24% of the global literature in the field. To fill this gap, 97 

SeedLLM is designed as a domain-specific LLM capable of processing and integrating diverse 98 

datasets relevant to rice biology. A novel human evaluation framework is designed to assess the 99 

performance of SeedLLM on tasks such as gene function prediction, textual integration of 100 

transcriptional and proteomic data, and variety breeding. Initial results from over human 101 

evaluations demonstrate that SeedLLM outperforms general-purpose models such as DeepSeek-102 

R1 in rice-specific tasks, with a 88.14% win rate. Furthermore, SeedLLM is integrated with the 103 

rice biological knowledge graph (RBKG), a comprehensive resource that includes the latest 104 

genome annotations for Nipponbare and large-scale synthesis of transcriptional and proteomic 105 

information from over 1,800 academic publications. This integration enables SeedLLM to 106 

address complex rice biology questions by drawing from both textual data. Our results show that, 107 

when augmented with the RBKG, SeedLLM significantly outperforms all general-purpose LLMs 108 

in advanced-level rice omics tasks, despite some limitations in reasoning ability. To increase 109 

accessibility, we have developed an interactive web portal (https://seedllm.org.cn/) that allows 110 

researchers worldwide to freely access both SeedLLM and the RBKG, thus accelerating the pace 111 

and depth of rice biology research. 112 

 113 

RESULTS 114 

Overview of SeedLLM development 115 

To develop a specialized LLM for rice research, we collaborated with experts in rice 116 

biology to create RiceCorpus, a rice-specific corpus designed to address the lack of a specialized 117 

dataset for rice-domain LLMs (Figure 1A). This rice-specific corpus was developed under the 118 

guidance of experts in the field of rice biology research, ensuring comprehensive coverage 119 

(Supplemental Figure 1). RiceCorpus integrates both English and Chinese data, reflecting the 120 

Jo
urn

al 
Pre-

pro
of



primary languages used in rice research. The corpus comprises 1.4 million peer-reviewed papers 121 

containing keywords such as "rice" and "Oryza sativa" published over the past 40 years. This 122 

collection represents approximately 98.24% of global rice-related research in these languages 123 

during this period, providing a robust foundation for training rice-specific LLMs. Additionally, 124 

RiceCorpus includes 1,207 rice-related books. The corpus is exclusively textual and covers a 125 

wide range of disciplines in rice research, including molecular biology, plant breeding, and 126 

management practices. With a total size of 3,397.49 GB of textual data, RiceCorpus was 127 

processed through a multistep quality control pipeline (see the Methods for details), including 128 

language detection, content filtering, and deduplication, ensuring that only high-quality data 129 

were retained. This meticulous process meets the stringent requirements necessary for training 130 

large-scale LLMs. 131 

 132 

SeedLLM construction and automated evaluation 133 

We selected Qwen2.5-7B, a Transformer-based general-purpose LLM with 7 billion 134 

parameters (Qwen et al., 2024), as the base model (Figure 1B). This base model that had been 135 

pretrained using a large, multiphase dataset comprising 18 trillion tokens. Previous reports have 136 

demonstrated that Qwen excels in language proficiency, comprehension, reasoning, and 137 

mathematics. We pretrained the base model using RiceCorpus and GeneralCorpus, the latter 138 

being a widely used general-purpose corpus for LLM training (Huang et al., 2024; Penedo et al., 139 

2024). To evaluate its effectiveness, we assessed the model on two rice biology datasets: MCQ-140 

ACC, consisting of 300 single-choice questions, and Gen-QA-ACC, containing 517 short-answer 141 

questions (Figure 1C). The pretrained model outperformed the base model that had not been 142 

pretrained with RiceCorpus (Figure 1D), demonstrating that pretraining with rice-specific data 143 

enabled the LLM to acquire complex rice biology knowledge and domain-specific language 144 

patterns. Subsequently, we fine-tuned the pretrained model using RiceQA, a large annotated 145 

question–answer dataset in rice biology, along with GeneralQA, a commonly used dataset in 146 

general domains (Dong et al., 2024). This process enhanced the model's performance on rice-147 

related tasks where preserving its general-purpose capabilities. The resulting model, SeedLLM 148 

(Figure 1B), shares the same architecture as the base model but exhibits improved understanding 149 

of rice biology and domain-specific linguistic features due to the pretraining and fine-tuning 150 

procedures (see Supplemental Methods for more details). 151 

Jo
urn

al 
Pre-

pro
of



We also conducted an automated evaluation of SeedLLM using the Agri series dataset, 152 

which consists of 1,975 question‒answer pairs across 10 subdatasets, each with various task 153 

types, such as essay-style, summary, language understanding, and multiple-choice questions. 154 

SeedLLM outperformed general-purpose LLMs, including Qwen2.5 and Llama3.1 (Grattafiori et 155 

al., 2024), across all subdatasets, achieving the highest accuracy, F1, and ROUGE scores in 156 

automated evaluations (Figure 1E-G). These results demonstrate the effectiveness of the fine-157 

tuning process in optimizing SeedLLM for rice-specific tasks. Additionally, we assessed the 158 

generalizability of SeedLLM by fine-tuning it with GeneralQA, a benchmark dataset for general 159 

knowledge widely used to assess LLMs' abilities in general-purpose tasks. Despite being 160 

primarily pretrained and fine-tuned for rice-related tasks, SeedLLM achieved accuracy scores 161 

comparable to those of general-purpose models in various general knowledge tasks, such as 162 

mathematics problem-solving with GSM8K (Figure 1H). This finding suggests that SeedLLM 163 

retains the ability to perform general language understanding, reasoning, and mathematics tasks, 164 

making it a versatile tool for both domain-specific and general-purpose applications. 165 

In summary, we developed SeedLLM, a 7-billion-parameter large language model 166 

specifically designed for rice research. By leveraging RiceCorpus, a comprehensive rice-specific 167 

corpus, and applying a robust pretraining and posttraining methodology, we created a model 168 

capable of outperforming general-purpose LLMs in rice-related tasks, as validated by two rounds 169 

of automated evaluations. 170 

 171 

Human-Centric Evaluation of SeedLLM Performance 172 

LLMs are capable of generating long, coherent, and complex responses. However, they 173 

are also prone to factual inaccuracies (Huang et al., 2023), necessitating careful verification by 174 

human experts, particularly in specialized fields such as rice biology. To fully evaluate 175 

SeedLLM’s domain-specific comprehension and knowledge retrieval, we developed a human-176 

centric framework (Figure 2A). This framework enables the assessment of the model’s ability to 177 

generate complete and accurate answers to real-world research questions. 178 

We began by constructing HumanDesignRiceQA, a high-quality, human-designed 179 

question-answering benchmark tailored for rice biology. This benchmark enables LLM-180 

generated responses and facilitates subsequent assessment of their accuracy and quality. 181 

Developed by rice biology experts, the benchmark comprises 253 questions spanning 6 topics, 182 
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including rice gene function, multiomics, genome-wide association studies (GWAS), traditional 183 

breeding and molecular breeding (Figure 2B). Questions are categorized into three levels on the 184 

basis of their complexity: basic, intermediate, and advanced. Basic-level questions can be 185 

answered via publicly available information (e.g., research abstracts or online resources) without 186 

requiring prior education or experience in rice biology. In contrast, advanced-level questions 187 

require individuals to have undergone at least minimal formal training in rice biology and to 188 

synthesize information from multiple academic papers, integrating insights from scientific 189 

literature and experimental data. The benchmark design reflects the cognitive challenges 190 

encountered by individuals with varying levels of expertise when addressing rice biology 191 

problems. Additionally, input from a diverse group of experts ensured that the benchmark 192 

encompassed a broad spectrum of contemporary rice research topics. 193 

Next, we tasked SeedLLM, along with several general-purpose LLMs, with generating 194 

responses to the questions in the HumanDesignRiceQA benchmark. To establish a baseline for 195 

comparison, undergraduate students specializing in agronomy or crop breeding who had 196 

completed relevant coursework also provided responses to the same set of questions. These 197 

undergraduate students' answers served as a representative baseline ability of human 198 

performance, allowing for a direct comparison between SeedLLM and typical human 199 

understanding of rice biology. 200 

We assembled a panel of human evaluators to assess whether responses demonstrated 201 

correct or incorrect rice-specific reading comprehension and knowledge retrieval. Over 326 202 

individuals with academic backgrounds in agronomy, including 83 experts in rice biology and 203 

variety development, participated in the evaluation (Figure 2C). Evaluations were conducted in a 204 

blinded manner, ensuring that the evaluators were unaware of which responses were generated 205 

by SeedLLM. Responses were rated on a scale from 0 to 100 or ranked from best to worst, using 206 

answer keys or expert experience as reference. 207 

SeedLLM received higher human evaluation scores than all other tested LLMs in the 208 

HumanDesignRiceQA benchmark across both rounds (Figure 2D, Supplemental Figure 2). 209 

Superior performance of SeedLLM was observed across all question difficulties, as it 210 

outperformed all other tested LLMs in basic, intermediate, and advanced-level questions 211 

(Supplemental Figure 3). Evaluators also assigned that the highest number of the best responses 212 

came to SeedLLM (Figure 2E). These results demonstrate that SeedLLM outperforms general-213 
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purpose LLMs in rice-specific question-answering tasks, as validated by human evaluators over 214 

time. This suggests that SeedLLM maintains its leading performance, even as general LLMs 215 

evolve. 216 

In conclusion, the human-centric evaluation confirmed that SeedLLM outperforms both 217 

general-purpose LLMs and the human baseline across a broad range of rice biology questions. 218 

The model demonstrated state-of-the-art performance in tasks requiring a deep understanding of 219 

rice biology. However, SeedLLM achieved an average score of 69.98 in answering advanced-220 

level questions, highlighting areas for improvement, particularly in multistep reasoning and 221 

integrating complex biological data into textual information. 222 

 223 

Construction of the rice biological knowledge graph 224 

Recent studies have shown that incorporating external knowledge graphs into LLMs 225 

enhances their reasoning and data fusion capabilities (Pan et al., 2023; Peng et al., 2024). 226 

Motivated by these findings, we developed the rice biological knowledge graph (RBKG), a 227 

multimodal graph that integrates transcriptional and proteomic data from over 1,879 papers and 228 

gene annotation information (Figure 3A and 3B). The construction of the RBKG occurred in 229 

three phases: textual integration of transcriptional and proteomic data, integration of rice genome 230 

annotation, and comprehensive data fusion. 231 

We first identified scientific papers reporting rice transcriptome and proteome data. 232 

Through a comprehensive literature search, we identified 1,879 papers provided raw or 233 

preanalyzed transcriptomic and proteomic data. However, inconsistencies in experimental 234 

protocols and analysis methods present challenges to data standardization. To address this 235 

problem, we structured the transcriptomic and proteomic data by representing each gene’s 236 

transcriptional event as a sentence, using an approach similar to that of CellAnnoation (Fang et 237 

al., 2024). This structure included gene expression levels, protein abundance, experimental 238 

attributes (e.g., rice variety, genetic background, tissue type, developmental stage), and 239 

conditions specified in the respective studies. These data were then modeled within a knowledge 240 

graph framework, with nodes representing gene IDs, transcriptional events, and experimental 241 

attributes and edges denoting relationships among them (Figure 3A). This approach facilitated 242 

the standardization and harmonization of diverse rice omics data, resulting in a cohesive rice 243 

omics knowledge graph. Next, we integrated gene annotation data, including Gene Ontology 244 
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(GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations, for 245 

all genes identified in the transcriptomic and proteomic datasets. Annotation nodes were created 246 

and linked to the corresponding gene IDs, ensuring that functional annotations were directly 247 

connected to the underlying transcriptomic and proteomic data. 248 

Finally, we fused the individual knowledge graphs—transcriptomic, proteomic, and gene 249 

annotation—into a unified RBKG using graph matching algorithms to reconcile discrepancies 250 

and resolve conflicts from overlapping data sources. The resulting RBKG comprises 401,094 251 

nodes and 1,573,258 edges, representing transcriptional, translational, and genomic data for 252 

33,599 rice genes (Figure 3B). To our knowledge, the RBKG is the first knowledge graph that 253 

integrates both transcriptional and proteomic data for rice, providing a comprehensive and 254 

structured framework for rice multiomics retrieval and reasoning. 255 

 256 

SeedLLM integrates knowledge graphs for complex biological queries 257 

To investigate whether the RBKG could enhance the ability of SeedLLM to answer 258 

complex biological questions related to rice, we developed a framework that integrates the 259 

RBKG into the response generation process of SeedLLM (Figure 3C), hereafter referred to as 260 

SeedLLM-KG. This framework comprises three key steps: query decomposition, entity 261 

grouping, and knowledge augmentation. In the first step, SeedLLM-KG decomposes user queries 262 

into essential entities and attributes, identifying critical components for subsequent processing. 263 

The second step involves constructing entity groups by linking the queried entity with relevant 264 

concepts from the knowledge graph. Finally, in the knowledge augmentation phase, SeedLLM-265 

KG uses its parametric knowledge base to establish connections between the queried entity and 266 

pertinent concepts, thereby enriching the context of the query. 267 

For example, given the following query: “Does the rice gene AGIS_Os06g035130 268 

respond to various environmental conditions?” SeedLLM-KG initially fails to locate 269 

AGIS_Os06g035130 in its textual knowledge base (Figure 4A and 4B). It then queries the 270 

RBKG for the node representing AGIS_Os06g035130, expanding the search to identify 271 

connected nodes that include gene annotations, functional descriptions, and multiomics data. The 272 

system retrieves all relevant nodes and edges corresponding to transcriptomic and translational 273 

data, synthesizing this structured knowledge into a coherent, human-readable response. Notably, 274 

SeedLLM-KG consistently provided correct responses when the AGIS ID of the rice gene was 275 
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converted to the corresponding MSU ID and RAP-DB ID in the queries (Supplemental Figures 4 276 

and 5).  277 

 278 

SeedLLM-KG integrates multiomic and literature data for complex rice biology questions 279 

To evaluate the performance of SeedLLM-KG in addressing complex rice biology 280 

questions, we conducted human-centric assessments via advanced-level questions from the 281 

HumanDesignRiceQA dataset. Human experts evaluated the correctness of responses from 282 

SeedLLM-KG, awarding an median score of 85, which was significantly higher than the score of 283 

67 awarded to SeedLLM alone (Supplemental Figure 6). This improvement stems from 284 

SeedLLM-KG's ability to retrieve and synthesize transcriptional, proteomic and specialized rice 285 

research data, which are absent from general-purpose text corpora used to train conventional 286 

LLMs (Figure 4A; Supplemental Figures 4 and 5). We also included state-of-the-art general-287 

purpose LLMs, such as DeepSeek-R1 (DeepSeek-AI et al., 2025), DeepSeek-V3 (DeepSeek-AI 288 

et al., 2024), GPT-4o1 (OpenAI et al., 2023), and GPT-4o3-mini in our evaluation. SeedLLM-289 

KG demonstrated a unique ability to integrate heterogeneous biological data sources, 290 

outperforming all tested general-purpose LLMs (Figure 3D), with win rates ranging from 291 

57.63% to 88.14% (Figure 3E). Notably, it surpassed DeepSeek-R1 in rice-specific task, a 292 

leading LLM at the time of writing.  293 

Interestingly, human evaluators assigned similar scores in assessing SeedLLM’s 294 

reasoning ability, which were not statistically different from other LLMs (Figure 3F). This result 295 

was unexpected, as other LLMs, such as DeepSeek-V3 with its 671 billion parameters, were 296 

expected to exhibit superior reasoning capabilities, especially considering that SeedLLM-KG is 297 

based on SeedLLM, which has only a 7-billion-parameter architecture and lacks reinforcement 298 

learning in the post-training stage. The results suggest that human evaluators considered 299 

SeedLLM-KG to exhibit similar reasoning abilities compared to LLMs with larger architectures 300 

in rice-specific advanced-level tasks. 301 

 302 

DISCUSSION 303 

LLMs have revolutionized the field of AI, particularly in general-purpose content 304 

generation. However, their application in specialized fields such as rice biology remains limited 305 

because of a lack of domain-specific training data. Here, we presented SeedLLM, a 7-billion-306 
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parameter model developed from scratch using 1.4 million rice-related research publications, 307 

representing nearly 98.24% of the global literature on rice biology. To our knowledge, SeedLLM 308 

is the first LLM specifically designed for this domain. Its potential to advance both rice biology 309 

and broader plant biology research is substantial, addressing critical gaps in the current research 310 

landscape. 311 

While general-purpose LLMs have garnered considerable interest, their application in 312 

specialized fields such as rice biology raises an important question: can these models effectively 313 

contribute to scientific discovery in this domain? An ideal model for rice biology must be 314 

capable of mastering a vast body of knowledge, enabling efficient information retrieval and 315 

fostering scientific breakthroughs. However, a comprehensive framework for evaluating LLMs 316 

in rice biology is lacking. To address this gap, we propose a novel evaluation framework 317 

featuring a robust question-answer dataset of rice biology, comprising 253 human-designed 318 

questions and 1,975 additional automatically generated questions. Our evaluations—both 319 

subjective human-led assessments and objective automated evaluations—demonstrate that 320 

general-purpose LLMs underperform relative to SeedLLM across multiple rice biology tasks. 321 

These findings underscore the necessity for domain-specific models to increase research 322 

efficiency and accuracy. The performance of SeedLLM is significantly enhanced by the 323 

integration of a knowledge graph, which consolidates transcriptional, proteomic data from over 324 

1,800 research papers—data typically inaccessible to general-purpose models. This knowledge 325 

graph is a key factor driving the superior performance of the SeedLLM in rice biology tasks, 326 

highlighting the importance of specialized knowledge sources in optimizing model output. 327 

Despite these advances, several limitations must be addressed. First, although SeedLLM 328 

is specifically designed to improve rice biology knowledge, it still suffers from hallucinations—329 

incorrect or fabricated responses—particularly in specialized tasks. During our evaluation, 330 

distinguishing between hallucinations and information retrieval failures proved challenging, as 331 

both can lead to inaccurate outputs. This issue is exacerbated by the absence of a more 332 

comprehensive knowledge graph, which could serve as a structured repository of accurate data to 333 

guide model outputs. Expanding and refining this domain-specific knowledge graph in future 334 

iterations of SeedLLM could reduce hallucinations and enhance model reliability. 335 

Second, while scaling laws suggest that larger models exhibit improved performance with 336 

increased training data and model complexity (Kaplan et al., 2020), the current version of 337 
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SeedLLM—comprising 7 billion parameters—faces limitations owing to available computational 338 

resources and human expertise. Increasing the model size—such as for 14B, 32B, or even 72B 339 

parameters—may lead to performance gains. However, it remains uncertain whether such 340 

increases significantly impact the discovery of novel phenomena in rice biology that the current 341 

configuration of SeedLLM has not yet captured. As such, we propose that future studies should 342 

prioritize improving data diversity and integrating cutting-edge rice biology datasets rather than 343 

solely focusing on scaling the model. 344 

Third, the RiceQA dataset used for supervised fine-tuning, while instrumental to 345 

SeedLLM development, has limitations in terms of data quality and diversity. Although RiceQA 346 

is comprehensive, it could better represent underexplored areas in rice biology and more diverse 347 

experimental conditions. Expanding the dataset to cover a broader range of topics (Han et al., 348 

2023) and ensuring higher accuracy in question design would likely improve the performance of 349 

SeedLLM, especially in addressing more complex or nuanced queries. Additionally, a higher-350 

quality dataset could help mitigate issues such as hallucinations, making model outputs more 351 

reliable. 352 

Rice biology research has traditionally been labor intensive, requiring scientists to 353 

manually process vast amounts of textual and biological data. SeedLLM represents a substantial 354 

advancement in research efficiency, enabling scientists to interact with the model via natural 355 

language queries and obtain critical information much faster than traditional search engines and 356 

databases. This is exemplified by our recent integration of the high-quality RiceData database 357 

(www.ricedata.cn) into SeedLLM's response pipeline (Supplemental Figure 7). This capability is 358 

expected to significantly accelerate the pace of discovery and analysis in rice biology. 359 

We look forward to further enhancing the performance of SeedLLM. Insights gained 360 

from this study—particularly regarding the importance of knowledge graphs—will guide the 361 

development of an expanded, more sophisticated rice knowledge graph. This graph integrates 362 

recent advances in rice biology, including single-cell sequencing and spatial transcriptomics, and 363 

transforms these complex, high-dimensional datasets into a format that SeedLLM can process 364 

more effectively. Traditional academic literature often fails to capture the intricacies of such 365 

cutting-edge datasets, creating a challenge for researchers. By enabling SeedLLM to incorporate 366 

and analyze these advanced datasets, we aim to create a more comprehensive and accurate model 367 

of rice biology. Additionally, recent studies indicate that LLM agents, which utilize domain-368 
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specific external tools to autonomously execute tasks, provide significant advantages over 369 

traditional chatbots (Kapoor et al., 2024). We propose integrating tools like RiceNavi (Wei et al., 370 

2021) with SeedLLM to streamline breeding tasks such as target and parental line selection, 371 

thereby significantly enhancing the practical utility of SeedLLM. Although SeedLLM currently 372 

answers queries by retrieving rice epistatic QTL pairs (Wei et al., 2024) that serve as input data 373 

for RiceNavi pipeline, this integration would further elevate its capabilities (Supplemental Figure 374 

8). 375 

Our long-term vision for SeedLLM is to evolve into a global, comprehensive knowledge 376 

atlas that will provide researchers with unprecedented access to insights previously hidden owing 377 

to reliance on isolated data points. This vision aligns with the broader trend of AI-driven 378 

knowledge synthesis, where models such as SeedLLM will enable new discoveries by 379 

integrating diverse and complex data sources. Additionally, as we develop specialized LLMs for 380 

other crops, we anticipate that cross-species knowledge reasoning will become increasingly 381 

feasible, empowering researchers with more powerful tools for AI-assisted seed design in the 382 

future. 383 

 384 

METHODS 385 

Comprehensive search and retrieval of rice-related publications. The dataset used in this 386 

study comprises scientific publications in both English and Chinese. English-language 387 

publications were retrieved from the Web of Science using a search query that included various 388 

rice-related terms, resulting in 1,148,299 publications. Chinese-language publications were 389 

sourced from the China National Knowledge Infrastructure using a corresponding set of rice-390 

related terms, yielding 232,445 publications. All publications used for the construction of 391 

RiceCorpus are up to December 31, 2024.  392 

 393 

Construction of RiceCorpus. To generate a high-quality, rice-specific corpus, we developed a 394 

reusable, high-granularity data cleaning pipeline consisting of four primary stages. First, raw 395 

PDF documents of rice publication were converted to text using the MinerU tool (Wang et al., 396 

2024a), with the Layout model accurately recognizing document sections (e.g., titles, abstracts) 397 

to ensure semantic coherence. Text extraction, formula recognition, and table conversion were 398 

performed, while PaddleOCR assisted in optical character recognition (Du et al., 2020). Post-399 
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processing with regular expressions optimized the identification of rice-related terms, gene 400 

names, numbers, and punctuation. Second, heuristic cleaning was applied to address redundancy 401 

and irrelevant content in the resulting TXT files. Statistical analysis of rice literature informed 402 

the development of regular expression-based rules to filter low-quality text, retaining 72.82% 403 

high-quality documents, thereby enhancing the corpus' rice knowledge density. To further 404 

improve model training efficiency and reduce overfitting, we performed sentence-level 405 

deduplication using MinHash (Broder, 1997), which calculates n-gram similarity between text 406 

pairs. After replacing MinHash’s tokenizer with SeedLLM’s, deduplication was conducted at the 407 

sentence level, removing 1,834,317 sentences (25% of the data). Lastly, model-based filtering 408 

was used to eliminate non-rice content by applying the IndustryCorpus2_Classifier (Wang et al., 409 

2024b), which classified text into 31 domain categories, retaining only agricultural, biological, 410 

and chemical content. The CCI3-HQ-Classifier provided quality scores (Wang et al., 2024b), 411 

filtering out segments with scores below 2. These combined methods resulted in a defined corpus 412 

termed as RiceCorpus consisting of 1.1 billion tokens, ensuring high relevance and quality for 413 

subsequent model training. 414 

 415 

Model Pretraining. To enhance rice domain capabilities without compromising generalization, 416 

we pretrained base model Qwen-2.5-7B with RiceCorpus along with GeneralCorpus. The 417 

GeneralCorpus included downsampled Fineweb-Edu (English) (Penedo et al., 2024), Fineweb-418 

Edu-Chinese-V2.1 (Chinese) (Huang et al., 2024), as well as code-mathematical corpus such as 419 

Opc-Fineweb-Math-Corpus and Opc-Fineweb-Code-Corpus. All model-related hyperparameters 420 

of pre-training matching those of Qwen-2.5-7B (Qwen et al., 2024). The AdamW optimizer was 421 

used with β₁=0.9, β₂=0.999, weight decay=0.0, and a maximum context length of 4K tokens. The 422 

learning rate followed a linear increase from 8e-10 to 6e-07 for the first 10% of training steps, 423 

then decayed to 2e-14 following a cosine curve. Pretraining was conducted on 16 NVIDIA H100 424 

GPUs with a batch size of 128K tokens. An ablation experiment using only the RiceQA 425 

demonstrated the model’s ability to avoid catastrophic forgetting, enhancing both cross-domain 426 

generalization and rice-domain capabilities, as evidenced by a substantial improvement in the 427 

BBH metric compared to the baseline. 428 

 429 
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Model Post-training. GraphGen generates high-quality synthetic data for LLM fine-tuning by 430 

leveraging knowledge graphs. The process begins with knowledge construction, where text is 431 

segmented into semantically coherent chunks, and a synthesizer model Msynth extracts entities and 432 

relationships, which are merged to form a structured knowledge graph (Ibrahim et al., 2024). 433 

This enables effective long-text processing and reduces content hallucination. In the 434 

comprehension evaluation phase, Msynth generates paraphrased statements and negations to assess 435 

the model’s understanding, with a comprehension loss computed based on the model’s 436 

confidence scores. Graph organization follows, where subgraphs are extracted using methods 437 

like k-hop and selection strategies to balance complexity and relevance. Finally, question-answer 438 

pairs generation is performed for various scenarios, including atomic, aggregated, and multi-hop 439 

question-answer pairs, based on the subgraphs. For the SFT phase, RiceQA dataset is created by 440 

categorizing the Infinity Instruct dataset into six categories, selecting the top 300k question-441 

answer pairs based on vector similarity, and augmenting the data with the synthetic pairs via 442 

AutoIF (Dong et al., 2024). The final dataset of question-answer pairs integrates domain-specific 443 

knowledge with general capabilities while maintaining data quality through expert curation and 444 

overlap removal. 445 

 446 

Training Configuration. During the training phase, we utilized XTuner as the training 447 

framework, based on the Transformer architecture and optimized using the AdamW optimizer. 448 

The learning rate followed a linear schedule with a warm-up phase, and gradient clipping was 449 

applied to stabilize training. The model training employed several key parameters to optimize 450 

performance. The maximum sequence length was set to 2048, defining the maximum input 451 

sequence size. A learning rate of 2e-5 was used to control the step size for weight updates, while 452 

a weight decay of 0.1 helped mitigate overfitting by penalizing large weights. Gradient clipping 453 

was applied with a threshold of 1 to stabilize training and prevent gradient explosion. A batch 454 

size of 64 (16×4) was selected, determining the number of samples processed per optimization 455 

step. The AdamW optimizer, a variant of Adam with decoupled weight decay, was used for 456 

improved generalization, with β1 and β2 values set at 0.9 and 0.999, respectively, for exponential 457 

decay of moment estimates. To gradually increase the learning rate, a warm-up ratio of 0.03 was 458 

applied for the initial fraction of the total training steps, and the model was trained for 2 epochs, 459 

completing two full passes over the dataset. 460 
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 461 

Automated evaluations of LLM performance. To assess model performance, we use accuracy 462 

for classification tasks and perplexity (PPL) for language modeling (Hu et al., 2024). The pre-463 

trained model was evaluated on PPL-MCQ-ACC and Gen-QA-ACC datasets. The supervised 464 

fine-tuned model was evaluated on several general-purpose benchmarks CMMLU (Li et al., 465 

2023), GSM8K (Cobbe et al., 2021), BBH (Srivastava et al., 2022), MMLU (Hendrycks et al., 466 

2020) and Agri series dataset, which a domain-specific rice dataset from SeedBench (Ying et al., 467 

2025), focusing on accuracy for multiple-choice tasks and PPL for fill-in-the-blank tasks.  468 

 469 

Human-mediated evaluation of LLM performance. To evaluate LLM within the domain of 470 

rice biology, we adapted a structured human evaluation framework inspired by the methodology 471 

proposed by Petrov et al. (2025). With domain-specific modifications, we developed 472 

HumanDesignRiceQA, a curated benchmark comprising 253 expert-authored questions spanning 473 

six major topics: gene function, multi-omics, genome-wide association studies (GWAS), 474 

traditional breeding, molecular breeding, and gene editing. Each question was classified into one 475 

of three complexity tiers—basic, intermediate, and advanced—based on the depth of biological 476 

knowledge and reasoning required. Reference answers were derived from peer-reviewed 477 

literature, and evaluation rubrics were constructed by biological science experts with Master's-478 

level training. Responses generated by LLMs, including SeedLLM, were assessed alongside 479 

those written by students through a blinded review process conducted by 326 human evaluators, 480 

of whom 83 were domain experts in rice biology. Each response was independently scored by 481 

three evaluators using a 0–100 scale and ranked relative to other answers based on predefined 482 

criteria encompassing factual accuracy, logical structure, and clarity. This evaluation framework 483 

constitutes the first domain-adapted, human-mediated assessment pipeline in plant science, 484 

establishing a rigorous benchmark for comparing LLM outputs in rice biology. The results 485 

demonstrate that SeedLLM consistently outperforms peer models across all levels of question 486 

complexity. 487 

 488 

Construction of Rice Biological Knowledge Graph. We developed a Python pipeline to 489 

identify publications on rice transcriptomics and proteomics by searching for relevant keywords 490 

in titles and abstracts. After filtering potential papers, each was manually reviewed to confirm 491 
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focus on rice transcriptomics or proteomics, and whether raw or processed data were available. 492 

From these studies, we curated lists of the most upregulated and downregulated genes and 493 

proteins, standardizing them to rice AGIS IDs (Shang et al., 2023). Experimental metadata, 494 

including genotype, tissue or organ, growth stage, and treatments, were extracted and used to 495 

generate structured annotations (e.g., “Genotype_X under treatment_Y shows differential 496 

expression of gene AGIS_ID_1 in organ_Z at growth stage_W”). These annotations were 497 

converted into triples (subject, relation, object) to represent transcriptional and translational 498 

events, as well as experimental conditions. Each AGIS_ID was cross-referenced with databases 499 

like RAP-DB (Sakai et al., 2013) and Gramene (Jaiswal, 2011) to obtain functional annotations 500 

and subcellular localization information. These data were incorporated into the knowledge graph, 501 

linking them to the corresponding gene or protein nodes.  502 

 503 

Visualization of Rice Biological Knowledge Graph. For basic visualization, we used the 504 

networkx library, assigning node and edge styles based on entity types (e.g., proteins in blue, 505 

growth stages in green). The spring layout algorithm optimized node positioning for clarity. For 506 

advanced visualizations, the graph was exported in GraphML format and imported into Gephi 507 

and Cytoscape. These tools enabled customization, such as adjusting node size by protein 508 

expression magnitude and edge thickness by interaction strength, allowing for a more detailed 509 

exploration of the data. 510 

 511 

Construction of HumanDesignRiceQA. We developed a benchmark for rice-specific 512 

knowledge based on academic papers by creating three question levels—basic, intermediate, and 513 

advanced—covering five major research areas: gene function, transcriptomics, proteomics, 514 

traditional breeding, and molecular breeding. The levels are distinguished by the complexity of 515 

reasoning and knowledge integration, not by specific topics. Basic questions rely on readily 516 

accessible information, such as abstracts or general knowledge from search engines. Intermediate 517 

questions require a deeper understanding of rice biology, focusing on the paper’s results with 518 

experimental details. Advanced questions demand specialized expertise in rice research, with the 519 

ability to analyze biological data within a broader biological context. The levels differ in analysis 520 

depth, knowledge integration, and reasoning complexity. Academic papers from each research 521 
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area were randomly selected, reviewed, and used to design the questions and corresponding 522 

answer sheets. 523 

 524 

Graph-based Retrieval-Augmented Generation (GraphRAG). To enhance the performance 525 

of SeedLLM, we developed a framework that integrates external knowledge through a structured 526 

retrieval process to guide SeedLLM’s response generation. This approach combines graph 527 

structures with dense indexing methods to represent relationships between knowledge fragments, 528 

facilitating the retrieval of relevant information for LLM-generated responses (Peng et al., 2024). 529 

The GraphRAG framework consists of three main components graph-guided indexing, retrieval, 530 

and text generation. In the graph-guided indexing phase, data is preprocessed into manageable 531 

chunks, followed by entity and relation extraction to form “entity, relation, description” tuples, 532 

which are organized into a knowledge graph. Persistence ensures that these relationships are 533 

embedded and stored in a database for efficient access. In the graph-guided retrieval phase, logic 534 

form method and dual-level method is conducted for rice-related queries and for general queries, 535 

respectively. The logic form method decomposes the query into operators and parameters, 536 

generating sub-queries whose results are merged to form a retrieval context. Pre- and post-checks 537 

verify whether the context sufficiently supports the LLM’s response. If the logic form method is 538 

insufficient, the dual-level method decomposes the query into high-level semantic 539 

representations and low-level entity-based components, using fuzzy matching to identify relevant 540 

nodes and relationships. The results are merged to create a comprehensive retrieval context. 541 

Finally, in graph-guided text generation, the retrieved context and the original query are input 542 

into the LLM, which generates the final output based on the enriched context. This integrated 543 

approach enables LLMs to leverage structured external knowledge, leading to more accurate and 544 

contextually relevant responses. 545 

 546 

Code Availability. SeedLLM will continue to grow and improve through version control. 547 

Currently, SeedLLM·Rice, version 0.6a is available via an interactive web portal 548 

https://seedllm.org.cn/.  549 

 550 

SUPPLEMENTAL INFORMATION. Supplemental Information is available at 551 

Molecular Plant Online. 552 
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 686 

Figure 1. Overview of SeedLLM development and automated evaluation. (A) The 687 

RiceCorpus is a comprehensive dataset of scientific publications and books related to rice, 688 

encompassing 1.38 million academic papers in both Chinese and English. (B) The RiceCorpus 689 

was used to train the base model, Qwen2.5, which was fine-tuned with the riceQA dataset to 690 

specialize SeedLLM for rice-specific questions. GeneralCorpus, consisting of datasets like 691 

Curated FineWeb-Edu and Curated OpenCoder, was used for general language model training. 692 

RiceQA, designed for rice biology, includes Key-info QA (extracting key data from 693 

RiceCorpus), Bad-case QA (addressing difficult scenarios), and Graph QA (using a knowledge 694 

graph for relevant questions). GeneralQA, which includes Curated Infinity Instruct and Curated 695 

AutoIF, further fine-tunes the model for instruction-following and automated inference tasks. (C) 696 

The pre-trained model was evaluated on two tasks: Gen-QA-ACC for open-ended questions and 697 

PPL-MCQ-ACC for multiple-choice questions. SeedLLM’s performance was assessed using 698 

rice-specific datasets from the Agr series, which included single-choice, multiple-choice, and fill-699 

in-the-blank questions. The number of questions across these datasets was also recorded. (D) The 700 

pre-trained model outperforms the baseline on both Gen-QA-ACC and PPL-MCQ-ACC, 701 

confirming the effectiveness of the pretraining process. (E-G) SeedLLM demonstrates its 702 

superiority over other LLMs in rice-specific tasks in terms of accuracy, F1 score, and ROUGE. 703 

Accuracy measures the proportion of correct predictions, F1 score balances precision and recall, 704 

and ROUGE evaluates the overlap between model-generated outputs and reference texts. (H) 705 

SeedLLM exhibited robust performance on general-purpose tasks across multiple datasets, 706 

including CMMLU (Chinese multitask understanding), GSM8K (grade school math), BBH 707 

(beyond current model capabilities), and MMLU (general multitask language understanding). All 708 

evaluations in (D-H) utilized an automated pipeline to extract model responses and compare 709 

them to a reference key for correctness. 710 
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 712 

Figure 2. Human-centric evaluation confirms SeedLLM's superior performance compared 713 

to general-purpose LLMs in HumanDesignRiceQA. (A) Overview of human-centric 714 

evaluation. HumanDesignRiceQA, a dataset comprising question-answering pairs with plant 715 

biology expertise derived from academic publications, was constructed. SeedLLM, other 716 

general-purpose LLMs, and undergraduate responses were tasked with answering questions from 717 

this dataset. A panel of evaluators, experts in rice biology, ranked the quality of responses for 718 

each question from best to worst. Evaluators also assigned grades based either on the provided 719 

answer key or their own expertise. (B) Distribution of questions in HumanDesignRiceQA is 720 

categorized into three difficulty levels basic, intermediate, and advanced. (C) Distribution of 721 

evaluator educational backgrounds. All evaluators possess academic training in agronomy, with 722 

degrees ranging from Bachelor’s to PhD. Experts are defined as individuals who have published 723 

research, filed patents, or contributed to rice variety development in the past five years. (D) 724 

Human evaluation scores evaluated in the HumanDesignRiceQA dataset. (E) Human-assigned 725 

rankings from top1 to top5 for responses generated by SeedLLM and other LLMs.  726 
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 728 

Figure 3. Encoding multiomics data into the rice biological knowledge graph for SeedLLM-729 

based agricultural query responses. (A) Schematic overview for encoding transcriptomic, 730 

proteomic, and genome annotation data as graph structures. Transcriptional and proteomic events 731 

for each gene are represented as sentences and converted into triples. These triples are 732 

transformed into nodes (representing rice gene IDs, transcriptional and translational events, and 733 

experimental metadata) and edges (depicting relationships). Gene ID nodes are linked to genome 734 

annotation attributes such GO terms and KEGG. (B) Overview of the Rice Biological 735 

Knowledge Graph. Node types are color-coded to represent different data categories. The graph 736 

includes 35,599 unique rice AGIS IDs identified from rice transcriptomic and proteomic studies, 737 

shown with their relationships as edges. (C) SeedLLM-KG working mechanism. SeedLLM 738 

processes agricultural queries by decomposing them into sub-queries, retrieving answers from 739 

either the LLM's database or the knowledge graph. These sub-answers are integrated to form a 740 

comprehensive response. Non-agricultural queries are handled directly by SeedLLM. (D) 741 

Correctness of SeedLLM-KG and other LLMs were assessed by human evaluators using 742 

advanced-level questions of the HumanDesignRiceQA dataset. Asterisks indicate statistical 743 

significance between comparisons (t-test, P < 0.001). (E) Win rate of SeedLLM-KG against 744 

various LLMs. SeedLLM-KG is considered to win if it receives a higher human evaluation 745 

scores than the other model on the same questions from HumanDesignRiceQA dataset. The win 746 

rate represents the percentage of questions where SeedLLM-KG outperforms each model, as 747 

labeled in the plot. (F) Reasoning ability of SeedLLM-KG and other LLMs were assessed by 748 

human evaluators using advanced-level questions of the HumanDesignRiceQA dataset. n.s. 749 

indicates no significant difference between comparisons (t-test, P < 0.05). 750 
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 752 

Figure 4. Comparison of response quality between SeedLLM and other LLMs. (A) Models 753 

were tasked with generating responses to the query: "Does the rice gene AGIS_Os06g035130 754 

respond to various environmental conditions?" The models tested include SeedLLM-KG, 755 

DeepSeek-R1, and OpenAI GPT-4o1. Response quality was assessed by verifying content 756 

against RiceCorpus literature. Correct content is highlighted in blue, model reasoning in green, 757 

and inability to answer in red. (B) A list of references identified in the literature search that 758 

corroborate the responses. Note that none of the LLMs generated references post-response. 759 
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