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ABSTRACT: Thanks to the growing interest in computer-aided synthesis
planning (CASP), a wide variety of retrosynthesis and retrobiosynthesis tools
have been developed in the past decades. However, synthesis planning tools
for multistep chemoenzymatic reactions are still rare despite the widespread
use of enzymatic reactions in chemical synthesis. Herein, we report a reaction
type score (RTscore)-guided chemoenzymatic synthesis planning (RTS-
CESP) strategy. Briefly, the RTscore is trained using a text-based
convolutional neural network (TextCNN) to distinguish synthesis reactions
from decomposition reactions and evaluate synthesis efficiency. Once multiple chemical synthesis routes are generated by a
retrosynthesis tool for a target molecule, RTscore is used to rank them and find the step(s) that can be replaced by enzymatic
reactions to improve synthesis efficiency. As proof of concept, RTS-CESP was applied to 10 molecules with known chemoenzymatic
synthesis routes in the literature and was able to predict all of them with six being the top-ranked routes. Moreover, RTS-CESP was
employed for 1000 molecules in the boutique database and was able to predict the chemoenzymatic synthesis routes for 554
molecules, outperforming ASKCOS, a state-of-the-art chemoenzymatic synthesis planning tool. Finally, RTS-CESP was used to
design a new chemoenzymatic synthesis route for the FDA-approved drug Alclofenac, which was shorter than the literature-reported
route and has been experimentally validated.

■ INTRODUCTION
Organic synthesis has been renowned for its long history and
regarded as the primary choice in synthesizing target molecules
for drugs,1,2 materials3 and natural products4 for years.
However, with the rapid development of biocatalysis and
directed evolution in the past decade,5 various new trans-
formations were imported into the traditional organic synthesis
space.6−8 Owing to its high stereoselectivity and regioselectiv-
ity, enzymatic catalysis has been increasingly employed to
replace chemical reactions in synthesis routes and selectively
produce the desired products.9,10 Since one enzyme might
replace multiple chemical reactions, the chemoenzymatic
synthesis route can be shorter and with higher yields. For
instance, in the synthesis of sitagliptin,11 the overall hybrid
synthesis route was shortened by three steps compared to the
original chemical synthesis route and the enantiomeric excess
was also increased with enzyme catalysis. Moreover, bio-
catalysis uses mild conditions and avoids toxic reagents or high
pressure, facilitating green chemistry,12,13 while the one-pot
enzymatic cascades help reduce the purification between
reactions.14−17 Not surprisingly, chemoenzymatic synthesis has
been applied to multiple practically important small mole-
cules.18−21

Other than human efforts and expertise in designing
synthesis routes, the computer-aided synthesis planning
(CASP) tools have been explored for both organic and
enzymatic synthesis.22−25 CASP is a process of breaking down
target molecules step by step, using either machine learning

(ML) or rule-based methods, until reaching commercially
available molecules. The rule-based CASP tools apply well-
defined reaction rules (also called templates) to each target
molecule and generate corresponding precursors (ML
algorithms can be used for selecting templates) while the
ML-based CASP tools predict the precursors using algorithms
trained on reaction databases. Synthia25 is a commercial
retrosynthesis tool using chemist curated rules, while Aizynth-
finder26 uses abundant extracted rules from the Reaxys
database27 and employs Monte Carlo tree search (MCTS)
to save calculation time. For retrobiosynthesis, novoStoic28

focuses on enzymes in metabolic engineering and aims to
synthesize target molecules from metabolites, while Retro-
BioCat29 specializes in enzymatic cascades for in vitro synthesis
and uses curated reaction rules for prediction. As the first ML-
based retrobiosynthesis tool, the IBM’s RXN4Chemistry30

adapts transformer with ECREACT database30 and can
potentially predict novel reactions.

However, CASP tools for chemoenzymatic synthesis
planning remain rare despite that many chemoenzymatic
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synthesis routes have been reported. To the best of our
knowledge, there are only three chemoenzymatic synthesis
planning tools reported so far. In 2022, Coley and co-workers
designed ASKCOS (hybrid version),31 which extracts
templates from the Reaxys (chemical) and BKMS (biological)
databases,32 and then uses two prioritizers to rank those
templates in each step and expand the search tree. Since the
prioritizers are based on reaction templates, this tool is limited
to only rule-based methods. Moreover, because of their step by
step searching algorithm, there could be multiple transitions
between chemical and biological reactions in their predicted
routes, increasing difficulties in experiments. Later, Jensen and
co-workers33 developed an alternative tool in which they first

used ASKCOS to generate chemical synthesis routes and then
identified enzymes to carry out the same transformation for
every step using templates in RetroBioCat. This tool did not
aim to predict new enzymatic transformations, and it is time-
consuming to exhaustively search for alternative enzymatic
reactions to replace every chemical step in the original routes.
Recently, Wu and co-workers developed BioNavi34 which only
used ML-based methods, and their biological reaction
predictor was specifically trained for natural product synthesis.
Notably, in the first two studies, no experimental validation
was conducted for the newly proposed reactions, and only
partial synthesis routes were validated in BioNavi.

Figure 1. RTscore training process and searching algorithm. (a) Examples of synthesis reactions and decomposition reactions. In the process of
breaking down the target molecules in a retrosynthesis manner, the decomposition reactions are preferred. (b) Procedure for training the RTscore
model. The USPTO and ECREACT databases were first cleaned to remove cofactors in reactions; then, the major reactant-product pairs (RP-
pairs) were extracted and represented as Morgan fingerprints with labels 1 for a synthesis reaction and 0 for a decomposition reaction separately.
With a text-based convolutional neural network, the model predicts RTscore with the input of RP-pairs. (c) Hybrid synthesis search algorithm. The
chemical synthesis route is generated for the target molecule at first and RTscore(USPTO) is employed to find the reaction that does not break down
the target molecule effectively and searches the product molecule in that reaction with retrobiosynthesis tools; then, the biological precursor is
searched again with the chemical method to form the chemoenzymatic synthesis routes.
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In this work, we have developed a reaction type score
(RTscore)-guided chemoenzymatic synthesis planning (RTS-
CESP) strategy (Figure 1). The existing retrosynthesis and
retrobiosynthesis tools (e.g., Aizynthfinder,26,29 RXN4Chem-
istry30,35) were employed to identify chemical and biological
reactions, which were then integrated by a custom-designed
automatic searching algorithm to generate chemoenzymatic
synthesis routes for the target molecules. To start with, an
RTscore is designed by training a text-based convolutional
neural network (TextCNN) to distinguish synthesis reactions
from decomposition reactions, which could achieve an F1
score of 0.971 using the USPTO data set.36 For each target
molecule, the chemical synthesis route is generated first, and
then RTscore is applied to every step to predict reaction type
and determine which steps should be replaced by enzymatic
reactions. As proof of concept, we used this tool to predict the
synthesis routes for 10 molecules with known chemoenzymatic
synthesis routes in literature and found all these reported
chemoenzymatic synthesis routes were successfully predicted
and six of them were ranked as the most preferred routes.
Furthermore, a validation set with 1000 molecules was adopted
to evaluate the performance of this tool on a large scale.
Among the 1000 molecules from the boutique database,37 our
tool could predict chemoenzymatic synthesis routes for 554
molecules, versus 493 molecules by the state-of-art tool named
ASKCOS, and we proposed shorter pathways for 30.2%
molecules that were found by both tools. In addition to
reproducing literature results, we predicted a novel shorter
pathway for an FDA-approved drug Alclofenac38 and
experimentally validated the synthesis route with 69% yield.

■ RESULTS
RTscore for Ranking Synthesis Routes and Guiding

Hybrid Synthesis. Retrosynthesis tools are used to break
down target molecules into commercially available compounds
through multiple steps. To improve synthesis efficiency, each
step should ideally decompose the target molecules into
simpler molecules rather than synthesizing more complex
products (Figure 1a). The synthesis efficiency of each reaction
can be evaluated based on several factors, including changes in
molecular weight and atom numbers of the reactants and
products, the introduction of chirality, and the number of
references supporting the reaction. We processed the database
to retain reactions where the product has a larger molecular
weight or atom number than the reactant. Then we defined
reactions as recorded in the database (the reaction from
reactant to product) as synthesis reactions, and the reversed
reaction (from product to reactant) as decomposition
reactions. We designed an RTscore using a text-based
convolutional neural network (TextCNN) to distinguish
these two reaction types, while also learning chirality changes
and synthesis preferences from the database (Supplementary
Figure 1). RTscore was applied to each step of the synthesis
routes. After summing the scores of all reactions, the entire
route can be scored and ranked. Additionally, in each route,
the reaction with the lowest score is replaced by an alternative
biological step to generate hybrid synthesis routes. Finally,
hybrid routes with fewer steps and faster access to
commercially available materials are selected as the top
options.

Since chemical and biological reactions occupy different
reaction spaces, we trained two separate scores using the
USPTO (chemical) and ECREACT (biological) databases,

forming RTscore(USPTO) and RTscore(ECREACT), respectively
(Figure 1b). Our training input comprised the extracted
reactant-product pairs (RP-pairs) from both databases,
processed as follows. First, common cofactors were removed
to avoid interference (Supplementary Figure 2), as our goal
was to rank the routes based on the transformation between
the major reactant and product rather than predicting a
complete reaction. Next, since all the reactions in both
databases contain only a single product, it was regarded as the
major product. For reactions with multiple reactants, we
calculated the fingerprint similarity of all reactants to the major
product and the reactant with the highest similarity score to
the major product was selected as the major reactant. In
addition, we canonicalized all SMILES strings in the data set,
including tautomer canonicalization, to ensure consistent
representation of molecular structures and deduplicated the
data set to remove redundant entries. Finally, we retained the
reactions where the major product had a larger molecular
weight or more atoms than the major reactant and discarded
the others. The retained reactions were labeled as synthesis
reactions, while the reversed reactions labeled as decom-
position reactions. This systematic approach allowed us to
construct a comprehensive data set containing 367,000
chemical and 47,000 enzymatic RP-pairs.

The differentiation of reaction type was defined as a
classification problem and the data set was split into training,
validation, and test sets (8:1:1). A performance comparison of
four models�Random Forest (RF),39 Support Vector
Machine (SVM),40 Feedforward Neural Network (FNN),41

a n d T e x t - b a s e d C o n v o l u t i o n a l N e u r a l N e t w o r k
(TextCNN)42,43�was conducted using the ECREACT data-
base. The models were evaluated using both the F1 score and
the Matthews Correlation Coefficient (MCC), with the
TextCNN model achieving the highest values for both metrics
(Supplementary Figure 3). Therefore, the TextCNN model
was selected for further study. A two-layer TextCNN was
employed, utilizing ReLU (Rectified Linear Unit) activation
functions after each convolutional and fully connected layer,
except for the final layer which uses a sigmoid activation
function. In addition, we evaluated the model’s performance
using both binary and count-based fingerprints, with the count-
based fingerprint achieving higher F1 and MCC scores
(Supplementary Figure 4). To further improve the model,
we performed hyperparameter tuning using a grid search
approach with 5-fold cross-validation. The hyperparameter grid
included output channels of 2, 3, and 4 for the first and second
convolutional layers and hidden sizes of 256, 512, and 1024 for
the fully connected layers that follow the convolutional layers.
The heatmaps for F1 scores on the biological and chemical
data sets illustrate the performance of different hyperparameter
combinations. For the biological data set ECREACT, the best
F1 score of 0.921 was achieved with a hidden size of 512 and
output channels of 4 (Supplementary Figure 5). For the
chemical data set USPTO, the highest F1 score of 0.971 was
obtained with a hidden size of 256 and output channels of 3
and 4 for the first and second convolutional layer separately
(Supplementary Figure 6). To further assess the model’s
robustness, we evaluated its performance using 10 different
random seeds, which demonstrated stability across runs with a
standard deviation of 0.0034 for the ECREACT database and
0.00089 for the USPTO database, confirming the model’s
reliability under different initializations (Supplementary Figure
7). After that, we evaluated RTscore(ECREACT) using the BKMS
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database,32 an external enzymatic database. We first
deduplicated the reactions with the ECREACT database and
selected the major RP-pairs, then RTscore(ECREACT) was used
to predict reaction type and reached 75% accuracy, while the
SCScore44 reached only 64% accuracy (Supplementary Figure
8).
Multistep Searching Algorithm. To achieve effective

chemoenzymatic synthesis by integrating retrosynthesis and

retrobiosynthesis tools, we designed an automatic hybrid
synthesis search algorithm (Figure 1c). In this algorithm, a
target molecule is first input into a retrosynthesis tool, and
RTscore(USPTO) is used to rank the predicted routes. Since
RTscore(USPTO) can be calculated for each reaction, the
reaction with the worst score in each route is selected for
improvement. The product molecule in that reaction is then
input into retrobiosynthesis tools to find alternative enzymatic

Figure 2. Validation with literature-reported hybrid synthesis routes. For 10 selected target molecules, we searched for literature reactions to build a
hybrid synthesis route data set in which each route contains both chemical and enzymatic reactions. All the hybrid synthesis routes were
successfully reproduced by our tool, and when ranked with RTscore, 6 out of 10 routes were the highest among all the predicted routes for a target
molecule.
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reactions. All available enzymatic templates are explored due to
their limited number. RTscore(ECREACT) is then applied to rank
the enzymatic reactions and identify intermediates suitable for
chemical synthesis. Finally, the hybrid synthesis routes are
collected, and the RTscore for each reaction in the entire route
is added up to rank all the predicted routes. The interface
between the different tools is fully programmatic. Once a target
molecule is input, the algorithm automatically generates a list
of chemoenzymatic synthesis routes with ranking.
Validation of RTS-CESP Using a Data Set Containing

Known Hybrid Synthesis Routes. To determine the
prediction accuracy of RTS-CESP, we sought to use the
hybrid synthesis routes reported in literature as a test case. We
chose 10 target molecules and discovered the corresponding
synthesis reactions in literature from a chemoenzymatic
synthesis routes data set.45−62 The retrosynthesis tools used
in this task were RXN4Chemistry (chemical) and
RXN4Chemistry (enzymatic), while RTscore was used to
guide the search and rank all the predicted chemoenzymatic
synthesis routes. As shown in Figure 2, all the reported
chemoenzymatic synthesis routes for these 10 molecules were
identified and six of them were ranked as the top by RTscore,
indicating that RTscore can be used to prioritize the
chemoenzymatic synthesis routes and help researchers choose
the most efficient routes.

Large-Scale Validation and Benchmark of RTS-CESP
with ASKCOS. To evaluate the performance of RTS-CESP on
a large scale, we selected 1000 molecules from the boutique
database as target molecules and used Aizynthfinder and
RetroBioCat for synthesis planning. Aizynthfinder utilized rules
extracted from the Reaxys database and performed well in
breaking down complex molecules, so it was used to generate
the chemical synthesis routes for a target molecule at first. We
then applied the biological reaction templates from the
RetroBioCat database to intermediates in these chemical
synthesis routes to predict enzymatic reactions. For the target
molecules that Aizynthfinder failed to generate a complete
chemical synthesis route (a route from target to stock
molecules), we selected the intermediates in the generated
partial route as targets for biological reactions. Finally, the
biological precursors were searched with Aizynthfinder again to
finish the whole routes and we ranked all the synthesis routes
using RTscore.

Using the same calculation time (three minutes) and stock
molecules31 (i.e., molecules less than $100/g from eMolecules
and Sigma-Aldrich) (Supplementary Table 1), RTS-CESP
predicted the chemoenzymatic synthesis routes for 554
molecules, while the state-of-the-art tool ASKCOS hybrid
predicted the chemoenzymatic synthesis routes for 493
molecules (Figure 3a) (See Supplementary Figure 9 for
examples of chemoenzymatic synthesis routes to target

Figure 3. Validation and benchmark study on a large-scale data set. (a) Benchmark with ASKCOS on the 1000 target molecules from the boutique
database using same calculation time (three minutes) and stock molecules. (b) Analysis of the molecules whose chemoenzymatic synthesis routes
were predicted by RTS-CESP and ASKCOS. (c) Comparison of the lengths of synthesis routes predicted by RTS-CESP and ASKCOS. RTS-CESP
identified more shorter synthesis routes than ASKCOS. (d) Using the hybrid synthesis search algorithm of RTS-CESP identified synthesis routes
for more molecules than using the chemical synthesis search algorithm only. (e) The kernel density estimation (KDE) curve for molecule
calculation time. (f) Distribution of the lengths of predicted synthesis routes.
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molecules identified by our tool but not by ASKCOS). There
were 371 molecules that both tools have identified synthesis
routes for, among which RTS-CESP predicted shorter
synthesis routes for 112 of them (30.2%) (Figure 3b, c).
Besides, as a self-benchmark, employing the chemoenzymatic
search algorithm could predict synthesis routes for more
molecules than using the chemical synthesis algorithm only
(Figure 3d). The calculation time and route length varied for
different target molecules (Figure 3e, f). Most target molecules
were solved within three minutes, and more than half of the
routes consisted of one or two steps, showing RTS-CESP’s
effectiveness in planning synthesis routes. Moreover, RTS-
CESP could find routes with more than eight steps, indicating
its competence in breaking down complex molecules.
Experimental Validation of the Predicted Synthesis

Route for an FDA-Approved Drug. Alclofenac is an FDA
(Food and Drug Administration) approved anti-inflammatory
drug. To the best of our knowledge, only chemical methods
were used to synthesize this compound and the shortest
synthesis route in the literature consisted of three steps (Figure
4).37 Here, we used RTS-CESP to predict synthesis routes for
this target compound. Aizynthfinder was used to generate the
chemical synthesis route first, and templates from RetroBioCat
and BKMS databases were used to generate the enzymatic
step. A synthesis route with only two steps was found,
including one chemical and one enzymatic step and both have
not been reported in the literature. Therefore, we sought to
experimentally validate this predicted synthesis route.

For the first step (enzymatic halogenation), we tested a
previously reported chloroperoxidase63 and were able to isolate
the target product with 76% yield. For the second step, we
performed the reaction in ethanol with base added, generating
the final product with 91% yield. Besides that, when we
compared the prices for the starting material in our route and
the literature-reported route from the same supplier, the
compound in literature-reported route is 10 times more
expensive than ours.

■ DISCUSSION
In this work, we have developed RTS-CESP, a versatile, robust,
and reliable chemoenzymatic synthesis planning tool. It starts
with the predicted chemical synthesis routes for a target
molecule and identifies the steps that do not break down the
target molecule efficiently and replaces them with enzymatic
reactions, which saves searching time and minimizes transitions

between chemical reactions and enzymatic reactions. RTS-
CESP has been validated using a small-scale database with 10
known chemoenzymatic synthesis routes, a large-scale database
with 1000 molecules, and an FDA-approved drug.

To develop this chemoenzymatic synthesis planning tool, we
used a deep learning model to design a score function named
RTscore that can distinguish synthesis reactions from
decomposition reactions and evaluate reaction effectiveness.
In principle, RTscore could also be used separately to rank
predicted synthesis routes, and RTscore(ECREACT) was a
specifically trained score for enzymatic reactions performing
better than SCScore on an external enzymatic database. While
our method focuses on selecting efficient reactions based on
molecular transformations, the lack of reaction condition data
in the USPTO and ECREACT databases may limit its practical
applicability in some cases. Additional metrics, such as price,
reaction conditions, and toxicity of chemicals, could be
incorporated in the future for more comprehensive evaluations.
In our hybrid synthesis search algorithm, RTscore was used to
guide transitions between chemical and enzymatic reactions.
This search method enabled the discovery of new enzymatic
reactions while deepening the search tree to reach stock
molecules efficiently. Since only the selected intermediate was
searched for each route, RTscore also helped to save searching
time.

The versatility of RTS-CESP was demonstrated in the
combination with both ML-based and rule-based synthesis
planning tools. In this work, five different tools were used to
generate synthesis routes. The RXN4Chemistry (chemical)
and RXN4Chemistry (enzymatic) employed a Molecular
Transformer architecture and were continuously updated by
the IBM researchers. The Aizynthfinder was trained with rules
extracted from the Reaxys database and used MCTS as a
multistep search algorithm, making it a robust retrosynthesis
tool. RetroBioCat used curated enzymatic reaction rules and
has been verified by enzymatic cascades reported in literature,
while BKMS extracted abundant enzymatic templates from
four biological databases.

The robustness and reliability of RTS-CESP were validated
by different tasks. For robustness, predicting synthesis routes
for molecules in a large data set could examine the competence
of a synthesis planning tool in generating abundant trans-
formations and reaching the commercially available molecules
efficiently. Guided by RTscore, RTS-CESP predicted chemo-
enzymatic synthesis routes for more target molecules and

Figure 4. Experimental validation of the predicted synthesis route for an FDA-approved drug. (a) Literature-reported synthesis routes for
Alclofenac. (b) Our predicted route. Our predicted route is one step shorter than the literature-reported route and starts with a cheaper precursor.
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suggested more shorter synthetic routes than ASKCOS. For
reliability, it could be evaluated either using literature data or
experimental validation. Other than reproducing and prioritiz-
ing the hybrid synthesis routes in our data set with literature
support, we carried out experiments to validate the synthesis
route for the FDA-approved drug Alclofenac. The validated
route is shorter than the literature-reported route, providing a
promising synthesis option.
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