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SUMMARY
Fewer than 200 proteins are targeted by cancer drugs approved by the Food and Drug Administration (FDA).
We integrate Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomics data from 1,043 pa-
tients across 10 cancer types with additional public datasets to identify potential therapeutic targets. Pan-
cancer analysis of 2,863 druggable proteins reveals a wide abundance range and identifies biological factors
that affectmRNA-protein correlation. Integration of proteomic data from tumors andgenetic screendata from
cell lines identifies protein overexpression- or hyperactivation-driven druggable dependencies, enabling ac-
curate predictions of effective drug targets. Proteogenomic identification of synthetic lethality provides a
strategy to target tumor suppressor gene loss. Combining proteogenomic analysis andMHC binding predic-
tion prioritizes mutant KRAS peptides as promising public neoantigens. Computational identification of
shared tumor-associated antigens followed by experimental confirmation nominates peptides as immuno-
therapy targets. These analyses, summarized at https://targets.linkedomics.org, form a comprehensive land-
scapeof protein andpeptide targets for companiondiagnostics, drug repurposing, and therapydevelopment.
INTRODUCTION

Next-generation sequencing has revolutionized cancer research,

leading to deep characterization of the cancer genome and tran-

scriptome, which has vastly improved our understanding of can-

cer biology.1 Despite these advancements, most cancer patients

are still treated with radiotherapy and chemotherapy, which are

associated with significant recurrence risks and toxicities. Tar-

geted therapies, including small-molecule drugs, monoclonal an-

tibodies, antibody-drug conjugates (ADCs), proteolysis-targeting

chimeric molecules (PROTACs), antibody-directed enzyme pro-

drug therapies (ADEPTs), cancer treatment vaccines, checkpoint

inhibitors, and T cell therapies, hold promise for achieving more

effective and precise cancer treatment.2 Because proteins are

primary targets of these therapies and functional effectors of

the cancer-driving genetic and epigenetic aberrations, proteoge-

nomics—i.e., the integration of unbiased mass spectrometry

(MS)-based proteomics with genomics, epigenomics, and tran-

scriptomics3,4—provides a powerful framework for the explora-

tion of existing and future targets for cancer treatment.
Cell 187, 1–19, A
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The Clinical Proteomic Tumor Analysis Consortium (CPTAC)

has performed proteogenomic characterization for over 1,000

prospectively collected, treatment-naive primary tumors span-

ning 10 cancer types, many with matched normal adjacent tis-

sues. The CPTAC Pan-Cancer Resource Working Group has

harmonized all omics data from the 10 cancer types for pan-can-

cer proteogenomics research.5 In this study, we integrate this da-

taset with other public datasets to shed light on protein targets for

cancer therapy.Our analysis provides insights intoexisting cancer

drug targets and systematically identifies candidate new targets

for drug repurposing or development. These include overex-

pressed and hyperactivated protein dependencies, protein de-

pendencies associated with the loss of tumor suppressor genes

(TSGs), andputativeneoantigens and tumor-associatedantigens.

RESULTS

Proteomic quantification of druggable genes
We analyzed the harmonized CPTAC proteogenomics data from

1,043 tumor samples and 524 normal tissue samples across 10
ugust 8, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Overview of the cohorts and proteomic landscape of therapeutic targets

(A) Number of tumor and normal tissue samples for 10 cancer cohorts and number of total identified features for each omics type.

(B) Number of genes present in each of five target tiers. Overlapped genes were assigned to the top-most tier.

(C) Percentage of genes in each tier belonging to each functional family.

(D) Number of genes identified in each omics type in at least one cohort.

(E) Heatmap of median log2 MS1 intensity (protein abundance) for targets in each cohort.

(legend continued on next page)
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cancer types, including breast invasive carcinoma (BRCA), clear

cell renal cell carcinoma (CCRCC), colon adenocarcinoma

(COAD), glioblastoma (GBM), head and neck squamous cell car-

cinoma (HNSCC), lung adenocarcinoma (LUAD), lung squamous

cell carcinoma (LSCC), ovarian serous cystadenocarcinoma

(OV), pancreatic ductal adenocarcinoma (PDAC), and uterine

corpus endometrial carcinoma (UCEC)5 (Table S1). Through

analysis of the mutation, copy-number variation (CNV), methyl-

ation, and transcript, protein, and phosphosite abundance

data6 (Figure 1A), we aimed to derive actionable insights for

biomarker-guided patient selection, drug repurposing, and the

development of new therapies.

We collated drug target information from DrugBank,7 Guide to

Pharmacology (GtoPdb),8 the Drug Gene Interaction Database,9

and the in silico human surfaceome,10,11 and then we classified

the targets into five tiers (Figure 1B). Tier 1 included the primary

inhibited targets of drugs approved for any cancer type by any

regulatory agencies. Over 30% of the 156 tier 1 targets were ki-

nases (Figure 1C). Tier 2 comprised 471 primary inhibited targets

of drugs approved for any other indications, featuring a higher

proportion of ion channels and G protein-coupled receptors

(GPCRs), compared with tier 1. Tier 3 encompassed 448 targets

inhibited by drugs considered investigational or experimental,

including a relatively large proportion of epigenetic drugs. Tier

4 consisted of the remaining 1,081 genes in protein families

frequently targeted by small molecules. Tier 5 included 707 cell

surface membrane proteins. The complete list of targets and

their assigned tiers can be found in Table S2.

The five target tiers comprised a total of 2,863 genes, all quan-

tified by RNA sequencing (RNA-seq) data, while proteomics data

covered 71% (Figure 1D). The quantified druggable proteins dis-

played a wide range of median protein abundances in each

cohort (Figure 1E). Across all cohorts, SERPINA1 had the highest

overall median abundance among the druggable proteins, while

S1PR5 had the lowest (Figure 1F). Additionally, proteins targeted

by eight or more approved oncology drugs, including TUBB,

PDGFRB, EGFR, TOP2A, FLT1, ERBB2, KIT, TYMS, PDGFRA,

FLT4, andKDR, also showed a broad spectrum of overall median

abundance.

Genes with higher median protein abundance tended to have

higher median mRNA abundance; however, this association

diminished for genes with low mRNA abundance (log2 RSEM

[normalized count from the software RNA-Seq by Expectation

Maximization]% 6) (Figure S1A), a trend also evident in the sub-

set of druggable genes (Figure 1G). For all but three druggable

genes with low mRNA abundance, their protein identification

was validated using PepQuery2.12 We observed a significant
(F) Rank of all proteins by median of the median abundance in each cohort, with th

abundances are labeled, as are the targets of the highest number of drugs appr

(G) Scatterplot comparing median log2 RNA expression and median log2 protei

3 cohorts. Spearman’s correlation coefficients for all genes or those with either a

(H) Heatmap of Spearman’s correlation coefficients between mRNA and protein

(I) Spearman’s correlations between CDK9 protein abundance and CDK9 mRNA

dance in the LSCC cohort.

(J) GSEA enrichment of the mRNA processing gene set based on global protein co

mRNA (bottom).

See also Figure S1 and Tables S1 and S2.
enrichment of secreted proteins annotated by the Human Pro-

tein Atlas13 among the druggable genes with low mRNA abun-

dance (Fisher’s exact test, p = 2.2 3 10�13, Figure 1G), poten-

tially contributing to the observed discrepancy between mRNA

and protein abundance.

The median gene-wise mRNA to protein correlations ranged

from 0.34 to 0.61 across the 10 cohorts, with an overall median

value of 0.48, and each cohort contained 1,200–3,500 genes

lacking a significant positive mRNA-protein correlation (Fig-

ure S1B). Notably, druggable genes across all five tiers

had significantly higher median mRNA-protein correlations,

compared with other genes (Figure S1C). This may be partially

explained by the depletion of druggable genes in large protein

complexes, such as ribosome, oxidative phosphorylation com-

plexes, and RNA polymerase, which tend to have poor mRNA-

protein correlations.14,15 Despite this interesting observation, in

most cohorts, over half of the druggable genes had an mRNA-

protein correlation below 0.6. In fact, 19 druggable genes did

not show a significant positive mRNA-protein correlation in any

of the 10 cohorts (adj. p > 0.01 or correlation coefficient < 0) (Fig-

ure 1H). These genes were predominantly associated with

secreted proteins. However, they also included HDAC3 and

CDK9, two genes involved in transcriptional regulation and not

known to be secreted. CDK9 protein abundance had poor corre-

lations with corresponding mRNA abundance across all cancer

types, but it showed the strongest associations with the protein

abundance of its binding partner cyclin T1 (CCNT1) among all

proteins, without corresponding positive correlations at the

mRNA level (Figures 1I and S1D). Moreover, gene set enrichment

analysis (GSEA) of proteins co-expressed with CDK9 protein re-

vealed a significant enrichment of proteins involved in mRNA

processing, the known function of CDK9,16 whereas the oppo-

site was true for mRNAs co-expressed with CDK9 mRNA (Fig-

ure 1J). These results suggest that CDK9 protein levels better

represent its function than its mRNA levels. Similarly, HDAC3

protein abundance was highly correlated with protein abun-

dance of GPS2 (Figure S1E), a transcriptional co-repressor

that forms a complex with HDAC3,17 instead of HDAC3 mRNA

abundance. These findings highlight the importance of directly

measuring the protein abundance of druggable genes.

Targetable dependencies driven by protein
overexpression
We compared tumors and normal tissue samples to identify pro-

teins overexpressed in tumors. To further filter for proteins that

are critical for cancer cell survival and proliferation and are there-

fore good therapeutic targets, we utilized gene dependency
e same color scale as (E). The drug targets with the highest and lowest median

oved for cancer.

n abundance across all samples for druggable proteins quantified in at least

median log2 RSEM above or below 6 are included.

abundance for the genes not correlated in any cohort.

abundance or between CDK9 protein abundance and CCNT1 protein abun-

-expression with CDK9 protein (top) or global mRNA co-expression with CDK9
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scores from CRISPR-Cas9 screen experiments in cancer cell

lines of corresponding lineage, downloaded from the Cancer De-

pendency Map (DepMap).18 Across the 8 cohorts with normal

samples (Table S1), 999–2,914 genes showed both significant

overexpression in tumor tissues (adj. p % 0.01, Wilcoxon rank-

sum test) and significant reduction in cell growth following

gene knockout (KO) in cell lines (adj. p % 0.01, one-tailed t

test; Figure 2A; Table S3A).

A total of 457 proteins within this pool could be classified into

the 5 target tiers. Although many were specific to particular

cancer types, 51 proteins were shared by at least 5 cancer

types and were not designated as pan-essential proteins by

DepMap (Figure 2B). These targetable pan-cancer depen-

dencies included 5 tier 1 targets, 7 tier 2 targets that suggest

opportunities for drug repurposing, 19 tier 3 targets that may

provide indication for experimental drugs, as well as 15 tier 4

and 5 tier 5 targets, which are good candidates for new therapy

development. Of note, the tier 1 target GART and tier 3 target

PAK1 demonstrated both overexpression and dependency in

all eight cancer types.

We further integrated mRNA and protein expression data with

mutation, methylation, and copy-number data to identify pro-

teins whose overexpression was associated with genomic aber-

rations in their respective genes (STAR Methods). These ana-

lyses included both targetable proteins and those not currently

targetable due to their potential roles as cancer drivers. Among

our findings from the mutation analysis (Figure 2C; Table S3B),

EGFR mutations in GBM and LUAD, frequently accompanied

by copy-number amplification, were associated with increased

EGFR mRNA and protein levels. GATA3 mutations, known to

disrupt recognition motifs for E3 ubiquitin ligases,19 led to

elevated protein and mRNA levels in BRCA. CTNNB1 mutations

were associated with increased protein levels but not mRNA

levels in UCEC, aligning with existing knowledge that hotspot

mutations in CTNNB1 enable mutant proteins to escape recog-

nition by b-Trcp and subsequent degradation.20 TP53mutations

(Figure 2C), particularly missense mutations in the DNA binding

domain (Figures S2A and S2B), were associated with elevated

protein abundance without a corresponding increase in mRNA

in eight cohorts. It is well recognized that TP53 missense muta-

tions in the DNA binding domain not only disrupt the protein’s

DNA binding but also extend its half-life.21 Regarding methyl-

ation (Figure 2D; Table S3C), in LSCC, the kinases PRKCI and

PAK2 showed significant negative correlations between methyl-

ation and their expression at both mRNA and protein levels, with

significantly lower methylation levels and higher protein abun-
Figure 2. Prioritization of targetable tumor-overexpressed proteins ba

(A) Potentially druggable targets for each cancer type defined by protein upregula

druggable targets by significance in the tumor vs. normal comparison were lab

druggable targets from each tier, respectively.

(B) Potentially druggable, non-pan-essential targets shared by at least five cance

(C) Difference in cognate mRNA and protein abundance of a gene in the mutated

(D) Association (Spearman’s correlation) of cognate mRNA and protein abundanc

overexpression of the protein in tumor samples compared with normal.

(E) Positive Spearman’s correlation between CNV, RNA, and protein abundance f

protein in tumor samples compared with normal.

See also Figure S2 and Table S3.
dance in tumors, compared with normal tissues. Similarly, the

BAR adapter family protein BIN2 showed significant negative

correlations between its methylation and expression at both

mRNA and protein levels across five cohorts. Additionally,

BIN2 was found to be overexpressed in tumors, compared

with normal tissues, in CCRCC, PDAC, and HNSCC, and it

showed dependency in cell lines from these three cancer types

(Table S3A). In the context of copy-number alterations, 44 genes

in the 5 tiers showed significantly highermRNA and protein levels

with copy-number amplification (Table S3D). Of these, 21 were

increased in the tumors from at least 1 cohort, compared with

normal tissues (Figure 2E), including well-known cancer drivers

such as ERBB2, EGFR, and CDK6, as well as less studied genes

such as CLK2, MAP4K5, PPAT, PYGL, and SLC12A9. Together,

these analyses prioritize overexpressed proteins as candidates

for drug repurposing or development.

Targetable dependencies driven by protein
hyperactivation
In addition to overexpression, protein activity could be altered by

posttranslational modifications to drive tumorigenesis. To iden-

tify targetable dependencies driven by protein hyperactivation,

we performed differential abundance analysis of phosphosites

between tumor and normal samples, filtered for tumor-overex-

pressed activating phosphosites on targetable proteins, and

then integrated the results with DepMap dependency scores of

their host genes in cancer cell lines of the same lineage.

In the 8 cohorts with normal samples, 18–100 activating

phosphosites showed significant increase in tumor tissues (adj.

p % 0.01, Wilcoxon rank-sum test), with concordant decrease

in cell growth upon gene KO of the corresponding host proteins

in cell lines (adj. p % 0.01, one-tailed t test; Figure 3A;

Table S4A). This included a total of 229 activating phospho-

site-cancer combinations, with 90 involving phosphosites

residing on proteins curated in the 5 target tiers.

Among these protein hyperactivation events, 31 occurred in

two or more cancer types, and their host proteins were not clas-

sified as pan-essential by DepMap (Figure 3B). Twenty of these

events involved activating sites on kinases. Eight phosphosites

appeared in five or more cancer types, including HDAC1 S421

(tier 1), ITGA4 S1021 (tier 2), PTPN1 S50, and PAK1 S174

(tier 3), and MAPK6 S189, CAD S1859, CDK10 T196, and

RPS6KA4 T687 (tier 4). Some findings, such as for PTPN1,

PAK1, and CAD, reinforced previous protein overexpression re-

sults (Figure 2B), whereas others were uniquely identified

through phosphosite analysis.
sed on genetic screen and genomic aberration

tion in tumor tissue and CRISPR effect score below zero in cell lines. The top 10

eled. The number on the bottom right is the total number of candidates and

r types.

samples vs. WT samples in each cohort assessed by Student’s t test.

e with methylation level of genes hypomethylated in tumors. Triangles indicate

or genes in focal amplification regions. Triangles indicate overexpression of the
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Based on phosphosite differential analysis results, we further

inferred altered kinase activity between tumor and normal sam-

ples using the kinase-substrate enrichment analysis (KSEA) al-

gorithm (Table S4B). A total of 19 kinases had increased activity

across the 8 cohorts, and 11 had supporting evidence of upregu-

lated phosphorylation of a kinase activating site in one or more

cohorts (Figure 3C).

Thirty-one kinase-cancer pairs involving 15 unique kinases

showed increased kinase activity in tumors and significant de-

pendencies in corresponding cell lines in KO data, and the

most significantly hyperactivated kinases were CDK1, CDK2,

and CDC7 (Figure 3D). Hyperactivation of these kinases was

supported by overexpression of their regulatory proteins, cyclin

B1 (CCNB1), cyclin E1 (CCNE1), and DBF4, respectively, in tu-

mor vs. normal comparison (Figure S3A). Additionally, within tu-

mor samples, inferred activity of these kinases was correlated

with the mRNA and protein abundance of corresponding regula-

tory proteins (Figure S3B). All kinases were supported by over-

abundant phosphorylation of their substrates in tumor tissue,

and some protein substrates are also druggable (Figure S3C),

which may be explored for combination therapies. Taken

together, these analyses nominated hyperactive proteins as

potentially effective therapeutic targets for further investigation.

Evaluation of the predicted druggable dependencies
To evaluate the quality and validity of our predictions (Figures 2A

and 3A), we first compared the proportions of predicted effective

targets among all putative targetable genes in each of the target

tiers. This analysis was performed for each cancer type sepa-

rately, limited to targetable genes that had both CPTAC and

DepMap data in the cancer type. For all cancer types, the highest

proportion of predicted effective targets was consistently found

in tier 1, which was expected since tier 1 comprises targets of

already approved oncology drugs. In comparison to tiers 2, 4,

and 5, the median proportion in tier 1 was significantly higher

(p < 0.01, Wilcoxon signed rank test; Figure 4A). There was a

less significant difference in the median proportion between

tier 1 and tier 3 (p = 0.016). This finding may be explained by

the fact that tier 3 genes, despite not being targeted by currently

approved oncology drugs, are often the focus of oncology

investigations. These findings indicate that our predictions

are enrichedwith targets of approved or investigational oncology

drugs.

To further evaluate our predictions, we utilized primary screen

data from the profiling relative inhibition simultaneously in mix-

tures (PRISM) drug repurposing resource (STAR Methods).22

Among the 1,075 druggable proteins in tiers 1–3, we were able

to assess the response to 648 unique drugs against 325 molec-

ular targets that had both CPTAC and DepMap CRISPR KO data
Figure 3. Prioritization of targetable tumor-hyperactivated proteins ba

(A) Targetable protein hyperactivation events for each cancer type defined by in

effect score below zero of the corresponding protein. Top 10 hyperactivation even

on the bottom right is the total number of candidates and druggable hyperactiva

(B) Targetable protein hyperactivation events on non-pan-essential host targets

(C) Kinase activity inference with annotation of increased activating site phospho

(D) Kinases with significantly increased inferred activity in tumors and a significa

See also Figure S3 and Table S4.
(Figure 4B). Overall, these experiments showed a 15% success

rate across all 5,184 drug-cell lineage pairs (average log2 viability

reduction > 0.3, p < 0.01, one-sample t test). We then compared

the predictive performance of three different approaches:

CRISPR alone, tumor vs. normal comparison alone, and our

method combining both strategies (Figures 4C, 4D, and S4A–

S4C; Table S5A). Predictions based on CRISPR alone increased

the chance of identifying successful PRISM drug responses from

15% to 22% (p < 2.2e–16, z test), showing the highest sensitivity

and the lowest specificity among the three approaches, resulting

in an accuracy of 57%. Predictions based on tumor vs. normal

comparison alone increased the chance of identifying drug re-

sponses to 29% (p < 2.2e–16, z test), displaying lower sensitivity

and higher specificity than the CRISPR alone approach, and

yielding a relatively higher accuracy of 67%. Our method, inte-

grating both tumor-normal comparison and cell dependency

data, achieved the highest rate of identifying successful drug re-

sponses, elevating the success rate from 15% to 39% (p =

2.9e–8, z test), corresponding to a 2.6-fold increase in the likeli-

hood of a successful drug experiment. Although our method

showed lower sensitivity, compared with the CRISPR-alone

approach, it increased specificity from 53% to 83% (a 57%

improvement) and accuracy from 57% to 76% (a 33% improve-

ment). Given the large number of predictions generated by these

approaches, high specificity and accuracy are crucial for nomi-

nating truly promising targets for further experimental and clin-

ical validation.

Notably, some false positives identified in our evaluation, such

as those based on the lack of response to the investigational

HDAC1 inhibitor tacedinaline and poly(ADP-ribose) polymerase

(PARP) inhibitors niraparib, olaparib, and rucaparib, might result

from the low potency of these drugs. This interpretation was sup-

ported by the positive responses to approved HDAC1 inhibitors

belinostat and panobinostat and the more potent PARP inhibitor

talazoparib23 (Figures S4D and S4E). Conversely, some apparent

false negatives, like thosebasedon the response to thePRKCB in-

hibitor enzastaurin and theMAP2K1/MAP2K2 inhibitor refametinib

inseveral cancer typeswithoutpredicteddependencies,werevali-

dated as true negatives according to drug response data from

Sanger’sGenomicsofDrugSensitivity inCancer (GDSC)database

(Figures S4F and S4G). Therefore, the actual accuracy of our pre-

dictions may exceed the 76% estimate derived from the PRISM

evaluation.

Although three-quarters of our predicted pan-cancer targets

(effective targets in five or more cancer types) validated by

PRISM response data belonged to tier 1, several of our predic-

tions in tiers 2 and 3 also received validation (Table S5A). For

example, naftifine, which targets the tier 2 target SQLE, and al-

vespimycin along with tanespimycin, both targeting the tier 3
sed on genetic screen data

creased activating phosphosite abundance in tumor tissue and CRISPR gene

ts by significance in the tumor vs. normal comparisonwere labeled. The number

tion events from each tier, respectively.

shared by at least two cancer types.

rylation.

nt dependency score in genetic screen.
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target HSP90AA1, demonstrated significant efficacy across

cancer lineages (Figures S4H and S4I). To confirm the high-

throughput, multiplexed screening results from PRISM, we per-

formed drug response experiments with alvespimycin and ta-

nespimycin on eight cell lines representing different cancer

types, using a low-throughput, non-multiplexed approach. The

vast majority of cell lines showed half maximal inhibitory concen-

tration (IC50 ) values below 1 mM for both drugs, reinforcing the

PRISM study findings (Figures S4J and S4K). To extend this vali-

dation into in vivo settings, we treated HT29 colon cancer cell line

xenografts with alvespimycin (50 mg/kg, administered intraperi-

toneally daily). We observed a significant reduction in tumor vol-

ume in alvespimycin-treated mice, compared with the vehicle

control group (Figure S4L). Importantly, alvespimycin treatment

began to induce tumor regression after 7 days of treatment (Fig-

ure S4L), with the treatment group displaying no substantial

change in body weight, compared with the control group

(Figure S4M).

Our analysis also identified several tier 4 and tier 5 targets

without currently developeddrugs aspotential pan-cancer targets

(Figures 2B and 3B). We selected three such targets for low-

throughput experimental validation with short hairpin RNA

(shRNA) knockdown, including CAD, an enzyme responsible for

nucleotide synthesis (Figure 4E); PAK2, amember of the PAK fam-

ily kinases (Figure 4F); and ITGB5, a cell surface integrin respon-

sible for cell adhesion and signaling (Figure 4G). Stable shRNA

and control cell lines for colon cancer (HT29 and LOVO) and

pancreatic cancer (BXPC3) were generated for each target. For

technical reasons, a stable shCAD LOVO cell line was not gener-

ated. Knockdown was confirmed at the protein level in these cell

lines (Figure S4N). Cell proliferation assays showed that target

knockdown inhibited cell growth, compared with controls

(Figures 4H–4J, left panels). Furthermore, cell line xenografts

also showed that knockdown of these targets suppressed tumor

growth, compared with controls, in vivo (Figures 4H–4J, right

panels). These results demonstrate the utility of our approach in

identifying candidate targets that are vulnerabilities and thus po-

tential targets for future drug development.

Protein dependencies associated with the loss of TSGs
TSGs are frequently affected by loss-of-function (LoF) genomic

aberrations in cancer. Directly targeting LoF TSGs is challenging.

However, the loss of these TSGs can induce tumor-specific de-

pendencies on other proteins within the tumor, making these

proteins attractive targets for synthetic lethal therapeutic strate-

gies.24 We performed unsupervised hierarchical clustering of the
Figure 4. Evaluation and validation of prioritized drug targets

(A) Boxplots depicting proportions of predicted effective targets among all targeta

(B) Workflow describing the systematic evaluation of prioritized targets with PRIS

(C) Success rates for prioritizing effective drug targets by cancer type using CR

proaches. p values derived from z test.

(D) Sensitivities, specificities, and accuracies for the three approaches.

(E–G) Violin plots comparing target protein abundance in tumor vs. normal (top p

scores in cell lines (bottom panels, p values derived from one-sample t test) for

(H–J) Plots depicting cell growth (left panels) and cell line xenograft tumor volumes

cell lines for shCAD (H), shPAK2 (I), and shITGB5 (J). Data are mean ± SEM. p va

See also Figure S4 and Table S5.
10 cancer types based on the frequencies of LoF alterations in

TSGs, specifically frameshift/nonsense mutations or deep dele-

tions, found in the CPTAC and the Cancer Genome Atlas (TCGA)

datasets. This analysis, which focused on TSGs with over 3%

LoF alterations across all CPTAC and TCGA samples, demon-

strated distinct clustering of the same cancer types in the two

datasets (Figure 5A; Table S6A). Genomic loss of these TSGs

was associated with reduced mRNA and protein abundance of

the cognate genes, but a greater reduction was observed at

the protein level, compared with mRNA level for ARID1A and

KMT2D, while the opposite was observed for TP53 (Figure 5B).

To systematically explore potential protein dependencies

linked to TSG loss, we analyzed the associations between

genomic losses of TSGs and variations in protein abundance,

phosphosite abundance, and inferred kinase activity scores

across tumor samples for each cancer type. Additionally, for

each TSG-protein, TSG-phosphosite, and TSG-kinase activity

pair, we used CRISPR data from matched cancer lineages in

DepMap to determine if cell lines with TSG LoF aberrations ex-

hibited increased dependency on the corresponding gene,

compared with cell lines without such aberrations (Figure S5A).

Most of the identified TSG loss-associated dependencies were

cancer-type specific (Figures 5C and S5B–S5D; Tables S6B–

S6D). Only the dependency on RPL22L1 in KMT2D mutants

was found in both COAD and UCEC. Interestingly, the identified

TSG-phosphosite pairs generally showed more significant asso-

ciations than corresponding TSG-protein pairs (Table S6E), sug-

gesting that phosphorylation, rather than protein abundance,

primarily drove these dependencies. Similarly, associations of

TSG-kinase activity pairs were distinct from results based on ki-

nase protein abundance (Figures S5B–S5D).

Since TP53 is the most frequently altered gene in cancer, we

next focused on specific examples of TP53 associations to bet-

ter understand their biological and therapeutic implications. One

example is TP53-TOP2A in UCEC, where TOP2A protein abun-

dance was significantly higher in tumors with TP53 loss, and

uterine cancer cell lines with TP53 loss showed higher depen-

dency on TOP2A, compared with the other cell lines (Figure 5D).

TOP2A, a topoisomerase that modulates DNA topology, has

been previously reported as a synthetic lethal partner of TP53

loss.25 TOP2A is required to prevent interference between repli-

cation and transcription in the event of TP53 loss. Additionally,

elevated levels of TOP2A S1247 were also associated with

TP53 loss, reinforcing protein-level data. TOP2A S1247 is a

mitotic phosphorylation site that affects the enzyme’s subcellu-

lar localization and residence time on mitotic chromatin,26
ble genes by drug target tiers. p values derived fromWilcoxon signed rank test.

M primary screen drug response dataset.

ISPR data alone, tumor vs. normal data alone, and a combination of both ap-

anels, p values derived from Wilcoxon rank-sum test) and target dependency

tier 4 targets CAD (E), PAK2 (F), and ITGB5 (G).

(right panels, n = 4–6mice per group) from control and tier 4 target knockdown

lues are derived from t test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure 5. Identification of synthetic lethal partners of genomically altered tumor suppressor genes as putative targets

(A) Heatmap showing top frequently genomically altered tumor suppressor genes in CPTAC and TCGA cohorts.

(B) cis impact of tumor suppressor genes from (A) on cognate mRNA and protein levels.

(C) For each cancer type, each point represents the significance of a protein, phosphosite, or kinase activity being upregulated in tumors harboring loss-of-

function genetic alterations vs. others (x axis, higher value indicates more significant upregulation) and also the significance of knockout of the corresponding

gene in causing proliferation loss in cell lines of matched lineages harboring tumor suppressor loss vs. others (y axis, lower value indicates more significant loss in

proliferation).

(D) TOP2A protein was significantly higher in UCEC tumors with TP53 loss, and UCEC cell lines harboring TP53 loss had significantly higher dependency on

TOP2A.

(E) UCEC cell lines with TP53 loss were more sensitive to topoisomerase inhibitors doxorubicin and mitoxantrone, compared with lines without TP53 loss.

(F) Abundance of ANAPC1 p-S334 was significantly higher in OV tumors with TP53 loss, and OV cell lines harboring TP53 loss had significantly higher de-

pendency on ANAPC1.

(G) Inferred CHK1 activity was significantly higher in BRCA tumors with TP53 loss, and BRCA cell lines harboring TP53 loss had significantly higher dependency

on CHK1.

(H) Summary of TP53 loss-associated dependencies in three cancer types.

See also Figure S5 and Table S6.
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suggesting a direct functional role for TOP2A in tumors harboring

TP53 loss (Figure 5D).

TOP2A is targeted by chemotherapy agents such as doxoru-

bicin,27 which inhibits topoisomerase activity. Doxorubicin,

currently approved for treating UCEC patients, has an overall

response rate of 16% among unselected patients.28 When

examining in vitro drug response data from DepMap, uterine

cancer cell lines with TP53 loss were found to be more sensitive

to doxorubicin, compared with lines without TP53 loss (Fig-

ure 5E). In addition, uterine cancer cell lines with TP53 loss

also showed increased sensitivity to another topoisomerase in-

hibitor, mitoxantrone (Figure 5E), compared with cell lines with

wild-type (WT) TP53. Mitoxantrone has been reported to lack

clinical activity for UCEC tumors among unselected patients.29

These findings suggest further investigation into using TP53

loss as a biomarker to select UCEC patients for treatment with

doxorubicin and mitoxantrone.

In OV tumors, ANAPC1 S334 abundance, but not the host pro-

tein level, showed a significant increase in samples harboring

TP53 loss (Figure 5F). Moreover, OV cell lines with TP53 loss

had significantly higher dependency on ANAPC1 (Figure 5F).

Loss of TP53 promotes cell-cycle progression, which may in-

crease requirements for activity of the anaphase-promoting

complex including ANAPC1.30 Although ANAPC1 S334 is poorly

researched, it may represent an understudied ANAPC1 phos-

phosite that mediates ANAPC1 activity and ultimately cell-cycle

progression.

Finally, CHK1 kinase activity was higher in BRCA tumors with

TP53 loss, compared with other tumors (Figure 5G). CHK1 acti-

vates TP53, which then acts reciprocally to downregulate

CHK1.31 In the absence of this negative regulation by TP53,

CHK1 activity increases in BRCA tumors, and CRISPR KO of its

gene, CHEK1, causes a greater loss of fitness in BRCA cell lines

with TP53 loss (Figure 5G). These data highlight a relationship

where the activity of a partner gene is directly impacted by the

loss of a TSG. A previous study demonstrated that tumors from

a breast cancer patient-derived xenograft (PDX) harboring a trun-

cating TP53 mutation were more sensitive to a CHK1 inhibitor in

combination with a DNA-damaging agent, compared with a WT

TP53 PDX model.32 The same study also used an isogenic PDX

model with TP53 knockdown, showing that the combination treat-

ment increased apoptosis in TP53mutant tumor cells, compared

with WT TP53 control tumor cells. Our findings from human tu-

mors strengthen the potential utility of using TP53 status as a

biomarker to select breast cancer patients for CHK1 inhibition.

Figure 5H summarizes TP53 loss-associated dependencies

across various cancer types. These findings illustrate the utility

of the proteogenomic approach in identifying protein depen-

dencies associated with the loss of TSGs, revealing potential

therapeutic opportunities.

Proteogenomic identification of neoantigen candidates
Neoantigens derived from somatic mutations are attractive tar-

gets for vaccine and T cell-based immunotherapies.33 Millions

of putative mutation-derived neoantigens have been predicted

based on genomic sequencing of human tumors,34 but few

have been detected in MS-based immunopeptidomics.35

Because neoepitopes are peptides instead of nucleic acid se-
quences, and expression is a key feature of identifying bona

fide neoantigens,36 we reason that proteomic evidence of the

mutant peptides is useful to prioritize somatic mutations for

immunotherapy development. We performed integrated analysis

of proteomics, phosphoproteomics, and paired DNA- and RNA-

seq data using NeoFlow37 to systematically predict somatic mu-

tation-derived neoantigens with protein expression evidence

(Figure 6A).

Searching both global proteome and phosphoproteome data

against sample-specific customized protein databases derived

from matched DNA- and RNA-seq data, we identified 27–533

mutant peptides across the 10 cancer types (Figure 6B). Identi-

fication of the large number of mutant peptides in UCEC was

driven by the subset of microsatellite instability-high (MSI-H) or

polymerase ε (POLE)-mutated samples, and the relatively high

numbers of mutant peptides identified in LSCC, LUAD, and

HNSCC, compared with the remaining cancer types, were asso-

ciated with relatively higher mutation burdens in these cancer

types. COAD also has a subset of MSI-H or POLE-mutated

samples, but the proteomics depth was lower in this study,

comparedwith other cohorts, highlighting the importance of pro-

teomics depth in identifying mutant peptides. Furthermore,

genes with detected mutations at the protein level showed

much higher protein abundance, compared with genes with mu-

tations that were not detected at the protein level (Figure 6C),

suggesting protein abundance also played an important role in

mutant peptide identification.

We predicted the binding affinity of all possible mutant epi-

topes to patient-specific human leukocyte antigen (HLA) alleles

inferred from DNA-seq data for all mutations with protein-

level evidence. Mutant epitopes with a binding affinity below

500 nM were considered putative neoantigens.38 The percent-

age of samples with at least one predicted neoantigen ranged

from 21% to 73% across the 10 cancer cohorts (Figure 6D).

This indicates many patients had the potential to benefit from

neoantigen-based immunotherapy.

Our systematic analysis identified a total of 2,315 putative

neoantigens associated with 846 somatic mutations (Table S7).

Among the putative neoantigens, 180 were derived from 39

cancer genes annotated in the Cancer Gene Census database

as high-confidence oncogenes or TSGs,39 such as CTNNB1,

TP53, KRAS, DDX3X, EGFR, ERBB3, FOXA1, MAPK1, HRAS,

and ARID1A. Some of these neopeptides or their highly similar

forms (e.g., longer peptides covering our predicted peptides)

have been previously investigated preclinically or clinically.

These include neopeptides resulting from KRAS G12C, G12D,

and G13D,40–51 and IDH1 R132H51,52 and TP53 R273C53

mutations.

Most of our predicted neoantigen-yielding somatic mutations

were specific to an individual patient’s tumor, and the resulting

neoantigens are likely to be private neoantigens. However, five

mutations were predicted to yield neoantigens in at least two tu-

mors, including KRAS G12D, KRAS G12C, KRAS G13D,

DAZAP1 G383Afs*46, and RBM39 D328Y (Figure 6E). Among

the 75 tumors with a KRAS G12D mutation, 53% produced

detectable mutant peptides, and 31% were predicted to yield

at least one KRAS G12D-derived neoepitope. The other two

KRAS mutations were also predicted to yield neoepitopes in a
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Figure 6. Prediction of somatic mutation-derived neoantigens using proteogenomics data

(A) Overview of the proteogenomics workflow for neoantigen prioritization.

(B) Numbers of somatic mutation-derived variant peptides identified for each cancer type.

(C) Protein abundance (log2 MS1 intensity) for genes with mutations detected vs. not detected in the proteomics data.

(D) The percentage of samples with proteomics-supported putative neoantigens.

(E) Mutations predicted to yield neoantigens in at least two tumors.

(F) KRAS mutant peptides and corresponding HLA type predicted to yield neoepitopes in patients.

See also Table S7.
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substantial number of tumors. Remarkably, 5KRASmutant pep-

tides were predicted to yield neoepitopes in 44 patients across 4

CPTAC cancer types (PDAC, LUAD, UCEC, and COAD), making

them promising candidates of public neoantigens for targeting

(Figure 6F).

Identification and validation of tumor-associated
antigens
Most of our predicted mutation-derived neoantigens were pa-

tient specific, limiting their utility as targets of prefabricated vac-

cines or T cell products.We therefore expanded our search to tu-

mor-associated antigens by identifying proteins that are

overexpressed in tumors and that exhibit highly restricted

expression in normal tissues (Figure 7A). As illustrated by

MAGEA10 (Figure 7B), a highly immunogenic member of the

melanoma antigen gene (MAGE) family of cancer/testis tumor-

associated antigens,54 tumor-associated antigens may be
12 Cell 187, 1–19, August 8, 2024
abnormally expressed in only a subset of tumors within a cancer

type. Therefore, they may not be detectable using conventional

methods like the t test or Wilcoxon rank-sum test. Accordingly,

we employed the Anderson-Darling (AD) test, which focuses

on comparing protein abundance in the tail regions, to better

capture differences in abundance observed in only a subset of

samples. Identified proteins were subjected to a filtering process

based on the absence of detectable mRNA in normal tissues in

data from the Genotype-Tissue Expression (GTEx) project, as

well as the absence of experimentally detected HLA-I peptides

in non-cancerous samples in the caAtlas database35 (STAR

Methods). Finally, we performed orthogonal validation of the pro-

tein identification using PepQuery212 to reduce the chance of

potential false discoveries.

The numbers of significantly differentially expressed proteins

identified by AD test ranged from 4,627 to 10,818 across the 8

cohorts with normal samples (Table S8). These completely
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Figure 7. Tumor-associated antigen identification and experimental validation

(A) Tumor-associated antigen identification pipeline.

(B) MAGEA10 RNA (top) and protein (bottom) expression in two cancer cohorts.

(C) Number of significantly differentially expressed proteins identified by AD test and Wilcoxon rank-sum test across all cohorts.

(D) Distribution of seven prioritized tumor-associated antigens across six cancer types. Dots and boxes indicate identifications shared by both tests or unique to

the AD test.

(E) Experimental validation for binding affinity and immunogenicity for 67 peptides with the highest binding affinities to the most common allotype HLA-A*02 for

the 7 prioritized proteins in (D). Bar plot depicts the exchange efficiency of HLA-A*02:01 tetramer quantified by Q1 replacement percentage (R.P.). Red line

indicates 50% replacement as the threshold for identifying a peptide with strong binding affinity. Heatmap depicts spot-forming units (SFUs) per 100,000 cells

(legend continued on next page)
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covered all significant proteins identified by Wilcoxon rank-sum

test, with 13%–38% increase across these cohorts (Figure 7C).

Among these, 140 proteins had highly restricted expression in

GTEx normal tissues except for immune-privileged tissues,

including 5 MAGE family proteins, which are well-studied tu-

mor-associated antigens. Notably, MAGEA10 and MAGEB2

were only identified by AD test but not with Wilcoxon rank-sum

test, whereas MAGEA4 and MAGEA1 were identified in more

cancer types by AD test, demonstrating the value of AD test in

tumor-associated antigen identification. We focused on a subset

of 70 proteins that were significantly overexpressed in tumors

based on the AD test in at least 2 cancer types (Table S8). After

further removing proteins with detectable HLA-I peptides in non-

cancerous samples in caAtlas, 9 proteins were subjected to

PepQuery validation that ultimately prioritized 7 proteins (Fig-

ure 7D) for experimental validation.

To identify broadly applicable tumor-associated antigens for

immunotherapy development, we selected up to 10 peptides

with the highest predicted binding affinities to the most common

allotype HLA-A*02 for each of the 7 proteins. This analysis iden-

tified 67 peptides (Table S8) that we tested through a competitive

peptide binding assay to measure binding affinity. This assay

measures the exchange efficiency of an exogenously added

peptide of interest to displace pre-bound peptides on HLA tetra-

mers. The underlying principle is that as the affinity of the added

peptide for the HLA increases, it will displace pre-bound pep-

tides more effectively, leading to a higher exchange efficiency.

The exchange efficiency of HLA-A*02:01 tetramer with all the

67 selected peptides ranged from 2.38% to 97.9%, of which

�70% (47/67 peptides) had an exchange efficiency over 50%,

a threshold selected to identify peptides with strong binding af-

finity (Figure 7E).

We next tested whether these peptides solicited immuno-

genic responses in HLA-A*02 individuals, using an interferon-

g (IFN-g) ELISpot assay. The number of spots or spot-forming

units (SFUs) reflects the number of activated T cells that recog-

nize and respond to the presented peptides and is a readout of

the strength of an immune response. Seven healthy donors

from China (CN1–7) and six healthy donors from USA (US1–6)

were tested, and all had T cell reactivity toward at least one

of the peptides with R5 SFUs per 100,000 T cells (Figure 7E).

For instance, T cell cultures of donor US1 with HLA-A*02:11

demonstrated strong reactivity against PEP4 from MAGEA1

(CILESLFRAV) and PEP17 from MAGEA10 (MMGLYDGMEHL),

whereas donor CN1 with HLA-A*02:01 demonstrated strong

reactivity against PEP28 from BRDT (FSYAWPFYNPV) and

PEP40 from LEKR1 (YLVERQLQEI) (Figure 7F). In total, 22 pep-

tides from MAGEA1, MAGEA10, MAGEB2, BRDT, and LEKR1

(bold red text in Figure 7E) showed both strong exchange effi-

ciency (>50%) and strong immunogenicity (SFU > 150), and

they are promising candidates for further investigation as

immunotherapy targets.
from ELISpot experiments. Red bold text highlights 22 peptides showing both stro

are promising candidates for further investigation as broadly applicable immuno

(F) Representative flow cytometry plots for binding affinity (Q1 quadrant indicates

individuals.

See also Table S8.
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DISCUSSION

Our analysis of harmonized CPTAC proteogenomics data from

over 1,000 patients across 10 cancer types provided insights

into existing cancer drug targets and expanded the landscape

of therapeutic targets. We achieved this by systematically iden-

tifying overexpressed or hyperactivated targetable protein de-

pendencies, TSG loss-associated protein dependencies, and

neoantigens and tumor-associated antigens. A key strength of

our study is our comprehensive approach to data integration.

The first level of integration harnessed proteomics data, which

directly measure the entity being targeted by therapeutics,

together with other types of omics data. Like other studies, we

found a substantial number of genes, including some druggable

ones, exhibiting weak correlation between mRNA and protein

levels. This discrepancy has been partially attributed to posttrans-

lational regulation through protein-protein interaction or protein

complex formation, which can stabilize proteins.55,56 In this study,

we also identified genes encoding secreted proteins as a group of

genes with low mRNA-protein correlation. Beyond protein abun-

dance, our analysis also included protein activity inferred from

phosphoproteomics data, identifying additional protein targets

that could not be identified from global proteomics alone. Inte-

grating proteomics data with genomics and epigenomics data

further revealed druggable proteins whose overexpression in tu-

mors was driven by gene mutation, hypomethylation, and copy-

number amplification. These proteins are more likely to be drivers

of tumor initiation and progression and thus even more attractive

for therapeutic targeting. In addition, for LoF genomic aberrations

in TSGs, integration of proteomics and phosphoproteomics data

providedanattractivestrategy todiscoverproteins, phosphosites,

and kinase activities whose suppression may be synthetic lethal.

The second level of integration involves simultaneous utiliza-

tion of molecular profiling data from tumor specimens and

CRISPR-Cas9 screen data from cancer cell lines. One limitation

of the human tumor profiling research is that these studies are

associative in nature and cannot be used to establish causality.

High-throughput data from genetic or pharmacologic perturba-

tions in cell lines, such as those available in DepMap, provide a

powerful resource for establishing causal connection, but the

relevance to clinical disease is uncertain. By identifying genes

that are important in human cancer tissue and then combining

those with phenotypic outcomes from cell line perturbation ex-

periments, we could emphasize the most likely successful tar-

gets for further investigation.

The third level of integration leverages pan-cancer data gener-

ated by CPTAC. The integration of multiple cancer types in a sin-

gle study not only strengthens associations found in single can-

cer cohort studies but also highlights common therapeutic

targets that could be relevant for multiple cancer types. Although

clinical trials for drugs have historically been tested in a single

cancer type, basket trials testing tissue-agnostic molecularly
ng exchange efficiency (>50%) and strong immunogenicity (SFU > 150), which

therapy targets.

replacement percentage) and ELISpot images for four selected peptides in two
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targeted therapeutics are gaining attention following the land-

mark approvals of larotrectinib and entrectinib for patients with

neurotrophic receptor tyrosine kinase (NTRK) fusions and pem-

brolizumab for those with high MSI.57 Our pan-cancer analysis

has identified candidate tissue-agnostic protein targets, often

overlooked in individual CPTAC studies that focus on the most

promising targets within specific cancer types.

We also deployed pipelines to prioritize neoantigens and tu-

mor-associated antigens as targets for immunotherapy. Most

of the predicted neoepitopes were specific to individual patients,

but 5 KRAS mutant peptides were predicted to yield neoepi-

topes in 44 patients from 4 cancer types, suggesting potential

utility as a public neoantigen. HLA-I presentation of several of

our predicted KRAS neoepitopes has been detected in engi-

neered cells, using targeted MS.40 Moreover, a recent clinical

study showed that genetically engineered T cells targeting

mutant KRAS G12D driver mutation achieved substantial tumor

regression in a patient with refractory metastatic pancreatic can-

cer.46 Our analysis provides additional evidence to support

future prospective clinical trials to further investigate the thera-

peutic potential of this therapy in pancreatic cancer and other

cancer types. HLA-I presentation and immunogenicity of other

predicted neoepitopes will need to be experimentally validated.

Furthermore, we identified 140 proteins with highly restricted

expression in GTEx normal tissues but abnormal expression

in CPTAC tumors. Experimental analysis of peptides predicted

to have high binding affinity to the most common allotype

HLA-A*02 for 7 prioritized proteins identified 22 peptides from

5 proteins with both strong binding affinity and immunogenicity,

including 3 MAGE family proteins and 2 less well-studied pro-

teins, BRDT and LEKR1. These peptides could be further inves-

tigated as broadly applicable immunotherapy targets.

In conclusion, through the integration of 6 omics data types

from 10 cancer types with external cell line and human tissue

data, we have created a comprehensive resource of protein

and peptide targets that covers various therapeutic modalities.

This unique resource, accessible through a user-friendly web

portal at https://targets.linkedomics.org, will pave the way for re-

purposing currently available drugs and developing new thera-

pies for cancer treatment.
Limitations of the study
Our study has several limitations. First, while we evaluated our

predicted druggable dependencies using drug response data,

factors like drug efficacy and response measurement inaccura-

cies might have affected our assessment. Second, our prioritiza-

tion focused on targets of small-molecule drugs and membrane

proteins, leaving out many predicted protein dependencies. This

highlights the need for innovative therapies to target traditionally

‘‘undruggable’’ proteins. Third, albeit that our analysis was con-

ducted in a pan-cancer context, future studies could adapt and

apply the integrative proteogenomic approaches developed

here to specific cancer types or subtypes.
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Rabbit anti-integrin beta 5 Proteintech Cat# 28543-1-AP; RRID: AB_2881167
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Rabbit anti-PAK2 Cell Signaling Technology Cat# 2608; RRID: AB_2283388
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Goat anti-rabbit IgG (H+L) HRP Yeasen Cat# 33101ES60; RRID: AB2922405

Biological samples
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This paper Zhongshan Hospital, Fudan University

PBMCs isolated from peripheral blood in

healthy donors

This paper Baylor College of Medicine

Chemicals, peptides, and recombinant proteins

Peptides China Peptides Inc.

Genemed Synthesis Inc.

N/A

RPMI-1640 media cytiva Cat# SH30096.01

Click’s media IrvineScientific Cat# 9195
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Lymphoprep StemCell Technologies Cat# 07851

ImmunoCult-XF T cell expansion medium StemCell Technologies Cat# 10981

ImmunoCult Human CD3/CD28 T cell activator StemCell Technologies Cat# 10971

CD14 magnetic microbeads Miltenyi Biotec Cat# 130-050-201

CellGenix GMP DC media CellGenix Cat# 20801-0500
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IL-7 R&D Systems Cat# BT-007-01M

IL-12 InvivoGen Cat# rcyc-hil12

IL-15 R&D Systems Cat# BT-015-01M

GM-CSF R&D Systems Cat# 215-GM/CF-MTO

TNF-ɑ R&D Systems Cat# 210TA100

PGE-2 Sigma Cat# P6532-1MG

PHA-L Sigma-Aldrich Cat# L4144

Avidin-peroxidase solution Vector Laboratories Cat# PK-6100

AEC Sigma-Aldrich Cat# A6926

Tumor-associated antigens GenScript Biotech Corporation

ImmunoCult Human CD3/CD28 T Cell Activator Stemcell Cat# 10971

Human recombinant IL-2 Stemcell Cat# 78036
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Tanespimycin Selleckchem Cat# S1141

Lipofectamine 3000 Thermo Cat# L3000015

Cell Counting Kit (CCK-8) Yeasen Cat# 40203ES80
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Polybrene Yeasen Cat# 40804ES76

Puromycin Yeasen Cat# 60209ES10

Critical commercial assays

QuickSwitch Quant HLA-A*02:01 Tetramer

Kit-PE

MBL International Cat# TB-7300-K1

IFN-g ELISpot kit DAKEWE Cat# 2110003

Deposited data

CPTAC Pan-Cancer Data Li et al.5 and Liao et al.6 N/A

TCGA Pan-Cancer Data Cerami et al.58 and Gao et al.59 https://www.cbioportal.org

GENCODE V34 basic (CHR) Frankish et al.60 https://www.gencodegenes.org/human/

release_34.html

DrugBank version 5.1.9 Wishart et al.7 https://go.drugbank.com

Guide to Pharmacology version 2022.2 Harding et al.8 https://www.guidetopharmacology.org

In silico Surfaceome Bausch-Fluck et al.11 https://wlab.ethz.ch/surfaceome/

Pharos Sheils et al.61 https://pharos.nih.gov

HPA Secretome (2022-Sep) Uhlén et al.13 https://proteinatlas.org

PhosphoSitePlus Hornbeck et al.62 https://phosphosite.org

Drug Gene Interaction Database version

2022-Feb

Freshour et al.9 https://www.dgidb.org

caAtlas Yi et al.35 http://www.zhang-lab.org/caatlas/

Cancer Gene Census Tate et al.39 https://cancer.sanger.ac.uk/cosmic/

download

Tumor suppressor genes from Bailey et al. Bailey et al.63 Table S1 in Bailey et al.

Tumor suppressor genes from Tokheim et al. Tokheim et al.64 N/A

PTMsigDB v1.9 Krug et al.65 https://github.com/broadinstitute/

ssGSEA2.0/tree/master/db/ptmsigdb

DepMap: Mutation DepMap Public 22Q2 https://depmap.org/portal/download/

DepMap: Segmented copy number DepMap Public 22Q2 https://depmap.org/portal/download/

DepMap: Proteomics Nusinow et al.66 https://depmap.org/portal/download/

DepMap: CRISPR KO screen (combined) DepMap Public 22Q418 https://depmap.org/portal/download/

DepMap: GDSC drug screen Sanger GDSC167 https://depmap.org/portal/download/

DepMap: PRISM drug screen PRISM Repurposing 19Q4 Secondary

Screen22
https://depmap.org/portal/download/

DepMap: Pan-cancer essential genes DepMap Public 21Q4 https://depmap.org/portal/download/

Experimental models: Cell lines

769P Dingwei Ye lab (Department of Urology,

Fudan University Shanghai Cancer Center)

RRID: CVCL_1050

SW1990 Xianjun Yu lab (Department of Pancreatic

Surgery, Fudan University Shanghai

Cancer Center)

RRID: CVCL_1723

CAL27 Wantao Chen lab (Department of Oral

Maxillofacial-Head Neck Oncology,

Shanghai Ninth People’s Hospital,

Shanghai Jiao Tong University

School of Medicine)

RRID: CVCL_1107

A2780 Tingyan Shi Lab (Department of Obstetrics

and Gynecology, Zhongshan Hospital,

Fudan University)

RRID: CVCL_0134

NCI-H2170 Yongbo Wang lab (Department of Cellular

and Genetic Medicine, School of Basic

Medical Sciences, Fudan University)

RRID: CVCL_1535

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

NCI-H1944 Yongbo Wang lab (Department of Cellular

and Genetic Medicine, School of Basic

Medical Sciences, Fudan University)

RRID: CVCL_1508

HT29 Dawei Li lab (Department of Colorectal

Surgery, Fudan University Shanghai

Cancer Center)

RRID: CVCL_0320

Ishikawa QuiCell Biotechnology RRID: CVCL_2529

LOVO Daming Gao lab (Shanghai Institute of

Biochemistry and Cell Biology)

RRID: CVCL_0399

BXPC3 Yi Qin lab (Department of Pancreatic

Surgery, Fudan University Shanghai

Cancer Center)

RRID: CVCL_0186

Experimental models: Organisms/strains

BALB/c Nude Shanghai Model Organisms Center Cat# SM-014

Oligonucleotides

See Table S5B This study N/A

Software and algorithms

PepQuery2 Wen and Zhang12 http://www.pepquery.org

metap Dewey68 https://cran.r-project.org/web/packages/

metap/index.html

WebGestalt Liao et al.69 https://www.webgestalt.org

GISTIC2.0 Mermel et al.70 ftp://ftp.broadinstitute.org/pub/

GISTIC2.0/GISTIC_2_0_23.tar.gz

ragp Dragi�cevi�c et al.71 https://github.com/missuse/ragp

protr Xiao et al.72 https://cran.r-project.org/web/

packages/protr/

NeoFlow Wen et al.37 https://github.com/bzhanglab/neoflow

ComplexHeatmap Gu et al.73 https://bioconductor.org/packages/

release/bioc/html/ComplexHeatmap.html

Optitype Szolek et al.74 github.com/FRED-2/OptiType

NetMHCpan Jurtz et al.75 https://services.healthtech.dtu.dk/

service.php?NetMHCpan-4.0

customprodbj Wang et al.76 https://github.com/bzhanglab/

customprodbj

PDV Li et al.77 https://github.com/wenbostar/PDV

InteractiVenn Heberle et al.78 http://www.interactivenn.net/

ZigZag Thompson et al.79 https://github.com/ammonthompson/

zigzag

KSEA Casado et al.80 and Wiredja et al.81 https://cran.r-project.org/web/

packages/KSEAapp/index.html

Cytoscape v3.10.0 Shannon et al.82 https://cytoscape.org/

drc v3.0-1 Ritz et al.83 https://cran.r-project.org/web/

packages/drc
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead author, Bing Zhang

(bing.zhang@bcm.edu).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
Raw proteomics data files are hosted by the CPTAC Data Portal and can be accessed at: https://proteomics.cancer.gov/data-portal

and can also be accessed at the Proteomic Data Commons: https://pdc.cancer.gov. Genomic and transcriptomic data files can be

accessed via the Genomic Data Commons (GDC) Data Portal: https://portal.gdc.cancer.gov. Processed data utilized for this publi-

cation can be accessed via LinkedOmicsKB (Release 1): https://kb.linkedomics.org. Results from this study can be accessed

through a web portal at https://targets.linkedomics.org.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Cancer cell lines
The 769P cells were donated by the Dingwei Ye lab (Department of Urology, Fudan University Shanghai Cancer Center, Shanghai,

China), SW1990 cell line was a gift from the Xianjun Yu lab (Department of Pancreatic Surgery, Fudan University Shanghai Cancer

Center, Shanghai, China), CAL27 cells were obtained from the Wantao Chen lab (Department of Oral Maxillofacial-Head Neck

Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China), A2780 cells

were obtained from the Tingyan Shi Lab (Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University,

Shanghai, China). NCI-H2170 andNCI-H1944 cells were donated by the YongboWang lab (Department of Cellular andGenetic Med-

icine, School of Basic Medical Sciences, Fudan University, Shanghai, China). The HT29 cells were donated by the Dawei Li lab

(Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China). The Ishikawa cells were obtained

from QuiCell (QuiCell-I409, QuiCell Biotechnology Co., Ltd, Shanghai, China). The LOVO cells were donated by Dr. Daming Gao

(Shanghai Institute of Biochemistry and Cell Biology). The BXPC3 cells were obtained from the Yi Qin Lab (Department of Pancreatic

Surgery, Fudan University Shanghai Cancer Center, Shanghai, China). CAL27, HT29, Ishikawa, SW1990, and LOVO cells were

cultured at 37�C, 5% CO2, in DMEM medium supplemented with 10% FBS, and penicillin-streptomycin. A2780, NCI-H2170,

NCI-H1944, 769P, and BXPC3 cells were maintained at 37�C, 5% CO2, in RPMI1640 with 10% FBS and penicillin-streptomycin.

Lentiviral production and stable cell line generation
Lentiviruses were produced in accordance with previously established methods.84 To summarize, the RNAi Consortium from the

Broad Institute was queried for shRNA sequences (https://portals.broadinstitute.org/gpp/public/). shRNA sequences are provided

in Table S5B. The packaging of lentivirus utilized a three-plasmid system including shRNAs generated with PLKO.1 vector with trans-

fection facilitated by Lipofectamine 3000 (Thermo). Cells were infected with the virus in the presence of 10 mg/mL polybrene to in-

crease transduction efficiency. Stable cell lines were subsequently selected using 10 mg/mL puromycin for a duration of 48 hours.

Western blot
Cell lysates were prepared with RIPA buffer (Beyotime). 20 mg proteins were loaded onto 4%-12% FuturePAGE gels (ACE) in MOPS-

SDS running buffer and then transferred to 0.22 mm pre-balanced polyvinylidene difluoride (PVDF) membrane (Millipore). Following

the transferring step, the membrane was blocked with 5% nonfat milk in TBST at room temperature for an hour. The membrane was

then incubated with the primary antibody, which was diluted in 5%BSA, and left overnight at 4�C. Subsequent to the washing steps,

themembrane was treated with the secondary antibody at room temperature for an hour. After four-five additional washing steps, the

protein was detected using enhanced chemiluminescence reagent (ECL, AmershamCorporation, Heights, IL, USA). The specific an-

tibodies utilized in this study are as follows: Rabbit anti-integrin beta 5 (Proteintech), rabbit anti-CAD (clone D2T8H) (Cell Signaling),

rabbit anti-PAK2 (Cell Signaling), and mouse anti-GAPDH-HRP (Yeasen).

Cell proliferation and viability assays
We utilized the CCK-8 reagent (Yeasen, Beijing, China) for both proliferation and drug response viability assays after seeding cells in

96-well plates at 1-53103 cells/well. For proliferation, cell numbers were quantified daily for four days. For viability under drug expo-

sure, 24 hours post-seeding, cells were treated with graded doses of alvespimycin, tanespimycin (both from Selleckchem), or a

DMSO control, and incubated for 48 hours. At least three independent experiments were performed. IC50 values were calculated

via log-logistic regression (two, three, or four-parameter), with the best fit model selected through manual inspection of the curve

using the ’drc’ package (v3.0-1) in R83.

In vivo animal studies
Weobtained 4-6week old female BALB/c nudemice fromShanghai Model OrganismsCenter. Our study strictly followed animal care

principles and ethical guidelines, receiving approval from the Institutional Animal Care and Use Committee at the Shanghai Model

OrganismsCenter (approval numbers 2023-0034 and 2023-0065). To evaluate the therapeutic efficacy of the drug in vivo, we injected

HT29 colon cancer cells (53106 cells in 100 mL PBS) subcutaneously into the dorsal flank of the nude mice. The mice were randomly

assigned to treatment with either vehicle control (2% DMSO in PBS) or alvespimycin (50 mg/kg, administered intraperitoneally daily)

(n = 9 mice per group) on day 0. The mice were sacrificed 7 days after treatment initiation.To measure the tumor growth of HT29,

LOVO colon cancer cells, and BXPC3 pancreatic cancer cells in vivo, control and corresponding target-knockdown cells in the log-

arithmic growth phase were resuspended in PBS (83106-13107 cells in 150 mL) and injected subcutaneously into nude mice (n = 4-6
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mice per group). Tumor sizes were measured using a digital caliper every 1-3 days, and tumor volumes were calculated using the

formula: volume = (width)2 3 length 3 0.52.

PBMC isolation and DC differentiation and maturation, Baylor College of Medicine (BCM)
Peripheral blood was collected from healthy volunteers as per Baylor College of Medicine IRB protocols. Peripheral blood mononu-

clear cells (PBMCs) were isolated fromperipheral blood by density gradient centrifugation with Lymphoprep (StemCell Technologies,

#07801). Fresh PBMCs were then separated into CD14+ and CD14- fractions through magnetic bead selection with CD14 microbe-

ads (Miltenyi Biotec, 130-050-201). The CD14- fraction of cells was cryopreserved for later use. To differentiate the CD14+ mono-

cytes into DCs, the cells were suspended at 0.5 x 106 cells/mL in CellGenix GMPDCmedia (CellGenix, # 20801-0500) supplemented

with IL-4 (400 U/mL) and GM-CSF (800 U/mL) and cultured at 1 mL per well of a 24-well tissue culture treated plate. Cytokines were

replenished after 3 days. After 5-7 days, immature DCs were harvested by gentle cell scraping. Fresh or frozen immature DCs were

thenmatured by suspending cells at 0.35 – 0.7 x 106 cells/mLCellGenix GMPDCmedia supplementedwith IL-4 (400U/mL), GM-CSF

(800 U/mL), TNF-a (10 ng/mL), IL-6 (100 ng/mL), IL-1b (10 ng/mL), and PGE-2 (1 mg/mL), and cultured at 2 mL per well of a 12-well

tissue culture treated plate for 2 days, after which mature DCs were harvested by gentle cell scraping.

Generation of BR-CGA specific T cells, BCM
Fresh matured DCs were suspended in 100 mL of CellGenix GMP DC media containing 25 ng/mL pepmix, comprised of 76 HLA-

A*02:01 predicted peptides derived from nine cancer antigens including MAGE-A1 and MAGE-A10, incubated at 37�C and 5%

CO2 for 1 hr, andwerewashed oncewith CellGenix GMPDCmedia. Pepmix loadedDCs and thawedCD14- PBMCswere cocultured

by plating 0.2 x 106 and 2 x 106 cells per well of a 24-well tissue culture treated plate, respectively, in a volume of 2 mL per well of CTL

media (1:1 CLICKs:RPMI-1640, 5% Human Ab Serum, 1X Glutamax) supplemented with IL-7 (10 ng/mL), IL-12 (10 ng/mL), IL-15

(5 ng/mL) and IL-6 (100 ng/mL). After 6 days T cells were split 1:2 and each well was replenished with 1 mL of fresh CTL media

with 2X concentration cytokine to restore the day 0 concentrations. On day 8 – 10 the T cells were harvested, and pepmix loaded

matured DCswere used to restimulate the expanding T cells by culturing each at 0.1 x 106 and 1 x 106 cells per well of a 24-well tissue

culture treated plate, respectively, in a volume of 2 mL per well of CTLmedia supplemented with IL-7 (10 ng/mL) and IL-15 (5 ng/mL).

On day 3-4 following restimulation, T cells were split 1:2 and wells were replenished with 1 mL of fresh CTLmedia supplemented with

IL-15 and IL-2 for a final concentration of 5 ng/mL and 100 U/mL, respectively, and T cells were further expanded until day 6-10

following restimulation.

IFN-g ELISpot assay, BCM
To coat ELISpot plates (Millipore, #MSIPS4W10) with primary anti-IFN-g antibody (Mabtech, clone 1-D1K), we pretreated wells with

40 mL of 35% ethanol for less than 3 minutes, and then washed wells 2x with PBS and added 100 mL/well of sterile filtered 9.1 mg/mL

primary anti-IFN-g antibody in ELISpot coating buffer. Plates were then wrapped in parafilm and incubated at 4�C at least overnight

and for up to twoweeks. To block the plates, wells were washed 2xwith PBS, andwe then added 100 mL permL of CTLmedia. Plates

were blocked at 37�C for at least 1 hr. Blocked plates were washed 2x with PBS, after which each well received 2 x 105 T cells in

200 mL CTL media with addition of peptides at a final concentration of 12.5 mg/mL. A negative control consisted of T cells in media

alone, and a positive control consisted of T cells in the presence of 2.5 mg/mL PHA-L (Sigma, L4144). Cells were incubated for about

16 hrs, after which wells were washed 6x with PBS+0.05% Tween 20. We then added 100 mL/well of sterile filtered 1 mg/mL bio-

tinylated secondary anti-IFN-g antibody (Mabtech, clone 7-B61) in PBS/0.5% BSA and incubated at 37�C for at least 2 hrs and

up to 48 hrs. Plates were then washed 6x with PBS+0.05%Tween 20 after which we added 100 mL/well of avidin-peroxidase solution

(Vector Laboratories, #PK-6100) and incubated at room temperature for 1 hr. We then washed the plates 3x with PBS+0.05% Tween

20 and then 3x with PBS. AEC substrate solution was prepared by dissolving one tablet of AEC (Sigma, # A6926) in 2.5 mL dimethyl-

formanide, and then adding 47.5 mL acetate buffer. Just prior to use, 5 mL of 30% hydrogen peroxide was added per 10 mL AEC

solution, and the solution was then filtered through a 0.45 mM PES membrane. 100 mL/well of AEC substrate solution was added

per well and incubated at room temperature for 3 min and 30 seconds, after which plates were gently rinsed 2x with cold tap water

and dried. Plate images were acquired on the Mabtech Iris ELISpot plate reader.

PBMC isolation, T-cell culture and expansion, Fudan University
Donors’ peripheral blood mononuclear cells (PBMCs) were obtained using Lymphoprep (07851, Stemcell) and then cultured with

ImmunoCult-XF T Cell Expansion Medium (10981, Stemcell) and 10 ng/mL human recombinant IL-2 (78036, Stemcell) as described

in Lin et al.85 25 mL/mL ImmunoCult� Human CD3/CD28 T Cell Activator (10971, Stemcell) was added to the cell suspension and

incubated for 3 days. T cells were maintained in the above medium until their numbers met the experimental requirements. The Insti-

tutional Review Board of Zhongshan Hospital, Fudan University, granted approval for the entire process (B2021-381).

IFN-g ELISpot assay, Fudan University
The ELISpot plate was processed according to the manufacturer’s instructions. In brief, ELISpot plates (2110003, DAKEWE) were

pretreated with 100 mL/well of RPMI-1640 for 10 min. Then, we removed the RPMI-1640 and dispensed 100 mL cell suspension con-

taining approximately 13105 cells with 10 mg/mL of the synthesized peptide in each well and covered the plate with a standard
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96-well plate plastic lid and incubated cells at 37�C in a CO2 incubator. After 20 hrs of co-culture, the ELISpot plates were washed

with washing buffer and incubated with anti-human IFN-g and then Streptavidin-HRP. Then the Streptavidin-HRP was stained using

AEC solution, the reaction was stopped by rinsing thoroughly with cold tap water. Finally, ELISpot plates were scanned and counted

using an ImmunoSpot plate reader and associated software (CellularTechnologies, Ltd.).

Peptide-MHC tetramer exchange assays, Fudan University
All the pan-cancer shared tumor associated antigen peptides were synthesized according to standard procedure (GenScript Biotech

Corporation) and a peptide-MHC tetramer assay was performed to estimate the affinity between peptide and HLA sites as previously

described.86 Peptides were loaded at 100 mg/mL onto QuickSwitch Quant HLA-A*02:01 tetramers (PE labeled) (TB-7300-K1, MBL

International). We used the HLA-A*02:01 tetramer kits to validate peptide exchange efficiency of all the potential tumor associated

antigen peptides and generate the peptide-specific tetramers by peptide exchange experiments. Each peptide was dissolved in

DMSO to a 10 mM solution to be assayed. Then, we pipetted 50 mL of HLA-A*02:01 tetramer into each well of a U-bottom 96 well

microtiter plate, added 1 mL of Peptide Exchange Factor plus 1 mL of peptide and mixed gently with pipetting. We performed these

steps for each peptide, including the Reference Peptide, and incubated the mixture overnight at room temperature in the dark. The

next day, Magnetic Capture Beads were added to conjugate with the above tetramers according to manufacturer’s instructions,

where a FITC-labeled antibody was applied to the reaction that recognizes the Exiting Peptide. Bymeasuring the percentage of orig-

inal peptide replaced by a competing peptide through flow cytometry, we evaluate the exchange efficiency and determine whether

the resulting tetramer is suitable for following staining.

METHOD DETAILS

Data acquisition
CPTAC data were acquired and processed as described in Li et al.5 Briefly, data were downloaded from the Genomics Data Com-

mons (GDC) and the Proteomics Data Commons (PDC). Data for individual cohorts were processed separately using common

computational pipelines and the same genome assembly and gene annotation (GENCODE V34 basic (CHR)).60 All omics data

weremapped to the same set of primary protein isoforms. RNA and proteomics data were harmonized across cohorts by normalizing

to a common value. For RNA data, the upper quantiles of coding genes were normalized to 1,500 for cross cancer type normalization.

Gene and phosphosite intensities quantified based on global and phosphoproteomics data were normalized across cancer types by

median centering of the medians of reference intensities of each cancer type. Probe-level methylation beta values for CpG islands

1kb upstream of the transcription start site and the 5’ UTR were averaged for each coding gene. The data tables used in this study

were downloaded from LinkedOmicsKB (https://kb.linkedomics.org/ ).6

Drug targets
Drugs and targets were downloaded from DrugBank version 5.1.97 and Guide to Pharmacology version 2022.2.8 Drugs annotated as

‘‘withdrawn’’ in DrugBank were excluded. We selected only the primary human targets of each drug with a known action. Targets

annotated with a mechanism of inducer, activator, agonist, partial agonist, biased agonist, or positive allosteric modulator were

excluded. Drugs were separated into those approved by a regulatory agency and then all others. Targets of approved drugs were

assigned to tier 1 using the DrugBank class level 4 annotation of ‘‘antineoplastic and immunomodulating agents’’. The targets of

all other approved drugs were assigned to tier 2. Drug labels were used to manually assign the targets of approved drugs without

a DrugBank class annotation. All targets of experimental drugs were assigned to tier 3. If targets could be assigned to multiple tiers,

their final classification was selected as the highest tier (1>2>3).

Potentially druggable genes
Potentially druggable genes were downloaded from the Drug Gene Interaction Database version 2022-Feb.9 Genes annotated as

‘‘Druggable Genome’’ with evidence from all three sources87–89 were retained as potentially druggable genes by small molecules

and assigned to tier 4 if they were not already assigned to tiers 1-3.

Membrane proteins
Cell surface proteins were acquired from the in silico surfaceome (Table S3 from11). Table S2. Proteins with the label ‘pos. trainingset’

were selected and assigned to tier 5 if not already assigned to tiers 1-4. These proteins were present in at least two of three datasets:

the Cell Surface Protein Atlas (high confidence), Uniprot ‘‘cell membrane’’ keyword, and high-confidence plasmamembrane proteins

in the COMPARTMENTS database.11

Gene annotation
Functional family annotation was downloaded from Pharos on August 5, 2022.61 oGPCR was classified as ‘‘other’’. Predicted

secreted proteins (human secretome) were downloaded from the Human Protein Atlas.13
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mRNA and protein rank abundance correlation
For genes quantified in at least 50% of the tumor mRNA and tumor protein data within a cohort, the median expression value was

calculated. The median expression across the cohorts was then calculated. Loess smoothing was performed on the median mRNA

abundance vs the median protein abundance for each gene. The minimum point on the curve corresponded to a log2 RSEM of 6,

which was selected as the point of comparison between low mRNA abundance and higher RNA abundance. The median values

for mRNA abundance and protein abundance were compared using Spearman’s correlation.

PepQuery validation of protein identification
Genes with a cross-cohort median tumor RNA log2 RSEM expression < 6 were selected for validation of identification. Genes were

also limited to those identified in at least 3 cohorts to focus on pan-cancer related targets. For each gene, the validation was per-

formed using the PepQuery algorithm90 by querying the gene against the cohort in which the largest number of peptides were iden-

tified for this gene through PepQuery2.12 If a gene failed PepQuery2 validation in that cohort, the gene was also validated in all other

cohorts in which the gene was also identified. The input for the validation for each gene was a list of peptides identified by FragPipe

used in the present study. The protein reference database used in the validation was the GENCODE V34 basic protein database.

Gene-wise mRNA protein correlation
For each cancer cohort, genes with both tumor RNA and tumor protein quantification in at least 50% of the patients were selected.

ThemRNA expression and protein abundance values for each gene were correlated using Spearman’s correlation and p values were

adjusted using the Benjamini-Hochberg method.

Pan-cancer mRNA and protein co-expression for CDK9 and HDAC3
For each cancer cohort, CDK9 and HDAC3 mRNA expression were correlated with the mRNA expression for all other genes using

Spearman’s correlation. Similarly, CDK9 and HDAC3 protein abundance were correlated with the protein abundance for all other

genes using Spearman’s correlation. At least 10 paired values were required for each gene. Meta p values across the 10 cohorts

were calculated using the sumz method in the R package metap (V1.4).68 Individual p values were converted to one-sided p values

and the sign for p values not consistent with the majority were reversed. The meta p value was converted back to two-sided and the

major sign (direction of >50% of the correlations) was added. If the number of positive and negative correlation values were equal,

then the positive sign was selected.

GSEA for CDK9 coexpression
The absolute meta p values calculated in ‘pan-cancer mRNA and protein co-expression’ were -log10 transformed and the major sign

was added. The ranked lists were submitted to WebGestalt69 for GSEA of the Gene Ontology Biological Process terms (redundancy

removed). Default parameters were selected except for the significance level filter of FDR < 0.05.

Activating phosphorylation sites
To identify activating sites on all proteins, regulatory phosphorylation sites downloaded from PhosphoSitePlus (Regulatory sites data-

base from https://www.phosphosite.org/staticDownloads) were filtered for ORGANISM = ‘‘human’’ and ON_FUNCTION = ‘‘induced’’.

For activating sites specifically on kinases, regulatory sites were further filtered to focus on kinases (GENE) with induced enzymatic ac-

tivity (ON_FUNCTION = ‘‘enzymatic activity, induced’’), and manually curated activating sites from the literature were added to this list.

The list for activating sites on kinases was updated with the latest information downloaded from PhosphoSitePlus in March of 2022.

Differential expression analysis for tumor vs normal
Tumor samples and normal samples derived from 8 cancer types (CCRCC, COAD, HNSCC, LSCC, LUAD, OV, PDAC, and UCEC)

for both proteomics and phosphoproteomics were used for differential expression analysis. In order to get highly confident pro-

tein/activating phosphosite candidates, we only kept those proteins and activating phosphosites detected in at least 20 tumor sam-

ples and 10 normal samples. Unpaired Wilcoxon rank-sum test was used for differential expression analysis. For those proteins/

phosphosites with unpairedWilcoxon rank-sum test adjusted p-value lower than or equal to 1%were further classified into up-regu-

lated proteins/phosphosites and down-regulated proteins/phosphosites defined by the unpaired Wilcoxon rank-sum test direction.

Matching cancer cell lineages to cancer types
To match cancer cells to tumor cancer types, the following filters were applied to the DepMap cell line annotation file (sample_

info.csv): BRCA: primary_disease = ‘‘Breast Cancer’’ and lineage = ‘‘breast’’; CCRCC: primary_disease = ‘‘Kidney Cancer’’ and

lineage = ‘‘kidney’’; COAD: primary_disease = ‘‘Colon/Colorectal Cancer’’ and lineage = ‘‘colorectal’’; GBM: primary_disease =

‘‘Brain Cancer’’ and lineage = ‘‘central_nervous_system’’; HNSCC: primary_disease = ‘‘Head and Neck Cancer’’ and lineage =

‘‘upper_aerodigestive’’; LSCC: primary_disease = ‘‘Lung Cancer’’, lineage = ‘‘lung’’, lineage_sub_subtype = ‘‘NSCLC_squamous’’;

LUAD: primary_disease = ‘‘Lung Cancer’’, lineage = ‘‘lung’’, lineage_sub_subtype = ‘‘NSCLC_adenocarcinoma’’, OV: primary_

disease = ‘‘Ovarian Cancer’’, lineage = ‘‘ovary’’; PDAC: primary_disease = ‘‘Pancreatic Cancer’’, lineage = ‘‘pancreas’’; UCEC:

primary_disease = ‘‘Endometrial/Uterine Cancer’’, lineage = ‘‘uterus’’.
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CRISPR gene effect score analysis for upregulated proteins and phosphosites
Gene effect scores derived from CRISPR knockout screens published by Broad’s Achilles and Sanger’s SCORE projects of the 8

cancer types (CCRCC, COAD, HNSCC, LSCC, LUAD, OV, PDAC, and UCEC) were downloaded from DepMap Public 22Q2 (CRISP-

R_gene_effect.csv).18 For each cancer cell lineage, a one-sample, one-tailed T test was used to identify protein/phosphosite

candidates associated with significantly reduced cell growth following gene knockout. For those significantly increased proteins/

phosphosites in tumor vs normal samples, signed adjusted p-value of gene effect score below zero lower than or equal to 1%

were defined as therapeutic target candidates.

Annotation of pan-essential genes
A list of pan-cancer essential genes in cell lines was downloaded from DepMap Public 21Q4 (CRISPR_common_essentials.csv).

These genes are predicted to be common essential genes by using the 90th-percentile method91 or the Adaptive Daisy Model

(ADaM).92

Protein expression driven by mutation
In each cohort, genes mutated in at least 10 samples were selected. To compare RNA and protein abundance between WT and

mutated samples, at least 5 samples each had to have non-missing and non-zero values in that cohort. Expression levels were

compared using Student’s t-test.

Protein expression driven by hypomethylation
In each cohort, hypomethylated genes were identified by comparing methylation values between tumor samples (at least 20 samples

were required to have data) and normal samples (at least 10 samples were required to have data) using the Wilcoxon rank-sum test.

Geneswere required to have a p value < 0.01 and themedianmethylation values of the tumor samples had to be less than themedian

methylation values for the normal samples. Tumor methylation values, RNA expression values, and protein abundance values were

correlated using Spearman’s correlation for genes with non-missing values in at least 50% of the samples.

Protein expression driven by CNV
In each cohort, genes in focally amplified regions were determined using GISTIC270 and a CNV threshold of +/-0.3. Genes in these

regions with a positive q value < 0.01 were considered amplified. The CNV, RNA, and protein levels of each gene were correlated

using Spearman’s correlation for genes with non-missing values in at least 50% of the samples. Genes that had a significantly pos-

itive correlation (Benjamini-Hochberg corrected p value < 0.01) for both CNV to RNA and CNV to protein were considered CNV

drivers.

TP53 mutation effect on protein abundance
In each cohort, samples were separated into thosewith TP53mutations and thosewithout. The log2MS1 intensity protein abundance

for eachmutated sample was compared to themedian log2 MS1 intensity protein abundance of the samples without TP53mutations

in the same cohort. The TP53 protein sequence and domains were created using the ragp71 and protr72 R packages.

Kinase hyperactivation and single sample score calculation
We used Kinase-Substrate Enrichment Analysis (KSEA)80 to identify kinases hyperactivated in tumors compared to normal samples.

KSEA analysis was performed for each cancer type separately using the kinases and substrates annotated in PTMsigDB v1.9.65

Phosphosites were represented as fifteenmers (+/-7 amino acids surrounding the phosphosite) and ranked according to the log2
fold change (median tumor - median normal) in each cohort. At least 10 quantified sites were required for each kinase and p values

were calculated from the z scores in R. Kinases with a positive KSEA z score and a Benjamini-Hochberg adjusted p value < 0.01 were

considered hyperactivated in tumors.

For calculation of single sample scores for Figures 5 and S5, phosphosites were median-centered across a cohort, and KSEA

scores were calculated for each individual sample using the kinase targets included in PTMsigDB v1.9. For this analysis, we required

phosphosites to have at least 30 measurements in any given dataset and measurements for at least five kinase substrates in a given

sample. KSEA normalized scores were calculated using R, implemented as described previously.81

Evaluation of predicted effective targets by target tiers
We performed an analysis by tier to examine the quality and reliability of predicted druggable dependencies. These predicted effec-

tive drug targets were defined by significant overexpression using proteomics data or significant hyperactivation using phosphopro-

teomics data in tumor tissues by cancer type and also by significant dependency by CRISPR KO DepMap data in matched cancer

cell line lineages (Figures 2A and 3A). Drug targets were collapsed to the protein/gene level and the number of identified effective

targets per tier in each cancer type was divided by the number of total quantified corresponding tier targets by proteomics, phos-

phoproteomics, and CRISPR data. This resulting value represents the proportion of predicted druggable targets among all quantified

targetable genes by tier (Figure 4A). Wilcoxon signed rank test was used to test the differences among median proportions of tier 1

targets to other tiers.
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Evaluation of predicted effective targets using PRISM data
Broad’s Profiling Relative Inhibition Simultaneously in Mixtures primary screen (PRISM Repurposing 19Q4 Primary Files) high-

throughput drug response data on the growth-inhibitory activity of 4,518 drugs in 578 human cancer cell lines using a molecular bar-

coding method22 were downloaded from DepMap. The primary screen profiled cell viability after 5 days of 2.5 mM drug treatment.

Responses to drugs were evaluated that matched our curated set of drugs and whose accompanying targets we derived from

the ‘‘drug targets’’ method section above were also quantified by proteomics and phosphoproteomics in tumor and normal tissues

and also measured by CRISPR KO screens in cell lines from DepMap. Responses to each drug were evaluated separately for cancer

cell lines grouped by lineages matching those cancer types for which there was tumor and normal molecular data (CCRCC, COAD,

HNSCC, LSCC, LUAD, OV, PDAC, UCEC) resulting in eight drug-cancer type pairs per drug. Cells for a given drug-cancer type pair

were considered to be sensitive to drug treatment if the average log2 fold change of viability of all cells for a specific lineage after

treatment compared to vehicle control was below -0.3 (one-sample T test, m = -0.3), a cut off defined as effective drug killing in

the PRISMmanuscript.22 For instances where multiple salts of the same drug were tested, we kept the drug salt that wasmost effec-

tive in drug-cancer type pairs, or randomly selected a drug salt in case of a tie. For each unique drug in each of the 8 cancer types, we

predicted a cancer type to have an effective target for a drug if at least one of the drug’s targets was upregulated in tumor vs normal

using proteomics or phosphoproteomics data alone, was a dependency in matched cancer cell line lineages in CRISPR KO data

alone, or both. A proportion z-test was conducted to test if our effective drug target predictions could improve the identification

of successful responses of drug-cancer type pairs in PRISM.

Annotation of tumor suppressor genes
Tumor suppressor geneswere collected from three sources: (1) TheCancer GeneCensus39(downloadedDecember 9, 2021): Filtered

for only Tier 1 genes. (2) Bailey et al.63: Filtered for genes from Table S163 with high confidence oncogene and tumor suppressor gene

calls from 20/20+. (3) Tokheim et al.64: Filtered where all three tools (20/20+, TUSON, and MutsigCV) supported each gene to be an

oncogene or tumor suppressor gene.

Genomic alteration of tumor suppressor genes in CPTAC and TCGA
Mutation and copy number data for CPTAC samples were acquired as described in ‘Data acquisition’ and for TCGA PanCan samples

were downloaded from cBioPortal.58,59 Frequency of loss-of-function mutations (frameshift and nonsense mutations) and deep de-

letions (GISTIC thresholded score = -2) in samples were computed for each tumor suppressor gene from the tumor suppressor gene

list described above by cancer type and cohort. The top tumor suppressor genes whose average alteration frequency across all can-

cer types and cohorts > 3% was used for unsupervised hierarchical clustering.

Impact of genomic loss on mRNA and protein levels
For eachCPTAC cancer cohort, mRNA expression and protein abundance of tumor suppressor gene levels were compared in samples

with genomic loss of the tumor suppressor gene (frameshift/nonsense mutation, deep deletion) vs rest by Wilcoxon rank-sum test.

Cell line data
The following DepMap cell line data (https://depmap.org/portal/) was used: Mutation (CCLE_mutations.csv), copy number (CCLE_

segment_cn.csv), global TMT proteomics,66 CRISPR KO dependency data from combined Broad and Sanger studies (CRISPR_ge-

ne_effect.csv),18 Sanger’sGenomicsofDrugSensitivity inCancer (GDSC) drug responsedata67 andBroad’s ProfilingRelative Inhibition

Simultaneously inMixtures (PRISMRepurposing 19Q4Primary Files) drug responsedata.22Copynumber segment datawasprocessed

using GISTIC2 with GENCODEV34 basic reference database and same parameters used for the harmonized CPTAC data: (-genegistic

1 -smallmem 0 -rx 0 -broad 1 -brlen 0.7 -conf 0.99 -armpeel 1 -savegene 1 -v 30 -maxseg 46000 -ta 0.3 -td 0.3 -cap 1.5 -js 4). GISTIC

thresholded values of -2 for genes were considered as harboring a deep deletion for that gene.

Protein/phosphosite/kinase activity dependencies for TSG
Paired relationships between genomic loss of tumor suppressor genes with protein abundance, phosphosite abundance, and in-

ferred kinase activity scores were first examined in tumors. For each cancer type, Wilcoxon rank-sum test was used to compare pro-

tein/phosphosite/kinase activity scores in samples with genomic loss of tumor suppressor gene loss vs rest. Signed -log10
p-values > 0 were used for plotting with values > 0 indicating upregulation of protein/phosphosite/kinase activity in samples with

genomic loss of the tumor suppressor gene. Each pair was also evaluated usingCRISPR-Cas9 screen data fromDepMap inmatched

cancer lineages to test if cell lines that harbor tumor suppressor gene loss (frameshift/nonsense mutation, deep deletion) were more

dependent on the host protein gene vs lines without those aberrations byWilcoxon rank-sum test. Signed -log10 values < 0were used

for plotting with values < 0 indicating greater loss in fitnesswhen host gene is KO byCRISPR in cells with tumor suppressor gene loss.

Drug response analysis in cell lines
Area under the curve (AUC) responses (lower values indicate higher drug sensitivity) for doxorubicin (GDSC1 dataset) and mitoxan-

trone (PRISM dataset) from DepMap was compared in UCEC cell lines with genomic loss of TP53 vs those without using Wilcoxon

rank-sum test.
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Neoantigen prediction
Neoantigen analysis was performed using an improved version of NeoFlow.37 Specifically, Optitype74 was used to find human leuko-

cyte antigens (HLA) in the DNA-Seq data. Then we used netMHCpan 4.075 to predict HLA peptide binding affinity for somatic mu-

tation-derived variant peptides with a length between 8-11 amino acids. The IC50 binding affinity cutoff was set to 500 nM. HLA pep-

tides with binding affinity higher than 500 nM were removed. Variant identification was also performed at protein level using MS/MS

data. To identify variant peptides, we used a customized protein sequence database approach.76 We derived customized protein

sequence databases from matched DNA and RNA sequencing data and then performed database searching using the customized

databases for individual TMT or iTRAQ experiments. We built a customized database for each TMT or iTRAQ experiment based on

mutations identified from whole exome sequencing data and fusions from RNASeq data, downloaded from https://proteomic.

datacommons.cancer.gov/pdc/cptac-pancancer. We used Customprodbj (https://github.com/bzhanglab/customprodbj) for

customized database construction. MS-GF+ was used for variant peptide identification for all global proteome and phosphorylation

data. Results from MS-GF+ were filtered with 1% FDR at the PSM level. Remaining variant peptides were further filtered using

PepQuery with the p-value cutoff % 0.01. The spectra of variant peptides were annotated using PDV (https://github.com/

wenbostar/PDV).77

Tumor associated antigen identification
AD test was used for differential expression analysis and only those proteins with adjusted p-value lower than 1% were kept. We

downloaded RNA-Seq data from GTEx for all 54 normal tissues and a hierarchical Bayesian mixture model, ZigZag,79 was used

to infer the gene expression states for each tissue. Expressed proteins were defined as the active probability calculated by

ZigZag larger than 0.5 and the remaining proteins were defined as not-expressed proteins. Not-expressed proteins among all the

normal tissues except testis were defined as dormant proteins. Dormant proteins were further filtered by HLA-I peptides in non-

cancerous samples in caAtlas35 and we manually checked both the RNA-Seq and proteomics expression levels of the remaining

dormant proteins.We removed geneswith obviousmRNA expression in non-testis tissues or lowmRNA or protein expression across

8 cancer types, resulting in a list of 9 tumor-associated antigens. PepQuery was used to reduce the chance of false positives and 7

tumor-associated antigens were identified.

Visualization
The Venn diagram for drug targets was created using InteractiVenn78 and further formatted in Adobe Illustrator. Heatmaps were

created using ComplexHeatmap.73 Cytoscape version 3.10.082 was used to create the kinase and phosphosite substrate network.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using R unless explained otherwise. Details can be found in Results and figure legends. P-values

were adjusted by the Benjamini-Hochberg procedure.
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Supplemental figures

Figure S1. mRNA and protein correlation, related to Figure 1

(A)Median RNA abundance andmedian protein abundance for all genes. Drug targets are colored according to tier. Loess smoothing curve is shown, and dashed

lines indicate the minimum point on the curve. Spearman’s correlation coefficients between mRNA and protein abundance are displayed for all genes and

calculated separately for median RNA abundance less than or greater than 6.

(B) Distributions of gene-wise Spearman’s correlations of mRNA and protein expression for all genes in different cancer cohorts.

(C) Median gene-wise Spearman’s correlation coefficients for all genes in each cohort, genes in each tier, and genes not in any tier (‘‘other’’). Medians are

compared between the tiers and other genes using a paired t test.

(D) Spearman’s correlation between CDK9 and CCNT1 protein abundance and mRNA abundance.

(E) Spearman’s correlation between HDAC3 and GPS2 protein abundance and mRNA abundance. *p < 0.05.
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Figure S2. Effect of TP53 mutations on protein abundance, related to Figure 2

(A) TP53 protein abundance in the mutated sample compared with the median WT protein abundance for the same cancer cohort. The x axis indicates the first

location within the protein sequence of the mutation. AD, activation domain; TD, tetramerization domain.

(B) TP53 protein abundance in the mutated sample compared with the median WT protein abundance for the same cancer cohort for each mutation type.

ll
OPEN ACCESS Resource



Figure S3. Increased kinase activity in tumors, related to Figure 3

(A) Comparison of CCNB1, CCNE1, and DBF4 RNA expression in tumor vs. normal samples, using the Wilcoxon rank-sum test. *p < 0.05.

(B) Spearman’s correlation between CDK1, CDK2, and CDC7 kinase activity scores and the RNA and protein abundance of their corresponding regulatory

proteins in tumors. *p < 0.05.

(C) Network of kinases with increased activity in tumors and phosphorylation site substrates with increased abundance. Large colored circles indicate increased

kinase activity in the corresponding cancer cohort. Edges connect kinases to phosphorylation site substrates that are increased in tumor samples in at least one

cohort, and substrates are colored by tier of the host protein. Gray nodes indicate substrates increased in at least one cohort but without a druggable annotation.
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Figure S4. Evaluation and validation of prioritized drug targets, related to Figure 4

(A–C) Confusion matrices for assessing prediction performance of drug-cancer-type pairs, using CRISPR KO data (A), tumor vs. normal (TvN) data (B), or the

combination (C) to predict effective drug targets in cell lines with actual drug responses observed in the PRISM primary screen. 1 indicates sensitivity in drug-

cancer-type pairs in PRISM or predicted effective target of a drug for drug-cancer-type pairs, 0 otherwise.

(D and E) Drug response from PRISM and predicted effectiveness for HDAC1 (D) and PARP1/2 (E).

(F and G) Drug response from PRISM and GDSC, along with predicted effectiveness for PRKCB (F) and MAP2K1/2 (G).

(H and I) Violin plots comparing target protein abundance in tumor vs. normal (top panels, p values derived from Wilcoxon rank-sum test), target dependency

scores in cell lines (middle panels, p values derived from one-sample t test), and cell line responses to drugs against the target (bottom panels, p values derived

from one-sample t test) for a tier 2 target SQLE (H) and a tier 3 target HSP90AA1 (I).

(J and K) Experimental validation of PRISM response to a pan-cancer tier 3 drug target, HSP90AA1, using tanespimycin (J) and alvespimycin (K) after 48-h

treatment. Plots show mean viability from 3 to 4 independent experiments ± SEM relative to vehicle control, and legends below show mean IC50.

(L) Plot depicts mean tumor volumes ± SD from HT29 colon cancer cell line xenografts treated with vehicle control or alvespimycin (n = 9 mice per group). Tx

indicates treatment initiation. p value derived from t test.

(M) Plot depicts mean body weight ± SD of HT29 xenograft mice (n = 9 mice per group).

(N) Western blots showing protein levels for PAK2, CAD, and ITGB5 in control and shRNA knockdown colon cancer (LOVO and HT29) and pancreatic cancer

(BXPC3) cell lines.
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Figure S5. Tumor suppressor gene-associated dependencies, related to Figure 5

(A) Workflow of our proteogenomic approach that integrates proteomic data from tumor specimens and genetic screen data from cancer cell lines to identify

TSG-associated dependencies.

(B) Plot showing statistics of tumor suppressor gene-protein pairs from tumor and cell line analyses. The x axis represents signed –log10 p value from Wilcoxon

rank-sum test, comparing protein expression in tumors with genomic alteration of the tumor suppressor gene partner vs. rest by cancer type. The y axis rep-

resents signed –log10 p value from Wilcoxon rank-sum test, comparing CRISPR dependency scores of cell lines with a loss-of-function mutation vs. rest in a

matched cancer lineage.

(C) Plot showing statistics of tumor suppressor gene-phosphosite pairs from tumor and cell line analyses. Axes similar to (B), except phosphosite data were used

for x axis calculations.

(D) Plot showing statistics of tumor suppressor gene-kinase activity pairs from tumor and cell line analyses. Axes similar to (B), except kinase activity data were

used for x axis calculations.
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