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A B S T R A C T   

Enzymes play a pivotal role in various industries by enabling efficient, eco-friendly, and sustainable chemical 
processes. However, the low turnover rates and poor substrate selectivity of enzymes limit their large-scale 
applications. Rational computational enzyme design, facilitated by computational algorithms, offers a more 
targeted and less labor-intensive approach. There has been notable advancement in employing rational 
computational protein engineering strategies to overcome these issues, it has not been comprehensively reviewed 
so far. This article reviews recent developments in rational computational enzyme design, categorizing them into 
three types: structure-based, sequence-based, and data-driven machine learning computational design. Case 
studies are presented to demonstrate successful enhancements in catalytic activity, stability, and substrate 
selectivity. Lastly, the article provides a thorough analysis of these approaches, highlights existing challenges and 
potential solutions, and offers insights into future development directions.   

1. Introduction 

Remarkably efficient metabolic enzymes play a pivotal role in con
verting readily available, simple starting materials into valuable prod
ucts within microbial cells. Furthermore, these enzymes facilitate a 
diverse array of chemical reactions, typically operating under mild re
action conditions and exhibiting high selectivity (Hollmann and 
Fernandez-Lafuente, 2021). These advantages have led to the incorpo
ration of enzymes in various industries, including food (Flynn et al., 
2021; Lin et al., 2022; Punia, 2020; Rentschler et al., 2015; van Don
kelaar et al., 2016; Xu et al., 2020), agricultural (Costa-Silva et al., 2021; 
Sijinamanoj et al., 2021; Tingley et al., 2021), cosmetics (Almeida et al., 
2021; Fournière et al., 2021) and pharmaceuticals (Meghwanshi et al., 
2020; Park et al., 2017; Rosenthal and Lütz, 2018). Regrettably, en
zymes come with certain drawbacks such as low turnover rates, limited 
stability and a narrow substrate scope. Consequently, there is a necessity 
for enzyme engineering to tailor them for diverse industrial applications 
(Li et al., 2018b). 

Utilizing both directed evolution and semi-rational approaches, 
enzyme engineering involves iterative steps and mutation libraries, with 
the process repeated until the desired variant is obtained (Dinmu
khamed et al., 2021; Gargiulo and Soumillion, 2021). However, the 

unknown structure-function relationship introduces uncertainty in 
discovering desired protein variants through a few rounds of iterative 
mutagenesis. It’s more likely that the researchers may never come across 
it even with a comprehensive library, leading them to rely on insights 
from rational design and evolutionary analysis (Blazeck et al., 2022). In 
contrast, rational enzyme design stands out for its ability to provide 
higher predictive accuracy and streamline the screening library (Jumper 
et al., 2021; Kuhlman and Bradley, 2019). Proposed mutations are 
introduced after evaluation and design, increasing the likelihood of 
beneficial mutations while saving time and labor. When high- 
throughput screening is not feasible, this approach stands out as 
particularly useful (Cui et al., 2022; Steiner and Schwab, 2012). 

Based on the design principles, rational computational enzyme 
design is divided into three classes, structure-based computational 
design, sequence-based computational design, and data-driven machine 
learning computational design. Here, we assess the recent advancements 
in rational computational enzyme design, emphasizing the effectiveness 
and versatility of different approaches in enhancing catalytic activity, 
stability and substrate selectivity (Table 1). Successful cases are cited to 
illustrate these improvements. Lastly, the article provides a thorough 
analysis of these approaches, highlights existing challenges and poten
tial solutions, and offers insights into future development directions. 
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2. Structure-based computational enzyme engineering and 
design 

Structure-based design necessitates the identification of critical res
idues within the substrate binding pocket, understanding the enzyme- 
catalyzed reaction’s chemical mechanism and the key amino acid resi
dues involved. This is achieved through chemical intuition and 
computational methods to precisely tailor the interplay between key 
amino acid residues and the substrate in the active pocket, potentially 
enabling de novo computational enzyme design. Although traditional 

methods including cryo-electron microscopy or X-ray diffraction have 
significantly advanced in obtaining enzyme crystal structures, with 
170,000 structures available out of 190 million proteins with known 
amino acid sequences, the process remains time-consuming and costly 
(Consortium, 2020) (Burley et al., 2020). To overcome these limitations, 
AlphaFold2 and RoseTTAfold employing machine learning algorithms 
to accurately predict protein structures using extensive protein infor
mation data (Baek et al., 2021; Jumper et al., 2021). AlphaFold2, in 
particular, has demonstrated high accuracy comparable to experimental 
results, exhibiting a root-mean-squared deviation (RMSD) of about 1.5 Å 

Table 1 
Examples of strategies for enzyme engineering via rational computational design.  

Type Enzyme/Recation Effect/Strategy Targeted Property Reference 

Structure- 
based 

Phosphoserine aminotransferase Calculation of relative binding free energy Substrate 
specificity 

(Zhang et al., 2019) 

Structure- 
based Ferulic acid decarboxylase Calculation of affinity between enzymes and substrates Activity (Mori et al., 2021) 

Structure- 
based Fatty acid photodecarboxylase Modulating the steric hindrance of the binding pocket 

Activity and 
selectivity (Xu et al., 2022) 

Structure- 
based 

Fatty acid photodecarboxylase Enhancing the electronic interaction between enzymes 
and substrates 

Selectivity (Li et al., 2021a) 

Structure- 
based 

4-hydroxyphenylpyruvate dioxygenase Manipulating the hydrogen bond network Product profile (Lin et al., 2021) 

Structure- 
based Santalene synthase Reducing the steric hindrance to increase pocket space Product profile (Zha et al., 2022) 

Structure- 
based The short-chain dehydrogenase/reductase Tuning the size of the active pockets Selectivity (Su et al., 2020) 

Structure- 
based 

Amidase Modifying electrostatic interactions Activity and 
stability 

(Galmés et al., 2022) 

Structure- 
based 

Formolase Redesign of the binding pocket Activity and 
specificity 

(Siegel et al., 2015) 

Structure- 
based Limonene epoxide hydrolase Redesign of the binding pocket Selectivity (Wijma et al., 2015) 

Structure- 
based 

C-N lyases Redesign of the binding pocket 
Activity and 
selectivity 

(Cui et al., 2021) 

Structure- 
based 

Lipase Design disulfide bonds Stability (Li et al., 2018a) 

Structure- 
based 

Glucuronidase Truncating C-terminal region Stability (Han et al., 2018) 

Structure- 
based ω-transaminase 

Calculating folding energy to identify stable point 
mutations Stability (Meng et al., 2020) 

Structure- 
based 

Diels-Alder De novo design of enzyme by “inside-out” New enzyme (Siegel et al., 2010) 

Structure- 
based 

Kemp elimination De novo design of enzyme by “inside-out” New enzyme (Röthlisberger et al., 2008) 

Structure- 
based Retro-Aldol De novo design of enzyme by “inside-out” New enzyme (Jiang et al., 2008) 

Structure- 
based Ester hydrolysis De novo design of enzyme by “inside-out” New enzyme (Richter et al., 2012) 

Structure- 
based 

Morita-Baylis-Hillman De novo design of enzyme by “inside-out” New enzyme (Bjelic et al., 2013) 

Sequence- 
based 

Glycosyltransferases Consensus design Substrate 
specificity 

(Teze et al., 2021) 

Sequence- 
based Triosephosphate isomerase Consensus design Stability (Sullivan et al., 2012) 

Sequence- 
based Glucose-1-dehydrogenase Consensus design Stability 

(Vázquez-Figueroa et al., 
2007) 

Sequence- 
based 

Haloalkane dehalogenase Ancestral sequence reconstruction Stability (Babkova et al., 2020) 

Sequence- 
based 

Cyclohexadienyl dehydratase Ancestral sequence reconstruction Activity (Kaczmarski et al., 2020) 

Sequence- 
based β-lactamase/Kemp elimination Ancestral sequence reconstruction New enzyme (Risso et al., 2017) 

Data-driven Halohydrin dehalogenase Protein sequence activity relationships Activity (Fox et al., 2007) 

Data-driven Proteinase K Linear regression algorithm 
Activity and 
stability 

(Liao et al., 2007) 

Data-driven Epoxide hydrolase Support vector regression Selectivity (Zaugg et al., 2017) 
Data-driven Limonene epoxide hydrolase Innovative sequence-activity relationship Stability (Li et al., 2021b) 
Data-driven Chorismate mutase Evolution-based statistical approach Activity (Russ et al., 2020) 

Data-driven PET hydrolase 
Three-dimensional self-supervised convolutional neural 
network 

Activity and 
stability (Lu et al., 2022) 

Data-driven 
Carbonic anhydrase II and Δ5–3-ketosteroid 
isomerase Constrained hallucination and inpainting New enzyme (Wang et al., 2022) 

Data-driven Luciferase Family-wide hallucination New enzyme (Yeh et al., 2023)  
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for backbone atoms, meeting the requirements for analyzing catalytic 
mechanisms and facilitating rational enzyme design (AlQuraishi, 2021). 
Structure-based rational computational design can be further classified 
into two subclasses based on whether it involves the computational 
redesign of existing enzymes or creating new enzymes with novel 
functions (Dinmukhamed et al., 2021). 

2.1. Computational engineering of existing enzymes 

In 1993, Arnold introduced the concept of directed evolution for 
enzymes, promoting the idea of restructuring the structure and function 
of natural enzymes through the random replacement of amino acid 
residues (Chen and Arnold, 1993). Presently, computational strategies 
based on virtual screening have emerged as effective means to obtain 
target mutants. For instance, Zhang et al. utilized both molecular dy
namics (MD) simulations and binding free energy calculation in their 
investigation, building upon the structure and function of phosphoserine 
aminotransferase (SerC). They incorporated site-directed engineering 
strategy for virtual screening. Finally, the mutant SerC R42W:R77W 
exhibiting a minimum ΔΔG (ΔΔGbinding = ΔGbinding(mutant) − ΔGbinding 

(wild type)) of − 0.6 kcal/mol, was experimentally obtained. L-phospho
serine was replaced by L-homoserine as the preferred substrate for SerC, 
representing a 4.2-fold increase in activity compared to the wildtype 
enzyme (Zhang et al., 2019). Similarly, Mori et al. applied a comparable 
strategy to tailor ferulic acid decarboxylase (FDC), targeting the un
natural substrate cis,cis-muconic acid (ccMA) to efficiently produce 1,3- 
butadiene. The best mutant, AnFDC Y394H:T395Q, displayed a 
remarkable 1002-fold increase in 1,3-butadiene titer (Mori et al., 2021). 
Recently, focused rational iterative site-specific mutagenesis (FRISM) 
was developed, drawing inspiration from the iterative saturation 
mutagenesis and the combined-active site saturation test. Differing from 
previous methods, the FRISM introduces only 3–5 amino acids in the 
hotspots, each with notable characteristics, including distinct steric, 
electrical, hydrophilic, and hydrophobic properties. This approach 
eliminates the need for saturation mutagenesis libraries and large-scale 
screening, thereby reducing computational resources and time while 
ensuring positive results (Li et al., 2021a; Li et al., 2021c). In line with 
the FRISM strategy, Xu et al. achieved mutants of fatty acid photo
decarboxylase (CvFAP) capable of efficiently converting fatty acids with 
diverse chain lengths into corresponding hydrocarbons (Xu et al., 2022). 
Taking into account steric hindrance, they substituted ten amino acids in 
hotspots with A/L/F/Y to adjust the steric hindrance of the substrate 
binding pocket. This led to CvFAP mutants (CvFAP I398L and CvFAP 
P460A/G462A) exhibiting a substantial 29 to 552 times increase in 
enzyme activity (kcat/Km) for decarboxylation of short- and medium- 
fatty acids (C3-C14). The FRISM strategy also demonstrated effective
ness in designing the stereoselectivity of the enzyme. Li et al. applied 
rational design using FRISM to stabilize elaidic acid binding in CvFAP by 
introducing p-π interactions with the substrate’s double bond. The 
V453E mutant exhibited a remarkable 1000 times enhancement in 
trans-over-cis selectivity than the natural enzyme (Li et al., 2021a). 
Additionally, several high-throughput computational enzyme engi
neering approaches have been reported. CADEE (computer-aided 
directed evolution of enzymes) employs in silico enzyme directed evo
lution to reduce the need for extensive screening and enhance the effi
ciency of identifying desired mutants (Amrein et al., 2017). EnzyHTP 
software is able to automatically handle the simulation flow, covering 
tasks such as structural model construction, MD simulation, quantum 
mechanics (QM)/molecular mechanics (MM) calculation, and modeling 
data analysis. This automation streamlines the identification of suc
cessful enzyme mutants in a high-throughput manner (Shao et al., 2022, 
2023; Yang et al., 2023). 

The rational design methods discussed above, relies on the idea of 
directed evolution, often require virtual iterative mutation of hot spots. 
In contrast, it is more resource-efficient to directly modify the local 
chemical micro-environment, involving factors such as the hydrogen 

bond network, steric hindrance of amino acid residues, electrostatic 
interactions, etc., which significantly impact enzyme performance 
(Fig. 1). Effective hydrogen bonding within the active site and protein 
structure plays a vital role in stabilizing enzyme-substrate complexes, 
transition states, and protein folding processes. Bulky groups such as 
large amino acid side chains can obstruct or restrict access to the en
zyme’s active site, impacting substrate binding and catalytic activity. 
Additionally, electrostatic interactions involving charged residues and 
substrates can enhance catalysis by stabilizing charged transition states 
or forming specific binding interactions. Lin and coworkers employed 4- 
hydroxyphenylpyruvate dioxygenase (HPPD) as an example, manipu
lated its hydrogen bond network in the amide-rich zone, resulting in 
100% conversion of the substrate to the desired intermediate 4-hydrox
yphenylacetic acid (HPA)(Lin et al., 2021). In addition, the size of the 
active pocket can influence substrate conversion, particularly when 
amino acid residues with steric effects in the active center may impede 
the movement of the substrate to the reactive position. For example, the 
catalytic mechanism of santalene synthases was explored through mul
tiscale simulations. The results shown that the restricted space within 
the active pocket of the enzyme SanSyn, caused by the key residue F441, 
specifically led to the specific production of the α-santalene. To enhance 
the active pocket space, mutant F441V was created, resulting in 
increased conformational change of the reaction intermediate and the 
generation of both α-and β-santalene (Zha et al., 2022). Unlike the 
previously mentioned FRISM method, this approach provides a more 
targeted and efficient strategy by directly identifying the crucial amino 
acid. This reduces the need for extensive screening and experimental 
validation. Moreover, Su et al. introduced a strategy for enzyme redesign 
towards unnatural substrates, identifying key residues with distinct 
conformations through restricted MD simulations. This approach was 
employed to construct a dehydrogenase/reductase variant, showcasing 
apparent conformational differences in simulations upon modifying the 
substrate-binding pocket. The relative sizes of the C1 and C2 pockets 
were tuned to enhance stereoselectivity, resulting in mutants with effi
cient asymmetric reduction of various substrates (Su et al., 2020). In 
addition, modifying the electrostatic potential or electric field applied 
by the enzyme to essential atoms of the substrate plays an important role 
in catalytic activity. This impact occurs through various mechanisms 
such as stabilizing the transition state of the reaction, altering the acti
vation energy required for the transition state, promoting or preventing 
proton transfers during catalysis and changing the flexibility and dy
namics of the enzyme’s active site (Warshel et al., 2006). A quantum 
QM/MM dynamics strategy was used to redesign a promiscuous esterase 
Bs2 from Bacillus subtilis, aiming to improve its amidase activity. They 
transferred a spatially relevant aspartate residue from Candida antarctica 
lipase B (CALB) to Bs2, improving the electrostatics of transition state 
formation. This mutation exhibited a 1.3-fold improvement in catalytic 
efficiency (Galmés et al., 2022). Furthermore, integrating electric field 
optimization into enzyme engineering processes can yield substantial 
catalytic enhancements. An electric field optimization scheme was 
developed to improve the activity of a synthetic Kemp elimination 
enzyme KE15. By systematically considering the impact of strategic 
mutations on the local electric field along the reaction axis, researchers 
created a new Kemp eliminase with a nearly 50-fold increase in the kcat 
value (Bhowmick et al., 2016; Vaissier et al., 2018). Except the electric 
field, substrate positioning dynamics (SPD) also serves as a significant 
factor for enzyme catalysis via aligning the substrate in a reactive 
conformation. The noteworthy contribution of the non-electrostatic 
component of SPD to regulating enzyme kinetics was recently vali
dated by employing Kemp eliminase as an illustrative example. A distal 
mutant R154W created by high-throughput enzyme modeling, displayed 
favorable SPD. This led to an increased proportion of reactive confor
mations and consequently yielded the lowest activation free energy 
(Jiang et al., 2023). 

The computational engineering of natural proteins with new func
tions holds the potential to revolutionize sustainable biological 
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manufacturing. However, the strategies mentioned earlier are mainly 
utilized to boost or control the selectivity or activity of enzymatic re
actions, proving less effective for engineered enzymes with aspirations 
to introduce entirely new functions. This limitation stems from the dif
ficulty in transitioning the sequence space of the active site to entirely 
new protein fitness landscapes (Cui et al., 2022). Nonetheless, Rosetta 
redesign, which considers amino acid mechanical constraints to rede
sign suitable active pockets, has shown promise in creating efficient 
mutants with novel functions (Zanghellini et al., 2006). Rosetta redesign 
was first applied in the re-computational engineering of the benzalde
hyde binding pocket of formolase (FLS) to enhance the catalytic effi
ciency for formaldehyde and the formose reaction. Following four cycles 
of computational design and subsequent experimental assessment, one 
of the 121 designed mutants, called Des1, exhibited a 26-fold increase in 
catalytic activity than the wildtype (Siegel et al., 2015). Despite these 
promising results, Rosetta redesign faces challenges that need to be 
addressed. First, the challenges associated with Rosetta’s computational 
enzyme design include its random and often insufficient sampling of 
enzyme reaction conformations (Osuna, 2021; Tyka et al., 2012; Tyka 
et al., 2011; Wijma and Janssen, 2013). Additionally, the scoring func
tion used by Rosetta compromises calculation accuracy to enhance 
speed, a trade-off coupled with limitations in calculation time and 
starting models (Bender et al., 2016). Therefore, the energy function 
cannot accurately describe the relevant biological state of the enzyme- 
catalyzed reaction. To address this, the Rosetta redesign strategy has 
integrated multi-state conformation design and high-throughput paral
lel MD simulations to enlarge the sample pool (Löffler et al., 2017). The 
second computational enzyme design challenge pertains to arranging 
catalytic residues optimally, especially in the near attack conformation 
(NAC), which is disrupted during dynamic catalytic processes (Ruscio 
et al., 2009). By relying on the NAC strategy, the catalytic selectivity by 
computational design (CASCO) framework addresses this challenge 
through the design of substrate binding sites in a predetermined orien
tation. This process includes generating steric hindrance to inhibit un
desired substrate binding modes, and the subsequent ranking of results 
is carried out through high-throughput MD simulations. The application 
of this strategy resulted in the successful acquisition of a highly ster
eoselective limonene epoxide hydrolase, achieved with relatively min
imal experimental work (Wijma et al., 2015). Recently, Wu et al. 
redesigned an aspartase AspB to enable the cross-addition of a diverse of 
nucleophilic amines to unsaturated acids. This process starting by 
docking ligands with the protein crystal structure through QM/MM 

calculations. Subsequently, different docking results were simulated 
using MD simulations. The outcomes of the MD simulations were then 
utilized in the Rosetta enzyme design. The mutants produced in this 
process were sorted according to NAC frequency, penalty scores of 
constraints and total energy scores. Mutants ranked highest were chosen 
for experimental validation (Fig. 2). Finally, they achieved C–N lyases 
that exhibit cross-compatibility for unnatural nucleophiles and electro
philes, demonstrating the ability to produce diverse non-canonical 
amino acids with outstanding catalytic efficiency, regioselectivity, and 
enantioselectivity (Cui et al., 2021). 

Except for enzyme activity, the enzyme stability that can maintain its 
functionality and structural integrity across diverse and challenging 
conditions is also paramount for ensuring its sustained effectiveness in 
industrial applications. To improve the thermostability of designed en
zymes, manipulation of the electric charge distribution on the enzyme 
surface (Wang et al., 2020), disulfide bonds (Yang et al., 2019), rational 
truncation (Reich et al., 2014) and flexible loop replacement 
(Damnjanović et al., 2014) are the most commonly used strategies. 
These strategies are primarily employed to decrease the entropy of 
unfolded proteins and improve the stability of protein conformation 
(Dagan et al., 2013; Kumar et al., 2004; Vieille and Zeikus, 1996). By 
analyzing the three-dimensional structure of Rhizomucor miehei lipase 
(RML), predictions for enhanced thermostability in RML variants can be 
made using tools such as Rosetta ddg_monomer, FoldX, and I-Mutant. 
Rosetta ddg_monomer utilizes energy-based calculations to predict 
mutation-induced changes in free energy, offering detailed physics- 
based modeling albeit requiring more expertise. FoldX employs an 
empirical force field to estimate protein stability changes, striking a 
balance between accuracy and user-friendliness. I-Mutant specializes in 
predicting mutations’ effects on protein stability, particularly concern
ing protein unfolding and thermostability. If enhancing enzyme thermal 
stability is the goal, I-Mutant is a focused option to consider. However, 
for broader considerations such as structural or functional changes, or 
for more intricate physics-based modeling, Rosetta or FoldX may be 
more suitable choices. Additionally, Disulfide by Design 2 (DbD2), 
SSBOND, MODIP, and BridgeD were employed to identify potential di
sulfide regions and residues capable of forming disulfide bonds. DbD2 
primarily serves protein design and engineering needs by optimizing 
both stability and function. SSBOND predicts and analyzes disulfide 
bonds crucial for stability and structure. MODIP focuses on protein- 
protein interactions and their impact on stability and function, while 
BridgeD identifies and analyzes bridging water molecules affecting 

Fig. 1. Flowchart depicting the systematic process for enzyme redesign based on protein structure. Initially, protein crystal structures are acquired using experi
mental techniques, homologous modeling, or machine learning methodologies. Subsequently, the structural analysis is conducted to scrutinize the substrate-enzyme 
interaction by employing molecular docking, molecular dynamics (MD) simulations, and quantum mechanics (QM) calculations. This comprehensive examination 
aims to pinpoint key hot spot residues crucial for enzyme function. Finally, the target enzyme is achieved by strategically designing and incorporating modifications 
to the identified hot spot residues. 
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stability and dynamics. DbD2 and SSBOND target specific aspects like 
mutations or disulfide bonds, while MODIP and BridgeD offer broader 
insights into interactions and hydration. The most stable mutant iden
tified in the study exhibited a remarkable 12.5 times enhancement in 
half-life at 70 ◦C, indicating a substantial enhancement in the thermal 
stability of RML (Li et al., 2018a). Truncation and replacement of flex
ible loops have proven to be effective strategies for significantly 
improving enzyme stability. However, identifying the specific loops that 
impact enzyme stability remains challenging, primarily because of the 
significant rearrangement of the tertiary structure. This complexity 
makes it difficult to pinpoint the exact loops that contribute to or in
fluence the stability of the enzyme (Nagi and Regan, 1997; Yu et al., 
2017). Han et al. employed computational-aided design method to 
examine the influence of the C-terminus on the functionality of GH2 
fungal glucuronidase. Through structural analysis, they determined that 
the C-terminus of the enzyme was redundant for maintaining normal 
function. The C-terminus deletion induced an optimal conformation in 
the active site pocket, facilitating substrate binding and catalysis. 
Modifying the length of the C-terminal through truncation resulted in a 
PGUS D591:604 mutant that exhibited 3.8 times improvement in half- 
life at 65 ◦C, 2.4 times increase in enzyme activity, and 1.8 times in
crease in expression level. These enhancements signify significant im
provements in both kinetic and thermodynamic stability of the enzyme 
(Han et al., 2018). Wijma and coworkers established a computational 
libraries framework, FRESCO, for rapid enzyme stabilization. This 
approach involves initially computing a large number of folding en
ergies (ΔΔGfold = ΔGfold(mutant)-ΔGfold(wild type)) to identify potential 
stable point mutations. Subsequently, high-throughput MD simulations 
and visual inspection was utilized to screen all potential point muta
tions. Finally, experimental validation is conducted by combining the 
identified mutations to significantly enhance the enzyme thermal sta
bility. While computational design methods excel at precise mutation 
and structural modifications for targeted engineering purposes, FRESCO 
can utilize available data to inform design decisions, especially when 
detailed sequence and structural information are accessible. Successful 
applications of FRESCO in enzyme stability engineering have been 
demonstrated across various enzymes (Bu et al., 2018; Floor et al., 2014; 
Fürst et al., 2019; Meng et al., 2020; Wu et al., 2016). Especially, 
FRESCO was used to improve the thermostability of a homodimeric 
pyridoxal-5-phosphate (PLP) ω-transaminase. Numerous surface point 

mutations were predicted by the computational tool. The beneficial 
mutations, which included P9A, E38Q, A60V, S87D/N, M128F, and 
I154V, resulted in improved thermostability, co-solvent resistance, iso
propylamine compatibility, catalytic activity and the complete retention 
of enantioselectivity. These improvements were attributed to introduc
tion of salt-bridge interactions or extra hydrogen bonding, increase of 
hydrophobic interactions, imposition of π-stacking, reduction of hy
drophobic surface exposure, altering electrostatic surface charge distri
bution and the alleviation of steric strain (Meng et al., 2020). 

2.2. Computational design of new enzymes with novel function 

The redesign of enzymes relies on modifications to engineer existing 
enzymes that have functions similar to the target function or have the 
appropriate geometry and sufficient stability to tolerate variants needed 
for incorporating the target functions. However, natural enzymes 
contain a limited number and type of chemical reactions, which limits 
the potential of these enzymes to be used by the industry. Creating novel 
enzymes to catalyze non-natural reactions is a promising solution, which 
allows for breaking out from the locally optimal configurations found in 
natural protein sequences, installing amino acids in protein scaffolds 
with non-classical biological functions to enable new chemical reactions 
(Lu et al., 2009; Nanda and Koder, 2010). 

The creating novel functional proteins with the ability to catalyze 
unnatural reactions is still in its early stages. Notable advancements 
were made by Houk and Baker in their cooperative effort to develop an 
“inside-out” protocol, which involves dividing the enzyme into two 
distinct components: a catalytic part and a scaffold part. The protocol 
then separately calculates and designs these two parts, following a series 
of general steps:1) utilizing QM, an ideal transition state, known as 
theozyme, is generated within the active site. This theozyme represents 
the most stable configuration during the enzymatic reaction; 2) the 
generated transition state is transplanted onto the protein scaffold; 3) 
The design and optimization of the amino acid residues around the 
theozyme aim to guarantee favorable stacking and stability in folding 
(Kiss et al., 2013). Building upon this foundation, electronic and geo
metric properties of the transition state are incorporated to generate 
enzymes with novel catalytic functions. The earliest algorithms for 
grafting theozyme onto protein scaffolds primarily include Rosetta
Match and SABER (Fig. 3). The RosettaMatch algorithm is designed to 

Fig. 2. Schematic representation of the enzyme redesign process employing Rosetta redesign methodology.  
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identify backbone positions on a given protein scaffold and graft 
essential catalytic residues onto the scaffold. His process is focused on 
maintaining and stabilizing the reaction transition state by preserving a 
corresponding geometry (Richter et al., 2011; Zanghellini et al., 2006). 
The resulting protein, equipped with grafted catalytic residues, may 
demonstrate the ability to catalyze the enzymatic reaction. It’s note
worthy that the RosettaMatch approach may require a higher number of 
mutations to adapt to new catalytic functions and substrates, potentially 
causing significant disruption to enzyme stability and catalytic perfor
mance. On the other hand, SABER, developed by Houk and Nosrati, 
offers an alternative strategy. Instead of inserting theozyme into pre- 
defined active sites, SABER searches the Protein Data Bank database 
to obtain native protein scaffolds with suitable catalytic functions. Once 
a match is found, SABER selectively mutates amino acid residues that 
could interfere with the correct binding of the substrate. This mutation 
process aims to preserve the integrity of the ideal theozyme (Kiss et al., 
2013). Importantly, the success of these computational designs is ulti
mately validated through experimental verification (Richter et al., 
2011). Siegel and coworkers employed the “inside-out” enzyme engi
neering strategy for asymmetric catalysis of bimolecular Diels-Alder 
reactions. First, the mechanism of the Diels-Alder reaction was eluci
dated through QM calculations. A transition state model comprising 
essential amino acid residues and substrates was generated. Second, the 
transition state model was matched to a group of protein scaffolds with 
high stability using RosettaMatch. The use of these scaffolds facilitated 
the positioning of the theozyme without inducing notable steric clashes 
with the protein backbone. Third, a total of 106 potential active sites 
were matched on a stable protein scaffold. RosettaDesign was employed 
to refine each match, maximizing transition state binding without con
flicting with bound substrates or products. Finally, a total of 84 variants 
were chosen, taking into account the satisfaction of shape complemen
tarity, catalytic geometry and binding energy. The experimental verifi
cation provided evidence that two enzymes, employing different 
matched protein scaffolds, were effective in catalyzing the Diels-Alder 
reaction. Subsequently, 6 site mutations were introduced to the candi
date DA_20_00 to improve its activity. This mutational strategy suc
cessfully increased its catalytic activity. The experimental results 
aligned with the expected design, as DA_20_10 demonstrated the ability 
to catalyze the formation of 3R,4S products with >97% enantiomeric 
excess (Siegel et al., 2010). In addition to Diels-Alder reactions, de novo 
enzyme design has been developed for other reactions, including Kemp 
elimination reactions (Röthlisberger et al., 2008), Retro-Aldol reactions 
(Jiang et al., 2008), ester hydrolases(Richter et al., 2012), and Morita- 
Baylis-Hillman reactions(Bjelic et al., 2013; Burke et al., 2019; Craw
shaw et al., 2022). 

In recent years, advances in creating enzymes with novel functions 
has faced challenges, and several factors contribute to this trend. First, 
many unnatural chemical reactions involve intricate transition states, 

and the difficulty of de novo design is exacerbated by the complexity of 
these transition states, constrained by both technical and theoretical 
limitations. Secondly, based on current observations, the catalytic per
formance of de novo-designed enzymes is significantly lower than that of 
natural enzymes, rendering them less suitable for practical applications. 
To address this, there is a necessity to enhance the enzyme efficiency of 
de novo enzymes through iterative rounds of directed evolution or re- 
rational design (Basler et al., 2021; Broom et al., 2020; Khersonsky 
et al., 2012; Khersonsky et al., 2011; O’Reilly, 2022; Röthlisberger et al., 
2008; Siegel et al., 2010; Völler, 2020). For instance, Weitzner et al. 
identified a comprehensive network of hydrogen bonds involving cata
lytic residues in an aldolase designed after directed evolution. Recog
nizing the limitation of the RosettaMatch method, which primarily 
considers interactions between protein side chains and the transition 
state while overlooking hydrogen bonding between residues, they 
developed a side-chain optimization method called HBNetGen. This 
method enhanced de novo enzyme design by incorporating a network of 
hydrogen bonds between residues in the transition state model (Obexer 
et al., 2017; Weitzner et al., 2019). Efficient search for protein scaffolds 
is crucial for successful de novo enzyme design. Addressing this, Zhang 
et al. developed ProdaMatch, an algorithm that rapidly and accurately 
matches protein scaffolds throughout the entire protein database (Zhang 
et al., 2020). To overcome the obstacle of a limited number and variety 
of protein scaffolds in the current database, Baker and coworkers 
developed an enumeration algorithm for creating novel proteins with 
different pocket structures and arbitrary functions, which can generate 
an almost infinite number of novel proteins. After two rounds of 
extensive experimental testing and refinement, the enhanced algorithm 
can produce proteins that maintain their folded structure at elevated 
temperatures. These proteins also showcase greater pocket diversity 
compared to natural NTF2-like proteins. This method enables the cre
ation of active site geometries better suited for specific designs and 
promises to change the status quo of accomplishing de novo design of 
enzymes by reusing limited amounts of naturally occurring NTF2-like 
proteins (Basanta et al., 2020). Expanding on this foundation, Baker 
et al. advanced their research by integrating the catalytic site of lucif
erase into a computationally designed NTF2 protein scaffold, leading to 
the creation of a luciferase variant with specific targeting capabilities for 
2-deoxycoelenterazine (Yeh et al., 2023). Except for structural en
hancements in the de novo enzyme design process, researchers have 
proposed novel energy functions to assist in the design. Traditional en
ergy functions often assume independent and additive effects for sta
tistical energy terms, such as backbone dihedral angle, solvent exposure, 
and secondary structure type. Liu et al. introduced an energy function to 
design amino acid sequences based on a given backbone structure, 
named A Backbone-based Amino Acid-Usage-Survey. Derived mainly 
from statistics in the PDB, the ABACUS model utilizes kernel density 
estimation and neural network learning to represent multidimensional, 

Fig. 3. Key steps in the “inside-out” protocol for enzyme de novo design.  
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high-order correlations of energy between different structures in known 
protein structures. This approach introduces neural network-based sta
tistical energy terms that capture multidimensional features not easily 
described by traditional statistical methods (Huang et al., 2022). 

3. Sequence-based enzyme computational engineering and 
design 

Both homology modeling and deep learning-based protein structure 
prediction approaches are capable of providing accurate and reliable 
three-dimensional structures for proteins. However, the effectiveness of 
these methods relies on the presence of resolved crystal structures for 
homologous proteins in the database. If an appropriate template for 
homology modeling is unavailable or of poor quality, the prediction may 
be compromised. Additionally, obtaining the crystal structure experi
mentally is a time-consuming and labor-intensive process. Furthermore, 
once the protein structure is acquired, structure-based computational 
design methods demand a significant understanding of theoretical 
chemistry and computational techniques to explore chemical mecha
nisms and transition states. This could pose challenges for researchers 
lacking expertise in these areas. In contrast, sequence-based computa
tional design methods offer a partial solution to these challenges. These 
methods allow the direct design of enzymes from protein sequences, 
bypassing the need for explicit structural information. This approach 
enables researchers to glean insights from the natural evolution of en
zymes over billions of years. With the wealth of sequence data made 
available by next-generation sequencing methods, researchers can 
employ phylogenetic analysis to uncover the underlying principles of 
enzyme evolution (Stephens et al., 2015). 

Consensus Design (CD) and Ancestral Sequence Reconstruction 
(ASR) are two of the most widespread sequence-based computational 
design methods (Fig. 4) (Musil et al., 2018). CD relies on homologous 
protein sequences, typically utilizing tens to hundreds of such sequences 
to generate a Multiple Sequence Alignment (MSA). The distribution 
frequency of each amino acid at a specific position is then calculated, 
and a user-defined conservation threshold is applied to identify 
“consensus” amino acids during evolution. The underlying assumption is 
that the most common amino acid at a specific position is more likely to 
be stable and evolutionarily conserved, potentially affecting enzyme 
catalysis (Magliery, 2015; Porebski and Buckle, 2016; Steipe et al., 
1994). Teze et al. introduced a sequence-based method for creating 
highly efficient glycosyltransferases (GTs) from retaining glycoside hy
drolases (GHs) without relying on enzyme structure information. The 
method involves collecting a substantial number of sequences within the 
GH family, clustering to reduce redundancy, and iteratively performing 

MSA to choose sequences with >5% identity. The conserved residues are 
identified through iterative increases in the sequence identity threshold, 
and the most conserved residues in GH are replaced with structural 
analogs. This method has proven to be effective in engineering of en
zymes from various GH families (Teze et al., 2021). To address the 
challenge that conserved amino acid residues may not always be ideal 
mutation targets, Sullivan et al. enhanced the consensus design by 
removing nearly invariant positions and sites exhibit high statistical 
correlations with other positions. This modification improved the 
identification rate of stable mutations in Saccharomyces cerevisiae tri
osephosphate isomerase from 50% to 90% (Sullivan et al., 2012). Except 
for consensus design, structure-guided consensus design methods 
leverage structural information to identify potentially damaging muta
tions. Vázquez-Figueroa et al. proposed a method incorporating distance 
between potential mutation sites and active sites, secondary structure 
information, and the overall count of intramolecular contacts. This 
method led to a substantial improvement in the stability of mutant 
glucose-1-dehydrogenase, with a 106-fold improvement when 
combining mutation sites (Vázquez-Figueroa et al., 2007). Another 
efficient structure-guided consensus design method involves analyzing 
molecular fluctuations by considering crystallographic B-factors (Par
thasarathy and Murthy, 2000). Despite its strengths, consensus design 
has limitations, such as an inability to explain epistasis between muta
tion results and noticeable phylogenetic bias when certain subfamilies 
dominate the MSA (Aerts et al., 2013; Cole and Gaucher, 2011; Hoch
berg and Thornton, 2017; Lehmann et al., 2000). 

Proteins exhibit diverse catalytic functions, often evolving from pre- 
existing functions. However, the mechanisms underlying the emergence 
of new enzyme functions and their evolutionary processes remain 
inadequately understood. ASR employs the Bayesian inference or 
maximum likelihood method to explore the evolutionary history of 
homologous sequences from known MSA and appropriate phylogenetic 
models. This method infers the replacement probability of a defined 
amino acid at a specific site in the target enzyme and reconstructs the 
phylogenetic tree containing putative ancestral sequences (Selberg 
et al., 2021; Spence et al., 2021). Despite the inherent ambiguity in ASR, 
where even the most likely sequence obtained may not accurately 
represent the true ancestral sequence in evolutionary history, the 
method remains valuable. A cytochrome P450 was engineered by the 
ASR and the optimal mutant exhibited improved solvent stability and 
thermostability than a human cytochrome P450, despite sharing similar 
reactivity profiles. Additionally, this work also created a mutant ketol- 
acid reductoisomerase that showed an 8-fold increase in catalytic effi
ciency (Gumulya et al., 2018). ASR has also been instrumental in 
exploring the sequence-activity landscape of a self-sufficient P450 

Fig. 4. Overview of consensus design (CD) and ancestral sequence reconstruction (ASR), illustrating the general workflow that encompasses the collection and 
alignment of homologous sequences, phylogenetic analysis, and experimental characterization. 
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monooxygenase CYP116B. It identified crucial mutational paths leading 
to changes in enzyme selectivity, resulting in ancestor variants with 
shifted regioselectivity from terminal to mid-chain hydroxylation of 
fatty acids(Jones et al., 2024). However, ASR faces challenges due to the 
high differentiation among extant proteins, leading to uncertainties in 
the predicted probabilities of many sites, often falling below 50%. This 
limitation underscores the difficulty in confidently determining the real 
ancestral sequence through ASR (Copley, 2021). However, despite these 
challenges, the protein scaffold obtained through ASR serves as an 
important starting point for protein design efforts owing to the inherent 
high thermostability and evolvability. ASR-derived protein scaffolds 
play a crucial role in studying protein conformational dynamics related 
to thermostability (Babkova et al., 2020), ligand binding specificity, 
allosteric regulation and catalytic activity (Jemth et al., 2018; Kacz
marski et al., 2020). 

Recently, an escalating number of researchers have recognized the 
significant implications of conformational dynamics for the catalytic 
promiscuity and evolution of enzymes (Babkova et al., 2020; Campitelli 
et al., 2020; Crean et al., 2020; Gardner et al., 2020; James and Tawfik, 
2003; Maria-Solano et al., 2018; Spence et al., 2021; St-Jacques et al., 
2023; Zamora et al., 2020). James and Tawfik were among the first to 
propose that conformational plasticity contributes in enzyme evolution, 
enabling enzymes to bind new ligands and adopt conformations that 
catalyze novel chemical reactions (James and Tawfik, 2003). These 
conformations were generally rare in ancestral enzymes, but natural 
evolutionary pressures favored the prevalence of such rare conforma
tions, leading to the creation of new catalytic reactions for previously 
unexplored substrates. Laboratory-based directed evolution can facili
tate the generation of these new conformations more readily than in 
natural evolution, as the lower level of catalytic promiscuity can be 
detected and amplified in a controlled laboratory environment. 
Currently, two methods have been developed to fine-tune conforma
tional dynamics for enhancing enzyme activity: 1) expanding the sam
pling of states that can impart new catalytic activity; 2) decreasing the 
sampling of non-productive conformations (Campbell et al., 2018). 
Recent research has demonstrated that ASR can provide a starting 
scaffold for modifying catalytic properties, with results that can be 
explained by conformational dynamics. Risso et al. reconstructed Pre
cambrian β-lactamase using ASR as a scaffold for protein engineering. 
They designed an artificial Kemp eliminase with catalytic activity up to 
107 higher than the uncatalyzed reaction, along with significant ester 
hydrolysis activity. Both experimental and computational analyses 
revealed that despite substantial differences in amino acid sequences 
and protein scaffolds across evolutionary time, the overall tertiary 
structure remained relatively unchanged (Risso et al., 2017). The 
“Shortest Path Map (SPM)” method is a notable advancement in 
computational enzyme engineering. This method utilizes a deep un
derstanding of conformational dynamics and distal mutations, com
plemented by long-time-scale molecular dynamics (MD) simulations, to 
explore a wide range of conformations and predict mutations that can 
induce an allosteric impact on protein function. For instance, the direct 
evolution of a retro-aldolase enzyme led to a variant exhibiting a 
remarkable >109 rate enhancement. Through the analysis of enzyme 
active site conformational dynamics, it was discovered that long-range 
mutations played a crucial role in shifting populations of conforma
tional states towards active states. The key amino acids identified 
through the SPM method were consistent with those mutated in the 
direct evolution process (Romero-Rivera et al., 2017). The SPM method 
also has proven successful in understanding of the catalytic mechanism 
of enzyme reactions. An engineered cytochrome P450 monooxygenase 
exhibited regio- and stereoselective hydroxylation activities towards 
steroid. The mechanism was investigated by SPM and the results 
revealed that the epistatic effects and conformational dynamics are 
influenced by distal interactions in loops, β-strands and helices, which 
control the substrate access tunnel. This regulation ultimately facilitates 
optimal catalysis (Acevedo-Rocha et al., 2021). Similarly, the molecular 

mechanism of tryptophan synthase for stand-alone activity (Maria-Sol
ano et al., 2019; Maria-Solano et al., 2021) and monoamine oxidase for 
broadening substrate scope (Curado-Carballada et al., 2019) were also 
elucidated using this approach. Studying the evolutionary history of 
native proteins enhances our understanding of protein engineering, 
emphasizing the importance of considering protein dynamics, neo
functionalization, and epistatic interactions in the design and engi
neering of proteins. Recently, several user-friendly web-based tools have 
been developed for improving enzyme performance without requiring 
extensive expertise or installation. For instance, Caver is a specialized 
tool used for the detailed analysis and visualization of substrate access 
tunnels and channels in protein structures (Stourac et al., 2019). Hot
Spot Wizard is designed to automatically identify “hotspots” in proteins, 
facilitating the engineering of substrate specificity, enzyme activity, or 
enantioselectivity (Pavelka et al., 2009). The Rosetta-based PROSS is 
specifically used for designing enzymes to ensure stability and high 
expression levels (Gomez de Santos et al., 2023). FuncLib is designed to 
generate multipoint mutations, specifically honing in on the active sites 
of enzymes (Khersonsky et al., 2018). 

4. Data-driven enzyme engineering and design 

Indeed, the structure-based and sequence-based computational 
design approaches can offer powerful and complementary strategies for 
engineering of enzymes with desired properties. Despite the promising 
results shown by both methods, our knowledge of the sequence and 
structure of native enzymes is still in its infancy. Consequently, the 
computational design of enzymes, based on limited sequence or struc
tural information, necessitates a substantial computational or experi
mental investment, thereby amplifying the overall cost of enzyme 
engineering. In the vast realm of nature, there exists substantial, un
tapped sequence and structural space. Efficient exploration of these 
uncharted territories within protein sequence space holds the potential 
for the discovery of novel and valuable enzymes. Integrating machine 
learning (ML) into enzyme engineering becomes pivotal, as it empowers 
the modeling of intricate sequence-function and structure-function re
lationships using existing data. ML facilitates the prediction of new, 
valuable enzymes that may prove challenging to attain through con
ventional methods. This approach not only enhances our understanding 
of these relationships but also guides the design of highly efficient en
zymes, closely mirroring the efficacy observed in natural systems. 
Various ML algorithms have been employed for enzyme engineering, 
showcasing their versatility. For instance, random forests have been 
employed for predicting protein solubility (Yang et al., 2016; Yang et al., 
2021). Support vector machines and decision trees have found utility in 
predicting changes in enzyme stability after mutation (Folkman et al., 
2016; Teng et al., 2010) (Huang et al., 2007). K-nearest neighbor 
methods, such as the K-Nearest Neighbor Classifier, have been utilized 
for predicting enzyme functions and catalytic mechanisms (De Ferrari 
and Mitchell, 2014; Koskinen et al., 2015). Moreover, diverse scoring 
and clustering algorithms have been utilized for the swift annotation of 
functional sequences (Cozzetto et al., 2013; Falda et al., 2012). The main 
allure of ML in protein engineering lies in its ability to provide rapid 
predictions once trained on a suitable dataset. In contrast, rational 
design necessitates the construction of new models and extended periods 
of intensive computation, while directed evolution methods often 
require months of experimental works. The efficacy of ML relies on the 
quality of the training dataset and the efficiency of the underlying al
gorithms. Challenges such as the need for rigorous control over data 
collection and reporting, difficulties in standardizing data formats, the 
lack of large homogeneous datasets for training, slow establishment of 
new datasets for model testing, and the diversity of reactions, catalytic 
mechanisms and experimental conditions, significantly limit the wide
spread application of ML in designing biocatalysts (Fig. 5). 

Supervised ML are commonly employed in enzyme engineering, 
where researchers represent enzyme fitness with a given label. The 
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choice of features and models distinguishes various ML methods. 
Generally, selected features in enzyme engineering can include protein 
sequences (Foroozandeh Shahraki et al., 2021; Greenhalgh et al., 2021; 
Vasina et al., 2022), structures(Feehan et al., 2021; Krivák and Hoksza, 
2018; Unger et al., 2020), or energy data(Li et al., 2022; Pan et al., 2021; 
Xie et al., 2022). Sequence-based features have been predominantly 
chosen for enzyme engineering, allowing for the rapid engineering of 
sequence features and the generation of predictable feature models in 
silico. Despite the advantages of sequence-based ML in acquiring a large 
amount of data for building regression models, numerical trans
formation of sequence information is still required for accurate enzyme 
engineering predictions (Bonetta and Valentino, 2020). Fox et al. 
advanced directed evolution by introducing a statistical analysis strat
egy called ProSAR (Protein Sequence-Activity Relationship), which as
signs specific weights (regression coefficients) to positions based on a 
simple transformation of the absence (0) or presence (1) of substitution. 
These weights are determined through statistical analysis of the initial 
dataset and the impact of each substitution. The ProSAR method effec
tively identifies beneficial mutations even in mutants with reduced 
enzyme function. By employing ProSAR, the volumetric productivity of 
the cyanation process increased approximately 4000-fold in a library of 
aldol dehalogenase mutants (Fox et al., 2007). Liao et al. proposed a 
similar method considering amino acid mutation weighting and 
recombination effect summarization. They tested eight different linear 
regression algorithms on the dataset and, after two rounds of design, 
achieved a mutant with enzyme activity 20 times higher than the 
wildtype among 95 proteinase K mutants (Liao et al., 2007). However, 
linear models may not be as effective in describing higher-order epis
tasis. Zaugg et al. constructed a model using support vector regression 
(SVR) on 136 mutant data of epoxide hydrolase enantioselectivity. 
Exploring various SVR kernels and utilizing kernel tricks, they found 
that nonlinear models outperformed linear models in predicting protein 
function (Zaugg et al., 2017). Li et al. efficiently identified highly robust 
limonene epoxide hydrolase variants by identifying epimutation in
teractions through the innov’SAR (innovative sequence-activity rela
tionship) algorithm. Using Fourier transform (FT) to capture nonlinear 
interactions between the order and position of protein sequences, they 
obtained variants with higher unfolding stability and tolerance to ag
gregation (Li et al., 2021b). Russ et al. described a method for generating 
new artificial sequences with protein family properties solely from 
evolutionary sequence data. Considering the conservation of amino acid 
positions and the relatedness of amino acid pairs in evolution, they 
experimentally demonstrated that the predicted new artificial sequences 
exhibit similar catalytic functions to chorismate mutase enzymes. This 
work suggests that evolution-based statistical models are sufficient to 

describe the extensive functional sequence space of a specific enzyme, 
laying the foundation for evolution-based artificial protease design 
(Russ et al., 2020). 

Deep learning simulates the human brain for analysis and learning 
via establishing neural networks. It offers several advantages over 
traditional methods. Firstly, deep learning stands out for its capacity to 
process vast amounts of data, yielding more precise predictions. Sec
ondly, deep learning eliminates the need for intricate feature engi
neering, requiring only sequence, structure, or energy data to be directly 
input into the neural network for effective predictive performance. This 
eradicates the challenges associated with extensive feature engineering 
in the modeling process. Lastly, adaptive deep learning can seamlessly 
transition across different types of datasets, and transfer learning en
ables pre-trained deep neural networks to be applied to various appli
cations within the same domain. However, deep learning has its 
limitations. It necessitates very large datasets, and obtaining enzyme 
data for enzyme engineering is both expensive and time-consuming. In 
cases where the dataset is small, classical machine learning tends to 
outperform deep learning. As biological information databases rapidly 
expand, an increasing number of deep learning algorithms are being 
applied to the computational design of enzymes, including Variational 
Autoencoders (VAE) (Doersch, 2016; Hawkins-Hooker et al., 2021; 
Lobzaev et al., 2022), Recurrent Neural Network (RNN) (Alley et al., 
2019; Hawkins-Hooker et al., 2021; Lipton et al., 2015), Generative 
Adversarial Network (GAN) (Repecka et al., 2021), Convolutional 
Neural Networks (CNN) (Lu et al., 2022) and Transformer (Dubourg- 
Felonneau et al., 2021; Vaswani et al., 2017). Alley et al. employed a 
RNN to acquire statistical characterizations of proteins using 24 million 
UniRef50 sequences. This approach condenses arbitrary protein se
quences into fixed-length backbones, estimating essential protein 
properties independently of structural or evolutionary data (Alley et al., 
2019). By leveraging the original protein sequence, this approach 
addressed data scarcity issues in protein informatics and showcased 
exceptional performance in crucial engineering tasks, encompassing 
stability, function, and design. UniRep, based on a relatively small 
sequence dataset, demonstrated effectiveness in constructing precise 
models representing a protein’s fitness landscape. Even with a limited 
number of functionally characterized mutants, this unsupervised deep 
learning model facilitated large-scale exploration of sequence space and 
achieved protein design optimization comparable to mutants obtained 
in previous high-throughput studies (Biswas et al., 2021). Lu and co
workers employed a self-supervised convolutional neural network 
operating in three dimensions for training nearly twenty thousand 
protein structures. The model acquired knowledge of the local chemical 
microenvironment surrounding amino acids, enabling the prediction of 

Fig. 5. Employ diverse machine learning techniques to categorize and train the various crucial parameters of enzymes, thereby obtaining corresponding models. 
Subsequently, apply these models to the systematic and rational design of enzymes, ultimately resulting in the delineation of the process for obtaining 
target enzymes. 
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locations in proteins where wild-type amino acids were not present. 
Through a computer-synthesized mutation scan and a stepwise combi
nation strategy, this approach generated mutants with significant cata
lytic improvement (Lu et al., 2022). A generative maximum entropy 
model was used to optimize the Renilla luciferase enzyme. Their work 
illustrates that leveraging natural evolutionary information enables 
predictive improvement of enzyme stability and activity through the 
design of active sites and protein scaffolds (Xie et al., 2023). A deep 
learning model EnzyKR was developed to predict biocatalysts with high 
enantioselectivity. In contrast to existing kcat predictors, EnzyKR in
tegrates substrate chirality by utilizing dihedral angles, geometric fea
tures, and atomic distance maps derived from hydrolase-substrate pairs. 
The capability of EnzyKR to efficiently identify enzymes with high 
stereoselectivity is attributed to its consideration of variations in kcat 
values between different enantiomers, leading to distinct stereo
selectivities (Ran et al., 2023). For creating novel proteins, Norn et al. 
reversed the supervised model used for protein structure prediction into 
a model based on structural design sequences (Norn et al., 2020). 
Anishchenko et al. utilized deep neural networks to optimize randomly 
given amino acid sequences, generating new proteins with diverse se
quences and predicted structures (Anishchenko et al., 2021). These 
methods, based on inverting deep networks trained to predict the nat
ural structures of proteins, offer insights into de novo protein design, 
complementing traditional physics-based models. Recently, Wang et al. 
introduced two deep learning approaches for creating proteins with pre- 
specified functional sites. “Constrained hallucination” refers to a method 
that begins with a desired or predicted structure or functional site and 
optimizes sequences to match or contain these features. This approach 
imposes specific constraints or requirements during sequence optimi
zation to ensure that certain features or properties are maintained or 
achieved. “Inpainting” starts from a known or predicted functional site 
and expands sequences or structures to fill in missing information or 
enhance specific elements using a RoseTTAFold network trained on the 
PDB database. It focuses on complementing or enhancing existing fea
tures, often without strict constraints on other parts of the sequence or 
structure. The authors successfully designed proteins with specific 
functions, including immunogens, receptor traps, metalloproteins, and 
enzymes, showcasing the capability to obtain desired protein scaffolds 
with functional sites (Wang et al., 2022). Using data-driven methods for 
enzyme engineering presents challenges and limitations. One primary 
issue is that the accuracy and robustness of these methods are limited by 
the quality and quantity of available data. To tackle this challenge, 
developing robust data-cleaning and data augmentation techniques can 
be beneficial. These strategies aim to remove errors, duplicates, and 
inconsistencies from the data, while also enhancing data diversity and 
representativeness, thus improving the overall reliability of data-driven 
approaches. Moreover, processing large-scale datasets and training 
complex models can be a time-consuming and resource-intensive task, 
which makes data-driven methods challenging for broad application. 
Developing parallel processing techniques and distributed computing 
infrastructure can improve the efficiency and scalability of data-driven 
approaches in enzyme engineering, making them more practical for 
real-world applications. 

5. Conclusions and perspectives 

In the review, we have delved into three major approaches to 
rational computational enzyme design, offering insights into their recent 
advancements. While each method provides a robust strategy for 
enzyme engineering, it is crucial to acknowledge the challenges that 
persist in the field. The foundation of structure-based computational 
design, which posits that protein structure dictates function, has led to 
significant progress. Through meticulous simulations and algorithmic 
analyses, this approach guides the targeted modification of natural en
zymes for desired outcomes. Despite its success, challenges arise from its 
limited ability to explore the vast mutation sample space 

comprehensively. The nascent field of de novo design faces hurdles such 
as constrained conformational sampling, insufficient protein scaffold 
diversity, and the need for improved accuracy in transition state de
scriptions. Sequence-based rational computational design starts from 
protein amino acid sequences, employing methods like consensus design 
and ancestral sequence reconstruction to leverage nature’s evolutionary 
skills for enzyme transformation. However, this approach may struggle 
to explain epistasis between mutations, especially those occurring at a 
distance. The bias towards natural substrates in evolutionary optimi
zation poses limitations when aiming to improve the catalytic efficiency 
of non-natural substrates. To overcome these challenges, combining 
sequence and structural information is essential. The emergence of data- 
driven artificial intelligence and machine learning leverages vast 
amounts of sequence, structural, and energy data for efficient explora
tion of the combinatorial space of diverse enzyme sequences. Notably, 
deep learning methods, which can predict protein structure directly 
from sequence information, enhance retrofitting accuracy. However, 
challenges persist, particularly in de novo designing proteins with 
functional sites. Overcoming hurdles, such as embedding functional sites 
into designed protein scaffolds and predicting correctly folded amino 
acid sequences with functional sites, remains a priority. While data- 
driven machine learning methods hold promise for the future of 
enzyme design, current structure- and sequence-based methods remain 
crucial for elucidating catalytic mechanisms and rational enzyme 
design. Other challenges encountered in computational enzyme engi
neering have been thoroughly reviewed in recent articles (Kouba et al., 
2023; Yang et al., 2023). In the future, the integration of machine 
learning with these traditional methods is vital to address these issues. 
This interdisciplinary approach aims to design biocatalysts with entirely 
new catalytic reactions, breaking through the bottleneck of limited re
action types and fostering advancements in synthetic biology. In 
conclusion, the synergistic application of these rational computational 
design approaches will likely lead to transformative breakthroughs in 
enzyme engineering, ultimately contributing to the flourishing fields of 
synthetic biology and metabolic engineering. 
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Cadet, X.F., Pandjaitan, R., Garcia-Borràs, M., Cadet, F., Reetz, M.T., 2021b. Machine 
learning enables selection of epistatic enzyme mutants for stability against unfolding 
and detrimental aggregation. ChemBioChem 22 (5), 904–914. https://doi.org/ 
10.1002/cbic.202000612. 

Li, J., Qu, G., Shang, N., Chen, P., Men, Y., Liu, W., Mei, Z., Sun, Y., Sun, Z., 2021c. Near- 
perfect control of the regioselective glucosylation enabled by rational design of 
glycosyltransferases. Green Synth. Catal. 2 (1), 45–53. https://doi.org/10.1016/j. 
gresc.2021.01.005. 

Li, F., Yuan, L., Lu, H., Li, G., Chen, Y., Engqvist, M.K., Kerkhoven, E.J., Nielsen, J., 2022. 
Deep learning-based kcat prediction enables improved enzyme-constrained model 
reconstruction. Nat. Catal. 5, 662–672. https://doi.org/10.1038/s41929-022-00798- 
z. 

Liao, J., Warmuth, M.K., Govindarajan, S., Ness, J.E., Wang, R.P., Gustafsson, C., 
Minshull, J., 2007. Engineering proteinase K using machine learning and synthetic 
genes. BMC Biotechnol. 7 (16), 1–19. https://doi.org/10.1186/1472-6750-7-16. 

Lin, H.-Y., Chen, X., Dong, J., Yang, J.-F., Xiao, H., Ye, Y., Li, L.-H., Zhan, C.-G., Yang, W.- 
C., Yang, G.-F., 2021. Rational redesign of enzyme via the combination of quantum 
mechanics/molecular mechanics, molecular dynamics, and structural biology study. 
J. Am. Chem. Soc. 143 (38), 15674–15687. https://doi.org/10.1021/jacs.1c06227. 

Lin, C.L., Petersen, M.A., Mauch, A., Gottlieb, A., 2022. Towards lager beer aroma 
improvement via selective amino acid release by proteases during mashing. J. Inst. 
Brew. 128 (1), 15–21. https://doi.org/10.1002/jib.682. 

Lipton, Z.C., Berkowitz, J., Elkan, C., 2015. A critical review of recurrent neural networks 
for sequence learning. arXiv preprint. https://doi.org/10.48550/arXiv.1506.00019. 

Lobzaev, E., Herrera, M.A., Campopiano, D.J., Stracquadanio, G., 2022. Designing 
human Sphingosine-1-phosphate lyases using a temporal Dirichlet variational 
autoencoder. bioRxiv. https://doi.org/10.1101/2022.02.14.480330. 
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