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ABSTRACT
The structural and functional diversity of plant
metabolites is largely created via chemical mod-
ification of a basic backbone. However, metabolite
modifications in plants have still not been thor-
oughly investigated by metabolomics approaches.
In this study, a widely targeted metabolite modifi-
comics (WTMM) strategy was developed based on
ultra‐high performance liquid chromatography‐
quadrupole‐linear ion trap (UHPLC‐Q‐Trap) and
UHPLC‐Q‐Exactive‐Orbitrap (UHPLC‐QE‐Orbitrap),

which greatly improved the detection sensitivity
and the efficiency of identification of modified
metabolites. A metabolite modificomics study
was carried out using tomato as a model, and
over 34,000 signals with MS2 information were
obtained from approximately 232 neutral
loss transitions. Unbiased metabolite profiling
was also performed by utilizing high‐resolution
mass spectrometry data to annotate a total of
2,118 metabolites with 125 modification types;
of these, 165 modified metabolites were identi-
fied in this study. Next, the WTMM database
was used to assess diseased tomato tissues
and 29 biomarkers were analyzed. In summary,
the WTMM strategy is not only capable of large‐
scale detection and quantitative analysis of
plant‐modified metabolites in plants, but also
can be used for plant biomarker development.
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INTRODUCTION

Plants, which are sessile, synthesize a large and diverse
range of compounds in order to adapt to complex and

variable ecological environments (Weng et al., 2021). It is es-
timated that in nature plants produce a total of 200,000 to one
million metabolites, far more than most other organisms (Saito
and Matsuda, 2010; Afendi et al., 2012; Garagounis et al.,
2021). This abundant chemical diversity is an important hall-
mark of the plant kingdom, with each individual plant con-
taining from 5,000 to tens of thousands of metabolites, which
can be divided into two main categories: primary metabolites
and specialized metabolites (Fernie et al., 2004; Fang et al.,
2019). The classes and structures of most primary metabolites

are common and conserved in a variety of plants, providing
not only the material basis of plant metabolism, but also a
limited number of basic metabolic skeletons for the diversity of
specialized metabolites. Common specialized metabolites
mainly include terpenoids, alkaloids and phenylpropanoids;
each class of metabolites shares the same metabolic skeleton
(D'Auria and Gershenzon, 2005; Wang et al., 2019; Singh
et al., 2023). These basic metabolic skeletons are further
modified to form specialized metabolites with different struc-
tures varying in the nature, number, and binding positions of
the modified groups. Primary metabolites can undergo a
series of biochemical reactions (e.g., oxidation‐reduction re-
actions) and/or different types of structural modifications (e.g.,
acylation, glycosylation, hydroxylation, isopentenylation and
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methylation) to produce the complexity and diversity of plant
specialized metabolites. Studies have shown that various
modifications confer structural and functional diversity to
proteins and metabolites. Protein modificomics focuses on its
various post‐translational modifications such as phosphor-
ylation, acetylation, methylation, glycosylation, and so on
(Reinders and Sickmann, 2007; Keenan et al., 2021). Similarly,
metabolite modificomics is dedicated to resolving different
modifications of the basic backbone of their molecular struc-
ture, and continued in‐depth research in this field will provide
many important insights into the diversity of plant metabolites
(Wang et al., 2019). Glycosylation is considered to be one of
the most important modification reactions for plant specialized
metabolites, and glycosyltransferases are members of a mul-
tigene superfamily in plants that can transfer single or multiple
activated sugars to a range of plant molecules, leading to the
glycosylation of plant compounds (Zhang et al., 2022). How-
ever, new modification groups of plant metabolite structures
still retain great unknowns, and there is a lack of overall sys-
tematic studies of various modifications in plants.

Structural modifications of metabolites, such as, glyco-
sylation (Chen et al., 2020; Wang et al., 2020; Li et al., 2021),
hydroxylation, malonylation (Ahmad et al., 2021; Xia et al.,
2021), and methylation (Tieman et al., 2010; Yan et al., 2022),
among other modifications that have been reported, not only
have important effects on plant growth, development, and
defense responses (Chen et al., 2020), but are also closely
related to quality traits in crop plants such as coloration
(Tanaka et al., 2008; Gandia‐Herrero and Garcia‐Carmona,
2013), flavor (Zhong et al., 2017; Wang, Qiang, et al., 2023),
and nutrition (Zhu et al., 2018). In immature green tomato
fruits, cholesterol is used as a precursor metabolite to syn-
thesize tomatidine through a series of modifications including
hydroxylation, oxidation, and transamination; tomatidine then
undergoes four glycosylations to form the toxic substance α‐
tomatine, which protects the fruit from predation (Itkin et al.,
2013; Sonawane et al., 2018). As the fruit ripens, α‐tomatine
is further acylated and glycosylated to form the non‐toxic,
non‐bitter substance esculeoside A, which improves the nu-
tritional and flavor quality of the tomatoes (Szymanski et al.,
2020). In citrus fruits, flavanone 7‐O‐glucose is catalyzed by
1,2‐rhamnosyltransferase or 1,6‐rhamnosyltransferase to
form bitter flavanone 7‐O‐neohesperidosides or non‐bitter
flavanone 7‐O‐rutinosides through different types of glyco-
sylation reactions which affect fruit flavor (Frydman et al.,
2004; Frydman et al., 2013). Anthocyanins are flavonoid
pigments that are stabilized by glycosylation, methylation
and acylation of the aglycone form (anthocyanidins) (Ono
et al., 2006). In addition, all classical plant hormones have
been found to exist in the form of glycosides (except eth-
ylene) and to exhibit different biological activities in plants
(Wang et al., 2019). For example, the main precursor of
indole‐3‐acetic acid (IAA) is indole‐3‐pyruvic acid (IPyA); the
glucosylation product of IPyA is involved in IAA homeostasis,
as well as in the regulation of plant responses to environ-
mental change (Chen et al., 2020). The glycosylation product

of indole‐3‐butyric acid (IBA) is involved in cotyledon devel-
opment and flowering regulation in Arabidopsis (Zhang
et al., 2016).

Liquid chromatography‐mass spectrometry (LC‐MS) is a
powerful technique for the separation of compounds, with
high sensitivity and a wide detection range (Tolstikov and
Fiehn, 2002; De Vos et al., 2007), and the use of LC‐MS for
targeted, untargeted, pseudotargeted, and widely targeted
metabolomic assays has been proposed for the detection of
compounds in complex samples (Chen et al., 2013; Shi et al.,
2017; Lv et al., 2020; Zheng et al., 2020). In particular, a
widely targeted metabolomics strategy based on ultra‐high
performance liquid chromatography‐quadrupole/linear ion
trap (UHPLC‐Q‐Trap; Chen et al., 2013) has been applied to
metabolomic analyses of crops such as citrus (Shen et al.,
2023; Wang, Shen, et al., 2023), maize (Wen et al., 2014), rice
(Fang et al., 2021; Yang et al., 2022), and tomato (Zhu et al.,
2018). However, this approach, although capable of cap-
turing large‐scale metabolic signals, cannot effectively target
modified metabolic signals and resolve their molecular
structures. An untargeted modification‐specific metabolomic
approach based on in‐source collision‐induced dissociation
(ISCID) LC‐high‐resolution MS (LC‐HRMS) can specifically
target modified metabolites; using this approach, a total of
910 metabolite signatures, including of acetylation, glucose
glycosylation, glucuronidation, ribose coupling, and sulfation,
were detected in urine from healthy subjects and patients
with cirrhosis (Dai et al., 2014). This method was also applied
to tea tree samples, and a total of 144 glycosidic substances
were identified (Dai et al., 2016). More recently, a nontargeted
method for the detection of modified metabolites based on
HRMS has been developed (Li et al., 2019); this method was
applied to perform an unbiased analysis of 13 types of
modified metabolites in urine (Li et al., 2019). Another
method, combining glycosides‐specific metabolomics and
precursor isotopic labeling, can efficiently and accurately
identify glycosylated products in plants, including those of
glycosylation modifications (Wu et al., 2022). However, all
assays developed to date only target a few types of metab-
olite modifications or known metabolite modifiers. Non‐
target‐based assays are unable to detect new modified me-
tabolites at ultra‐low micro levels due to low sensitivity, while
target‐based assays can only detect known metabolic
modifiers but not new ones. However, although these
methods can be used to increase the number of structural
modifications detected, the comprehensive detection of all
modification types in a sample remains inaccessible and it is
difficult to uncover new modified metabolites.

In this study, we combined UHPLC‐Q‐Trap and UHPLC‐
Q‐Exactive‐Orbitrap (UHPLC‐QE‐Orbitrap) to develop a
widely targeted metabolite modificomics (WTMM) strategy
that enables high‐throughput identification and highly sensi-
tive quantification of modified metabolites. A stepwise neutral
loss‐enhanced product ion (stepwise NL‐EPI) method based
on UHPLC‐Q‐Trap was used to detect possible modified
metabolic signals in plants, followed by structural annotation
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using HRMS information collected by UHPLC‐QE‐Orbitrap. A
tomato metabolite modificomics database was constructed
and 125 modification types and 2,118 annotated metabolites
of tomato were identified, of which 165 modified metabolites
were newly identified in this study. Finally, the WTMM
strategy was used to compare the differences in metabolic
profiles of tomato after infection with Ralstonia solanacearum
and to screen 29 marker metabolites.

RESULTS

Overview of the WTMM strategy
To systematically explore the diversity of plant metabolite
types and structures, a WTMM strategy based on UHPLC‐
Q‐Trap and UHPLC‐QE‐Orbitrap was developed (Figure 1;
Table S1). First, to obtain metabolic profiles of various
modified metabolites, a new method of stepwise NL‐EPI
based on UHPLC‐Q‐Trap was developed. NL values were
set from 14 to 245 Da, where the mass step was 1.0 Da, and
the scan range of the corresponding precursor ions for
each NL transition was set from 19 to 1,000 Da (Figure 1A).
For example, glycosylation is one of the most common
structural modifications in plants, and the NL value for
hexosylation of glucose and galactose is 162 Da. Compared
with the QE‐Orbitrap‐based full MS/dd‐MS2 mode, the
Q‐Trap‐based stepwise NL‐EPI method can obtain a richer
metabolic signal when detecting hexosylation modifications
(NL value = 162 Da). The former detected 326 neutral loss
signals while the latter detected 460, which is 41% more in
number, and both detected very few overlapping signals,
accounting for only 7.2% of the total signal (Figure 1A).
Thus, the WTMM strategy integrates the advantages of high
sensitivity and wide coverage of Q‐Trap and high resolution
of QE‐Orbitrap to detect a wider range of metabolites.

Second, in order to accurately annotate metabolic signals in
the MS2 spectral tag (MS2T) library (Chen et al., 2013), HRMS
data and algorithms were integrated for structural elucidation
of the modified metabolites. Details of the criteria for metabolite
structure identification are given in the “Materials and
Methods” section. For example, the molecular formula of the
metabolic signal NL35146 in the MS2T library was calculated
as C23H42NO7P according to the accurate m/z. Further
analysis identified neutral losses of NL= 141.0201 (phosphoryl‐
ethanol group) and NL= 215.0560 (glycerol‐phosphoryl‐
ethanol group) in the fragmentation pattern of its mass spec-
trum. Finally, the metabolic signal was identified as PE 18:3 by
comparing MS2 information with standard and commercial
metabolic databases (Figure 1B). Note that the annotation of
metabolic signals can be challenging due to the large number
of modification profiles obtained using the WTMM approach.
Therefore, in this study, the MS2 Analyzer software was used
to automatically identify the NL of metabolic signals (Figure S1)
and obtain modification group information to further improve
the MS2T library. In addition, MetDNA identification algorithms
were used to construct metabolic networks containing both

known and unknown signals (Figure S2A–C), and many me-
tabolites were annotated, including lycopene‐related pathways
(Figure S2D).

Third, to obtain stronger and more accurate metabolic
signals, a pipeline was developed for transition selection
and optimization of MS parameters. For example, for the
precursor ion m/z of 476.3 Da, two high abundance frag-
ment ions (Q3) were selected from the MS2T library and
combined with the parent ion to form two candidate tran-
sition pairs (476.3/335.1 and 476.3/304.1). The above tran-
sitions were then quantitatively analyzed using the sched-
uled multiple reaction monitoring (sMRM) scanning mode,
where declustering potential (DP) and collision energy (CE)
were set to 10, 20, 30, 40, 50, and 60 orthogonally com-
bined into 36 sets of test parameters. Unqualified chroma-
tographic peaks with poor peak shape, low signal intensity
or low signal‐to‐noise ratio, and/or overly high signal in-
tensity and peaks were removed; good chromatographic
peaks were retained and corresponding detection parame-
ters were recorded for subsequent analyses (476.3/304.1,
DP = 30, CE = 20) (Figure 1C).

Construction of a WTMM database for tomato
In this study, the WTMM strategy was used to detect mixed
samples composed of different tomato tissues (i.e., leaves
and roots) (Table S2); the collected metabolic signals were
screened (signal‐to‐noise ratio> 10) and redundant. More
than 34,000 high‐quality metabolic signals were obtained
with MS2 information from 232 NL transitions (Table S3), and
these were combined to form a tomato metabolite modifi-
comics MS2T library. This library included a large number of
modified metabolic profiles with high resolution acquired
based on QE‐Orbitrap, as well as new metabolic signals that
could only be detected based on Q‐Trap in different NL types
(only new signals are shown) (Figure 2A, B).

To facilitate the identification and annotation of meta-
bolic signals, a total of 240 modified metabolites were an-
notated by first comparing the m/z, retentiontime (RT),
fragmentation pattern, and NL motifs obtained with stand-
ards (Table S4). The metabolites identified included
pyridoxal 5ʹ‐phosphate (NL06838, m/z= 248.0, RT = 1.15,
NL = 98, phosphorylation), p‐coumaroylagmatine (NL08700,
m/z = 277.1, RT = 2.50, NL = 146, p‐coumaroylation),
O‐glucosyl‐tomatidine (NL23577, m/z = 578.3, RT = 4.50,
NL = 162, anhydrohexose conjugation) (Figure 2C).

For metabolic signals lacking standards, metabolites were
identified using metabolic databases and literature searches.
MS2 Analyzer was used to automate the identification and
characterization of NLs in MS2T; a total of 2,878 modification
groups were identified, greatly improving the MS2T library
(Table S5). As an example, the RT of metabolic signal
NL23615 was 5.03min, indicating that it is a moderately polar
compound; its MS2 data contained the characteristic peak of
tricin 331.4 Da, which is presumed to be a flavonoid with
tricin as the basic skeleton. The NL analysis revealed that the
MS2 information contained fixed mass differences of 86 and
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Figure 1. The main procedures for WTMM strategy
(A) High‐throughput acquisition of modified metabolite profiling by ultra‐high performance liquid chromatography‐quadrupole‐linear ion trap (UHPLC‐Q‐
Trap) in stepwise NL‐EPI scanning mode. The NL value ranged from 14 to 245 Da, with precursor ion scanned from 19 to 1,000 Da, and the DP and CE in
positive ion mode were set to 50 eV and 40 eV, respectively. (B) Annotation of MS2 spectral tag (MS2T) library based on high‐resolution mass spectrometry
data from UHPLC‐Q‐Exactive‐Orbitrap (UHPLC‐QE‐Orbitrap). The green and blue arrows in the mass spectrum represent NL transitions, corresponding to
the modified groups in the structural formula. (C) Optimization of the main parameters of the WTMM strategy; (a, b) fail: convolution of peaks; (c) fail: peak
intensity exceeds threshold (peak area> 1−E7); (d) pass: single peaks without convolution and intensities between 1−E5 and 1−E7. Chromatographic
peaks are shown in a cartoon schematic (see the “Materials and Methods” section for screening process details). CE, collision energy; DP, declustering
potential; EPI, enhanced product ions; NL, neutral loss; sMRM, scheduled multiple reaction monitoring; TIC, total ion chromatography; WTMM, widely
targeted metabolite modificomics.
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162 Da, which are typical of malonyl and hexosyl, re-
spectively. In addition, MetDNA was also used to support
metabolite identification, and a total of 886 metabolic signals
were annotated with MetDNA (Table S6). In total, more than
1,700 metabolites were annotated, including alkaloids, amino
acids, flavonoids, lipids, phenolamines, and phytohormones.

A total of 165 novel modified metabolites reported in
tomato were identified in the above analysis, including
S‐[2‐(2‐pyridinyl) ethyl] cysteine (NL 77.0294, pyridinylation),
3‐(2‐acetamidoethyl)‐1H‐indol‐5‐yl hydrogen sulfate (NL
79.9935, sulfation), 2‐hydroxycyclohexyl‐1‐phenylethanone
(NL 98.0728, hydroxycyclohexylation) (Figure S3). Ten types

A B

Figure 2. Identification and annotation of modified metabolites in tomato
(A, B) Novel chromatographic peaks detected via the quadrupole‐Exactive‐Orbitrap (QE‐Orbitrap) and quadrupole‐linear ion trap (Q‐Trap) approach.
Comparison of chromatograms for retention times of 15min (A) and 6min (B) The TIC based on QE‐Orbitrap in full mass spectrometry (MS) scanning
mode, and the other chromatograms show only new peaks corresponding to specific modified groups detected by the Q‐Trap approach. (C) The structures
and MS2 spectra of the modified metabolites. Green arrows represented NL transitions, corresponding to the modified groups in the structural formula. NL,
neutral loss; TIC, total ion chromatography.
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of structural modifications in glycerol phospholipids such
as PE 18:3 (NL 141.0201/215.0506, glycerol‐phosphoryl‐
ethanol ammoniation) were further analyzed (Figure S3;
Table S4). Meanwhile, 21 typical structural modifications
were summarized for the flavonoid metabolites in tomato.
These were classified into five major categories according
to the structural characteristics of the modification
groups: carbon chain modification, single glycosylation
modification, multiple glycosylation modification, acyl‐
glycosylation modification and other modification types
(Figure S4). Using the WTMM approach, a tomato database
covering 125 modification types and 2,118 metabolites was
established (Tables S4, S7).

Comparison and evaluation of quantitative methods
based on Q‐Trap and QE‐Orbitrap in WTMM strategy
To systematically evaluate the strategy developed in this
study, the tomato WTMM database was used to perform

modified metabolic profiling in mixed tissue samples from R.
solanacearum‐infected tomato. Plant phytohormones are
usually present at very low levels; therefore, gibberellin de-
tection was used to assess the sensitivity of the method.
Gibberellin A4 (GA4) was detected in the Q‐Trap‐based
stepwise NL‐EPI method at NL= 131 Da (NL12452, unknown
modification), and the metabolite detected determined via
comparison with a standard. However, no signal peak was
detected in the same sample using the QE‐Orbitrap‐based
full MS/dd‐MS2 mode (Figure 3A), indicating that Q‐Trap
approach has better sensitivity for quantitative analysis in the
WTMM strategy. Meanwhile, five concentration gradients
(0.25, 0.5, 1, 1.5, 2 μg/mL) of GA4 standards were detected
using the Q‐Trap approach, and the GA4 standard curve was
plotted for absolute quantification (Figure 3B). Correlation
coefficients (R2) were greater than 0.99, indicating that the
standard curve was in good agreement with the original da-
tatype.
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Figure 3. Evaluation of the WTMM strategy
(A) Evaluation of the sensitivity of the WTMM strategy. The gibberellin A4 (GA4) content in tomato tissues was determined based on different detection
methods. The extracted ion current map (XIC) obtained by the quadrupole‐linear ion trap (Q‐Trap) and the quadrupole‐Exactive‐Orbitrap (QE‐Orbitrap)
method for the detection of gibberellin (GA4). (B) Standard curve of GA4. GA4 standards at different concentrations (0.25, 0.5, 1, 1.5, and 2 μg/mL) were
scanned using MRM mode, and standard curves drawn using chromatographic peak area data. (C) Evaluation of the reproducibility of the Q‐Trap
approach. Ten identical quality control (QC) samples were tested using both methods, and the peak area data were extracted from dataset for relative
standard deviation (RSD) calculations. (D) Evaluation of linearity of the Q‐Trap approach. A concentration gradient (0.083, 0.1, and 0.125 g/mL) of QC
samples were analyzed using both methods, and the chromatographic peak area data were extracted from each dataset for Pearson correlation coefficient
calculation. MRM, multiple reaction monitoring; WTMM, widely targeted metabolite modificomics.
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The acquired metabolic signals were subsequently
screened using the MS parameter optimization strategy in
Figure 1C, and a total of 826 substances with high‐quality
metabolic signals were screened for detection in subsequent
experiments. The 284 metabolic signals were identified using
the WTMM strategy by comparing the precursor ions, re-
tention times and MS fragmentation data for each signal
(Table S8). These 284 peaks were then used to compare the
quantitative analysis ability of both Q‐Trap and QE‐Orbitrap
methods. First, to compare detection reproducibility, ten
replicate quality control (QC) samples were scanned simul-
taneously using both methods; peak area data for the 284
outgoing peaks in each dataset were extracted and the rel-
ative standard deviation (RSD) calculated separately for each
(Figure 3C). For the Q‐Trap approach, the RSD values for
43% and 69% of the detected metabolites were less than 5%
and 10%, respectively; meanwhile, only 13% and 41% of the
QE‐Orbitrap‐detected metabolites had RSD values less than
5% and 10%. These results indicate that the Q‐Trap ap-
proach had greater reproducibility.

Next, the linearity of the two detection methods was
evaluated. Compared to the QE‐Orbitrap platform (full MS/
dd‐MS2 mode) which scans the entire m/z range, the Q‐Trap
platform (sMRM mode) detects only defined metabolites, the
detector is less prone to saturation and has a wider linearity
range. A concentration gradient (0.083, 0.1, and 0.125 g/mL)
of QC samples was set up in triplicate and injected for de-
tection with both methods. The peak areas corresponding to
each sample were extracted and averaged, and linearity as-
sessed using Pearson's correlation coefficients (Figure 3D).
The correlation coefficients differed significantly between the
two methods: for example, 91% (Q‐Trap) versus 75% (QE‐
Orbitrap) of the metabolites had correlation coefficients
greater than 0.70, and 30% (Q‐Trap) versus 26% (QE‐
Orbitrap) of the metabolites had correlation coefficients
greater than 0.99. Therefore, the Q‐Trap approach has a
wider linearity and is more suitable for metabolomic analysis
of complex biological samples. Overall, the Q‐Trap approach
outperformed QE‐Orbitrap in terms of sensitivity and quan-
titation, achieving large‐scale detection and quantitative
analysis of modified metabolites in plants.

Screening differentially accumulated metabolites
in response to tomato bacterial wilt
To test the applicability of WTMM strategy for detection of
modified metabolites in plant samples, the optimized WTMM
database was used to screen differential metabolites in re-
sponse to tomato blight. Metabolites were extracted from 60
diseased and healthy tomato tissue samples (see the
“Materials and Methods” section), and peak areas for the 826
substances detected were obtained for subsequent stat-
istical analysis (Table S9).

Principal component analysis (PCA) was used as an un-
supervised method to investigate the differences in metabolic
profiles between healthy control and R. solanacearum‐
infected groups in different tissues of tomato. Principal

component analysis results showed significant separation of
four different groups of material, which reflected significant
differences in metabolite levels in different tissues, with
52.2% of the differences explained by the first two principal
components (36.3% for PC1 and 15.9% for PC2). In addition,
the leaf control (LC) and leaf disease (LD) materials were
clearly separated in the PCA, while the root control (RC) and
root disease (RD) materials partially overlapped, suggesting
that the effects of R. solanacearum infection on metabolite
levels may be highest in tomato leaves (Figure 4A). A corre-
lation analysis of the multi‐tissue metabolome revealed
strong correlations among the biological replicates for each
tissue, whereas metabolic profiles tended to differ among
tissues (Figure S5). Within tissues, LC and LD materials could
be distinguished from each other, while this was not true for
some RC and RD materials, similar to the results of the PCA
(Figure S5). The results of the thermogram analysis visually
illustrated the differential accumulation of metabolites among
the four groups of materials (Figure 4B). The tissue samples
were divided into two large clusters, with significant differ-
ences between the LC and RC control materials, reflecting
the pattern of spatially differential accumulation of metabo-
lites across tomato tissues, and the variability of metabolic
profiles among different tissues was greater than the effect of
R. solanacearum on the variation of metabolite content.

To investigate the differential metabolites in response to
R. solanacearum infection, an orthogonal partial least squares‐
discrimination analysis (OPLS‐DA) was performed. The control
and susceptible groups (LC vs. LD, and RC vs. RD) were sig-
nificantly separated on the first principal component with P1
values of 41.0% and 33.0%, respectively (Figure 4C, D). Sig-
nificance diagnostics showed that R2Y and Q2 values in leaves
were 0.997 and 0.996, respectively, while R2Y and Q2 values in
roots were 0.995 and 0.990, respectively, neither of which ex-
ceeded the true value (horizontal line), implying no overfitting
(Figure S6). Differentially accumulated metabolites (DAMs) were
identified using Student's t‐tests and fold changes (P‐value<
0.05; fold change> 2 or <0.5). Volcano plots identified 251
differential metabolites in leaves (214 up‐regulated and 37
down‐regulated), of which 150 were modified metabolites, and
131 differential metabolites in roots (67 up‐regulated and 64
down‐regulated), of which 74 were modified metabolites. Fur-
ther comparing the differential metabolites between tissues
(leaves and roots), 45 DAMs were common to both tissues, of
which 28 were modified metabolites; 206 and 86 DAMs were
specific to leaves and roots, respectively (Figure 4E, F; Table
S10). Thus, modified metabolites may play an important role in
the tomato response to R. solanacearum infestation.

Modified metabolic biomarkers for R. solanacearum
in tomato
The importance of diagnostic biomarkers for the prevention
of R. solanacearum was identified, as R. solanacearum in-
festation severely affects the yield of tomato plants (Tans‐
Kersten et al., 2001; Tian et al., 2021). Using an OPLS‐DA
model, the 369 and 330 validated differential metabolites
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were further screened for their variable importance in projec-
tion (VIP) values greater than 1 in leaves and roots, respectively
(Figure 4C, D). Based on univariate and multivariate statistical
analyses (fold change; false discovery rate‐corrected P‐value;
VIP value), 13 DAMs were identified in both tissues (Figure 5A;
Table S10). Pie charts were used to illustrate the classification
of these DAMs, including alkaloids, amino acids, nucleotides,
naphthalenes, and phenolamines, among other classes; of
these, nine metabolites were labeled as modified metabolites
(Figure 5B).

The 13 DAMs were used as a candidate combined bio-
marker in a binary logistic regression for receiver operating
characteristic (ROC) curve analysis (Figure 5C). The ROC
curve confirmed good sensitivity of the combined biomarker,
as well as high specificity for both susceptible leaf and root
materials. The area under the curve (AUC) values were all 1,
indicating that the candidate biomarker could clearly discrim-
inate tomatoes infected with R. solanacearum from controls.
Therefore, these 13 DAMs could be used as a combined bi-
omarker to discriminate between R. solanacearum‐susceptible
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Figure 4. Screening for differentially accumulated metabolites in tomato tissues in response to Ralstonia solanacearum infection
(A) Principal component analysis (PCA) based on the relative content of metabolites in different tomato tissues. (B) Visualization of hierarchical clustering
maps of metabolites detected in different tomato tissues. (C) Score plot of the OPLS‐DA model based on differences in metabolic levels in tomato leaves.
(D) Score plot of the OPLS‐DA model based on differences in metabolic levels in tomato roots. (E) Volcano plot of 251 differentially accumulated
metabolites between LC and LD groups (P‐value< 0.05; FC, fold change> 2 or <0.5). (F) Volcano plot of 131 differentially accumulated metabolites
between RC and RD groups (P < 0.05; FC, fold change> 2 or <0.5). LC, leaf control; LD, leaf disease; OPLS‐DA, orthogonal partial least squares‐
discrimination analysis; RC, root control; RD, root diseased.

Novel widely targeted method for metabolic diversity study Journal of Integrative Plant Biology

8 Month 2024 | Volume 00 | Issue 00 | 1–14 www.jipb.net

 17447909, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jipb.13629 by Inst of A

gric E
conom

ics &
 D

eve, W
iley O

nline L
ibrary on [22/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



tomatoes and healthy controls. Moreover, the separate anal-
yses of ROC curves were performed for each of the 13 DAMs
(Figure S7). All 13 DAMs showed good sensitivity and specif-
icity (AUC> 0.85) in both leaf and root material and could also
be used as biomarkers alone to screen for R. solanacearum
infection. However, compared to the modified metabolites
(AUC> 0.90), metabolites without modified groups, such as
NL34613 (putrescine), had poor discriminatory ability for leaf
materials, with an AUC value of 0.89.

The DAMs were compared across tissues to identify those
common to all tissues, as well as those specific to each. In
response to R. solanacearum infection, several metabolites
accumulated in both leaf and/or root tissues, and all six of
these metabolites were found to have modified groups
(Figure S8). To visualize the differential accumulation patterns
of metabolites in tomato after infection with R. solanacearum,
26 DAMs were selected, including amino acids, lipids, and
phenolamines (the three most abundant substances), and
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Figure 5. Selection and validation of biomarkers for Ralstonia solanacearum infection in tomato
(A) Venn diagrams for screening candidate biomarkers for R. solanacearum infection based on univariate and multivariate statistical analyses. Blue and red
represent metabolites with variable importance in projection (VIP) values> 1 in leaves and roots, respectively; green and orange represent metabolites with
P‐values< 0.05 (FDR, false discovery rate significance criterion equal to 0.1) and fold changes> 2 or <0.5 in leaves and roots, respectively. (B) Pie chart
illustrating the classification of the 13 potential biomarkers. (C) Validation of a potential combined biomarker consisting of 13 differentially accumulated
metabolites based on receiver operating characteristic (ROC) curves. Area under the curve (AUC)= 0.5, it was the same as the follower guess, the model
had no predictive value; 0.5< AUC< 1, it was better than random guessing, and the model had predictive value; AUC= 1, the prediction model could be
used to get a perfect prediction. (D) The accumulation pattern plot of differentially accumulated metabolites. The small squares represent changes in the
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they were labeled in the metabolic pathway for analysis
(Figure 5D). The results showed that the accumulation of all
26 metabolites, including 24 modified metabolites, increased
significantly in leaves after infection with R. solanacearum,
while only six metabolites, including five modified metabo-
lites, increased in roots. In addition, lipids carrying glycer-
ophospholipid moieties and most of the acylated modified
phenolamines did not increase in abundance in the roots of
diseased plants. Taken together, the accumulation of
R. solanacearum‐modified metabolites increased significantly
in infected tomato root and leaf tissues, with a more pro-
nounced increase in leaves. Therefore, various modifying
groups of metabolites play an important role in altering the
polarity, biological activity and function of metabolites.

DISCUSSION

In plants, metabolite structural and functional diversity is
largely determined by chemical modifications of the basic
metabolite backbone (Wang et al., 2019). However, current
detection methods target only some of the known mod-
ification types, and large‐scale systematic studies on plant
metabolic modifications have not yet been reported (Dai
et al., 2014, 2016; Ballet et al., 2018; Li et al., 2019). There-
fore, improving detection coverage remains an important
challenge for metabolomics (Fernie et al., 2004). In this study,
a new WTMM strategy was developed that enables the large‐
scale acquisition of modified metabolite signals, and MS2T
libraries were constructed for the identification and annota-
tion of modified metabolites. The WTMM strategy integrates
the high sensitivity of Q‐Trap and the high‐resolution features
of QE, although the metabolic signals they acquire only
overlap by a certain percentage, which poses a certain
challenge for the structural resolution of metabolites using
HRMS data. However, the combination of the two acquisition
methods allows for a more comprehensive and systematic
acquisition of modified metabolic profiles, which provides
additional source data for the discovery of new modified
metabolites. More than 34,000 modified metabolic signals
were obtained in tomato using the WTMM strategy, providing
an important data resource for the discovery of new metab-
olites and modification types. In addition, the detection of
phytohormones (GA4) confirmed the advantageous high
sensitivity of the WTMM strategy.

Meanwhile, based on the NL‐EPI detection mode, high‐
quality MS2 information can be obtained for modified metab-
olites, laying the foundation for subsequent metabolite identi-
fication. In this study, a total of 125 modification types and
2,118 metabolites were identified and annotated, among
which 165 modified metabolites were identified for the first
time in tomato. However, due to the huge amount of in-
formation on modified metabolites obtained using the WTMM
strategy, the efficiency of manual annotation is too low to meet
practical needs. Therefore, the accurate, rapid annotation of
modified metabolites will be the focus of future work. Previous

studies of plant‐modified metabolites have mainly used the
QE‐Orbitrap method, which detects only a few known types of
modified metabolic signals. The WTMM strategy integrates the
advantages of Q‐Trap and QE‐Orbitrap, which not only covers
all currently reported modification types, but also detects
many unknown NL metabolic signals, which offers the possi-
bility to discover new modification types and identify new
modified metabolites. When applying the WTMM strategy, the
effects of metabolic sample pretreatment and extraction
methods on metabolic signal detection also need to be con-
sidered, while positive and negative ion modes should be in-
tegrated for simultaneous acquisition of plant‐modified meta-
bolic signals. Therefore, the WTMM strategy may be used to
detect small but important differences between groups of
samples and is more suitable for large‐scale quantitative
studies of modified metabolites in plant samples. However,
the detection of isomers resulting from different positions of
the same number and type of modifying groups on the carbon
skeleton of metabolites remains a challenge. Meanwhile, with
the continuous upgrading of sequencing technology, we can
efficiently screen relevant candidate genes for metabolite bi-
osynthesis by integrating genomic, transcriptomic and other
multi‐omics information, and then resolve the genetic basis for
the formation of plant‐modified metabolites (Luo, 2015; Zhu
et al., 2018).

Applying the WTMM database established in this study to
different tomato samples (healthy controls and disease‐
susceptible samples), a total of 251 DAMs were identified in
leaves, including 150 modified metabolites, and 131 DAMs
were identified in roots, including 74 modified metabolites. In
addition, disease‐responsive modified metabolites, such as
amino acids, lipids, and phenolic amines, accumulated to a
greater extent in tomato root and leaf tissues (Wan et al.,
2020). For example, falcarindiol, a typical acetylenic lipid,
was shown to have important inhibitory effects on fungal and
bacterial pathogens in tomato leaves (Jeon et al., 2020).
Based on these results, modified metabolites may act as
signals to enhance tomato defense responses.

In summary, the WTMM strategy applies a broad targeting
strategy to improve the coverage as well as sensitivity of the
assay, combines high‐resolution data for accurate annotation
of metabolic signals, and is suitable for large‐scale quanti-
tative studies of modified metabolites with good reproduci-
bility and linearity. This strategy is applicable to any plant
species and is important for the discovery of functional
modified metabolites in plants; at the same time, it can also
be combined with other omics data to provide potential for
in‐depth studies on the genetic basis of the synthesis and
regulation of plant‐modified metabolites.

MATERIALS AND METHODS

Planting materials and growth conditions
Five different varieties of tomato materials (Table S2) used in
this study were planted in the greenhouse of Hainan
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University, and a control group and an experimental group
were set up. The materials in the experimental group were
inoculated with R. solanacearum by the soil irrigation method,
while the materials in the control group were not inoculated.
In addition, greenhouse management, including irrigation,
fertilization, and pest control, largely followed normal agri-
cultural practices. After 30 d of inoculation with R. sol-
anacearum, the leaves and roots of three plants with similar
growth status of each variety were selected to prepare mixed
samples respectively. Each sample has three biological rep-
licates. The samples were quickly stored in liquid nitrogen
and freeze‐dried for subsequent metabolite extraction and
detection analysis.

Chemicals
Chromatographic‐grade methanol, acetonitrile, and acetic
acid reagents used in this study were purchased from Merck
(Darmstadt, Germany, http://www.merck-chemicals.com).
Deionized water was prepared using a LabTower EDI 15
system from Thermo Fisher Scientific (Waltham, MA, USA,
https://www. thermofisher.cn). The authentic standards used
were purchased from Sigma‐Aldrich Company (Saint Louis,
MO, USA, http://www.sigmaaldrich.con).

Sample preparation and extraction
The freeze‐dried samples were crushed using a mixer mill
(MM 400, Retsch, Arzberg, Germany, https://www.retsch.cn/)
with a zirconia bead for 1.5 min at 25 Hz. Then, 100mg of dry
powder was weighed and added to 1.0mL of 70% methanol
aqueous solution containing 0.1 mg/L lidocaine, and ex-
tracted at 4°C for 10 h. After centrifugation at 10,000 g for
10min at 4°C, the supernatant was filtered through an or-
ganic filter (13mm, 0.2 µm, ValueLab, CA, USA, https://www.
agilent.com.cn/) for UHPLC‐MS analysis.

Ultra‐high performance liquid chromatography
detection conditions
The extracted metabolic samples were separated using a
UHPLC system (Shimadzu Nexera X2, Kyoto, Japan, www.
shimadzu.com.cn/). Analytical conditions were as follows:
column, shim‐pack GISS C18 (pore size 5.0 μm, length
2 × 150mm, Shimadzu); mobile phase, water (0.04% acetic
acid) and acetonitrile (0.04% acetic acid); elution gradient,
water, acetonitrile, 95:5 v/v at 0 min, 5:95 v/v at 10min,
5:95 v/v at 11min, 95:5 v/v at 11.1min, 95:5 v/v at 15min;
flow rate, 0.4 mL/min; temperature, 40°C; injection volume,
2 μL. The UHPLC‐separated samples were detected and
analyzed by Q‐Trap and QE‐ Orbitrap MS, respectively.

Instrument parameters and data screening
The API 6500 Q‐Trap system was equipped with an Electro-
spray Ionization (ESI) Turbo ion spray interface and was con-
trolled using Analyst 1.6.3 software (AB SCIEX, Framingham,
MA, USA, https://sciex.com) to operate in positive ion mode.
The main parameters of the ESI source are as follows: ion
source temperature 500°C; ion spray voltage (IS) 5500 V; ion
source gas I (GSI), ion source gas II (GSII) and curtain gas

(CUR) were set at 55, 60, and 25 psi, respectively; collision gas
(CAD) was set to high mode. The modified metabolic profile
was detected using the NL‐EPI mode of the Q‐Trap system, in
which the neutral loss value starts from 14 Da and takes 1 Da
steps, namely NL= 14, NL= 15, NL= 16…, NL= 245, and
the precursor ion scan range was set from 19 to 1,000Da for
each NL transition. If the scan reaches the preset NL value
(NL= 14–245Da), and reaches the preset signal intensity to
trigger information‐dependent acquisition, the linear ion trap
module will be activated to perform enhanced product ion
scanning to obtain the MS2 spectrum of the precursor ion. The
settings of parameters such as product ions, DP and CE were
optimized before quantitative analysis, where the ranges of
DP and CE were 10–60.

Full MS/dd‐MS2 detection mode on the QE platform was
performed in positive ion mode with precursor ion scans
ranging from 50 to 1,000Da. The main parameters of the ESI
source were as follows: sheath gas 40 psi; auxiliary gas 12 psi;
spray voltage 3,000 V; capillary temperature 360°C; S‐lens
voltage 55 V; auxiliary gas heating temperature 350°C.

Data processing and metabolite characterization
High‐resolution raw data were submitted to Compound Dis-
coverer 3.1 software (Thermo Fisher Scientific) for automati-
cally matching to the online database; or after format con-
version by Proteowizard (http://proteowizard.sourceforge.net/
download.html), submitted to SIRIUS (https://bio.informatik.
uni-jena.de/sirius/), MetDNA (http://metdna.zhulab.cn/), MS2
Analyzer (http://fiehnlab.ucdavis.edu/projects/MS2Analyzer/)
and other software for auxiliary analysis. Raw data acquired in
sMRM mode were subjected to peak areas extraction for
metabolite quantification using MultiQuant 3.0.3 software. The
criteria for the structural identification of metabolites are
categorized into three levels: level 1 is achieved by comparing
information such as MS, MS/MS and retention times of
standards; level 2 is achieved by manual solving of spectra or
by comparing information such as MS, MS/MS, and retention
time of published literature and databases; and level 3 is
achieved by using high‐resolution precursor ion data and in-
complete MS/MS to achieve the identification of partial
structures or groups (Schymanski et al., 2014). Principal
component analysis and OPLS‐DA were performed under the
Par algorithm of SIMCA 13.0 software. The relative contents of
different tissue‐modified metabolites were displayed by his-
togram using GraphPad Prism 8 software, and potential bio-
markers in response to bacterial wilt were assessed by ROC
curves.

Gaussian graphical modeling
Gaussian graphical modeling, an undirected probabilistic
graphical model estimating the conditional dependence be-
tween variables, is based on pairwise Pearson's correlation
coefficients conditioned against the correlation with all other
metabolites (Chen et al., 2016). GeneNet package 1.2.8 (from
the CRAN, http://www.cran.r-project.org/) was used to esti-
mate the P‐correlation and assess the significance of
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the edges between metabolites, and the metabolite pairs
were used to construct a metabolic network with the soft-
ware Cytoscape (3.0.2).
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SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting
information tab for this article: http://onlinelibrary.wiley.com/doi/10.1111/
jipb.13629/suppinfo
Figure S1. Detailed structural annotation workflow for modified metabo-
lites based on MS2 Analyzer software
Figure S2. Construction of a metabolic reaction network based on
MetDNA algorithm for metabolite annotation
Figure S3. Annotation of novel modified metabolites in tomato combined
with high‐resolution mass spectrometry data
Figure S4. Summary of the main types of modifications to flavonoid structures
Figure S5. Correlation analysis of the metabolome of different tomato tissues
Figure S6. The evaluation plots of Orthogonal Partial Least Squares
Discrimination Analysis
Figure S7. Assessment of potential biomarkers based on receiver oper-
ating characteristic curves
Figure S8. The histograms based on the relative content of differentially
accumulated metabolites in tomato leaves and roots

Table S1. Metabolite reporting checklist
Table S2. The information of five tomato accessions used in this study
Table S3. The (almost) non‐redundant MS2 spectral tag (MS2T) library of
tomato obtained by the stepwise neutral loss‐enhanced product ion (NL‐
EPI) method
Table S4. The annotation results of MS2 spectral tag (MS2T) library
Table S5. The information of modifying groups based on MS2 Analyzer
software
Table S6. The annotation result based on MetDNA software
Table S7. One hundred and twenty‐five metabolite modifications detected
in tomato
Table S8. Validation of method reproducibility and linearity
Table S9. Data matrix of 826 metabolites of tomato materials. LC, leaf
control; LD, leaf disease; RC, root control; RD, root diseased. Three bio-
logical replicates were used for analysis
Table S10. The statistical results of 724 metabolites (metabolites with N/A
data were filtered out). FDR, false discovery rate; LC, leaf control; LD, leaf
disease; RC, root control; RD, root diseased; VIP, variable important in
projection
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